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regression models with simulated genetic data 

Methods 

The simulations presented in the main manuscript in the section “Comparison of statistical 

models to estimate inbreeding load” were designed to compare the performance of the 

statistical models summarised in Table 2 and illustrated in Figure S4. To that end, F was 

assumed to be known precisely and to directly affect fitness, thereby allowing for 

unambiguous assessment of biases in the statistical models. However, Figures S2 and S3 

show that random errors in inbreeding coefficients or survival probability did not affect 

results. In addition to these analyses presented in the main manuscript, we also used genetic 

data from the simulated metapopulations where survival was determined by loci with 

deleterious mutations (see Figure S1 for an illustration of the relationship and distribution of 

selection and dominance coefficients). These analyses serve as an alternative further 

comparison of statistical models and to illustrate and describe the statistical models in more 

detail. Again, we only used FROH calculated from runs of homozygosity larger than 1 Mbp and 

excluded immigrants from the dataset. Analyses were conducted in R v3.2.3 (R Core Team 

2015), and performed for each deme separately, resulting in a sample of 280 demes from a 

total of 10 metapopulations. The following headings refer to the names used in Table 2 to 

label the statistical models. 

Morton & TR 

First, we applied the regression model proposed by Morton et al. (1956). We grouped all 

individuals into 10 similarly sized classes of inbreeding coefficients. For each class, 

−𝑙𝑜𝑔𝑒(𝑠𝑐) was calculated, with 𝑠𝑐 being the survival rate calculated using the small sample 

size correction proposed by Templeton and Read (1983, 1984): 𝑠𝑐 =

(𝑛𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑 + 1) (𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑑 + 2)⁄ , with 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑑 being the number of individuals alive at the 
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start of the investigated period (i.e. here at virtual birth), and 𝑛𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑 being the number of 

individuals still alive at the end of the investigated period (i.e. here during the next breeding 

season). The regression of −𝑙𝑜𝑔𝑒(𝑠𝑐) on mean FROH per inbreeding class was performed by 

iteratively weighting the 10 data points with 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝑠𝑒𝑥𝑝 (1 −⁄ 𝑠𝑒𝑥𝑝) , where 𝑠𝑒𝑥𝑝  is the 

survival rate as predicted by the regression (Morton et al. 1956). 𝑠𝑒𝑥𝑝 in the first iteration was 

set to 𝑠𝑐 and then in each successive iteration replaced with the predictions of the previous 

regression, until the regression slope changed by less than 0.0001 in successive iterations. 

Morton et al. 

As shown previously (Kalinowski and Hedrick 1998), the small sample size correction 

proposed by Templeton and Read (1983, 1984) introduces not easily predictable biases into 

estimates of inbreeding load. We therefore also performed the same analysis without this 

correction by using the unadjusted survival rate 𝑠𝑐 = 𝑛𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑑⁄ . This procedure fails 

when there are no surviving individuals in an inbreeding class (because it results in −𝑙𝑜𝑔𝑒(0), 

which is not defined), in which case we would not estimate inbreeding load for such a 

replicate. However, this did not happen in any of the 280 demes. 

Exponent. ML 

The second model followed Kalinowski and Hedrick (1998) and estimated 𝑦𝐹 = 𝑦0𝑒−𝐵𝐹 with 

𝑦0 = 𝑒−𝐴 directly with maximum-likelihood. We minimized the negative log-likelihood with 

the R function mle. For illustration, we also directly calculated the log-likelihood for 𝑦0 larger 

than 0 and smaller than 1, and for B ranging from 0 to 10. Note that this model was fitted to 

the individual-level binary survival data (i.e. dead or alive), and was not grouped into classes 

of similar inbreeding coefficients. 

GLM log-link 

As a third model, we fitted generalized linear models (GLMs) with Poisson-distributed errors 

and logarithmic link function, and with the binary variable of individual survival (i.e. dead or 

alive) as response variable and FROH as explanatory variable. Glémin et al. (2006) used a 

similar model, but analysed survival rate of groups of individuals with similar inbreeding 

coefficients in a GLM with binomial error distribution (we instead used individual-level data). 

Using a GLM with logarithmic link function and a Poisson distribution instead of a binomial 

distribution usually avoids possible convergence problems and point estimates remain 

unbiased, but standard confidence intervals are typically too large (Zou 2004). This issue can 
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be resolved by using the so-called sandwich estimator, a robust error variance procedure (Zou 

2004). It is important here to use a logarithmic link function, in which case a Poisson error 

distribution is recommended also when binary survival data are analysed (Zou 2004). Robust 

standard errors were calculated by fitting the Poisson GLM and then using the R command 

coeftest(glm.modelname, vcov=sandwich) of the R libraries lmtest and sandwich (Zeileis and 

Hothorn 2002; Zeileis 2004, 2006), and 95% Wald confidence intervals were estimated as the 

point estimate plus and minus 1.96 times the robust standard error. As an alternative, 

researchers could choose to use a parametric bootstrapping model instead (Efron and 

Tibshirani 1993). For examples see the R code in the Supporting Information. 

GLM logit-link 

The fourth model included fitting a GLM with binomial error structure with a logit link 

function (Armstrong and Cassey 2007; Grueber et al. 2011). Survival rate 𝑦𝑖  was then 

predicted for various pairs of different inbreeding levels 𝐹𝑖, and equation 3 was applied, as 

recommended by Grueber et al. (2011). The predicted survival rate 𝑦0 for outbred individuals 

was used to estimate the intercept 𝐴 = −𝑙𝑜𝑔𝑒(𝑦0). 

 

 

 

 

 

 

 

 

 

 

Figure S1. (a) The relationship is shown of the selection and dominance coefficients of the 

2,500 loci with deleterious mutations simulated in Nemo. Dots represent individual loci, and 

the triangle represent the mean across all 2,500 loci. The distributions of values of (b) the 

selection coefficients and (c) the dominance coefficients are also shown.  
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Figure S2. Random errors in inbreeding coefficients did not affect biases of statistical 

models. Here, the same simulations are shown as in Figure 1, with the exception that here 

inbreeding coefficients F contain random errors. Thus, equation 4 was modified here to be 

𝜋𝐹 = 𝑒−𝐴−𝐵(𝐹+𝜎𝐹), with 𝜎𝐹 being a random number drawn from a normal distribution with a 

mean of 0 and a standard deviation of 0.01. This simple modification allowed for negative 

values of F, because the purpose of these simulations was just to investigate how results were 

affected by random variation as could arise for example from individuals with the same value 

of F differing in realized identity-by-descent at loci with deleterious alleles.  
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Figure S3. Random errors in survival probability did not affect biases of statistical models. 

Here, the same simulations are shown as in Figure 1, with the exception that here survival 

probabilities 𝜋𝐹  contain random errors. Thus, equation 4 was modified here to be 𝜋𝐹 =

𝜎𝜋 𝑒−𝐴−𝐵𝐹, with 𝜎𝜋 being a random number drawn from a normal distribution with a mean of 

1 and a standard deviation of 0.1. Such variation may reflect for example individual sampling 

variation in the number and effect size of loci that bear deleterious alleles, or random 

environmental effects on individual survival probability.  
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Figure S4. Legend on following page.  
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Figure S4 (previous page). Illustration of models for estimation of inbreeding load with data 

of survival and inbreeding from one simulated representative deme with a sample size of 791 

individuals. This deme had a true inbreeding load of 𝐵 = 2.01. The model of Morton et al. 

(1956) requires that individuals are grouped into classes of inbreeding coefficients, so that 

mean survival rate can be calculated for each class. (a) The relationship between survival rate 

and inbreeding coefficient is shown on the data scale. (b) The regression analysis is 

performed on a logarithmic scale and revealed 𝐴 = 0.74 and 𝐵 = 2.59. The size of the dots in 

(a) and (b) is proportional to the weight assigned to each data point (see text in Supporting 

Information 1 for methodological details). (c) Kalinowski and Hedrick (1998) proposed to 

estimate 𝑦𝐹 = 𝑦0𝑒−𝐵𝐹 with 𝑦0 = 𝑒−𝐴 directly with maximum-likelihood. Here, the likelihood 

surface is shown with darker colours corresponding to higher likelihoods. The maximum-

likelihood is marked with a white cross, and yielded 𝑦0 = 0.49, or equivalently 𝐴 = 0.71, and 

𝐵 = 2.80. (d) Individual survival as a binary variable is used in the analysis with generalized 

linear models, with logarithmic link function and Poisson-distributed errors (solid line) or 

with logit link function and binomial error distribution (dashed line). A GLM with Poisson 

errors and logarithmic link yielded 𝐴 = 0.61 and 𝐵 = 2.53. A GLM with binomial errors and 

a logit link yielded 𝐴 = 0.74. Estimates of B from such a GLM depended on the arbitrary 

choice of the two classes of inbreeding coefficients for which survival rate was predicted. For 

example, when using 𝐹0 = 0 and 𝐹𝑖 = 0.25, 𝐵 = 2.70. For 𝐹0 = 0 and 𝐹𝑖 = 0.5, 𝐵 = 3.10; 

for 𝐹0 = 0 and 𝐹𝑖 = 1, 𝐵 = 3.54; and for 𝐹0 = 0.5 and 𝐹𝑖 = 1, 𝐵 = 3.99.  
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Results 

We compared mean estimates of inbreeding load B across all simulation replicates for FROH, 

using the four models illustrated in Figure S4 and summarised in Table 2. Using equation 1 to 

extract the actually present inbreeding load yielded a mean of 𝐵 = 1.83  across all 280 

replicates. The model of Morton et al. (1956) estimated 𝐵 = 1.68, both with and without 

applying the small sample size correction proposed by Templeton and Read (1983, 1984). 

The rather small inbreeding load resulted in all inbreeding classes containing a sufficient 

number of survivors so that the small sample size correction affected inbreeding load by less 

than 10-5 lethal equivalents. The maximum-likelihood model proposed by Kalinowski and 

Hedrick (1998) yielded 𝐵 = 1.85. A GLM with Poisson errors and logarithmic link yielded 

𝐵 = 1.86. Estimates of B from a GLM with binomial errors and logit link depended on the 

arbitrary choice of the two classes of inbreeding coefficients for which survival rate is 

predicted. For example, when using 𝐹0 = 0 and 𝐹𝑖 = 0.25, 𝐵 = 1.87. For 𝐹0 = 0 and 𝐹𝑖 =

0.5 , 𝐵 = 2.13 ; for 𝐹0 = 0  and 𝐹𝑖 = 1 , 𝐵 = 2.43; and for 𝐹0 = 0.5  and 𝐹𝑖 = 1 , 𝐵 = 2.74 . 

These differences of B from the same model are large, not desirable, and cannot be 

ameliorated by resorting to a proposed arbitrary “convention” (Grueber et al. 2011, page 710) 

of using 𝐹0 = 0 and 𝐹𝑖 = 0.25. The shape of the logistic regression line (Figure S4d) prevents 

comparability of such estimates between studies. 
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Supporting Information 2: Metrics of F, subsets of loci or 

pedigree data, and fewer individuals 

Methods 

We illustrate the different metrics of F by plotting their values observed in one deme (Figure 

S5), and we report some summary statistics for them in Table 3. To investigate the effects of 

the amount of genetic data used to calculate F on estimates of inbreeding load, we also 

calculated inbreeding coefficients based on several restricted datasets. Fped was also calculated 

with only three to seven known ancestral generations. FH and Falt were also calculated for 

randomly selected sets of 25,000, 10,000, 5,000, and 1,000 polymorphic loci. FROH was also 

calculated using only runs of homozygosity of at least 0.5, 2, or 5 Mbp in length, 

corresponding to coalescence events occurring on average 49.0, 12.3, or 4.9 generations ago, 

respectively (see main manuscript for calculations). To more closely investigate FH and its 

dependence on allele frequencies, we calculated FH based on three more sets of loci: (i) all 

polymorphic deleterious loci; (ii) using a subset of neutral loci that most closely matched the 

allele frequencies of the deleterious loci; and (iii) using the subset of neutral loci with 

relatively even allele frequencies with a minor allele frequency of at least 0.2. To investigate 

the effects of sample size, we also calculated inbreeding load using the full genetic dataset but 

only subsets of 500 or 250 individuals that we randomly selected from the ca. 800 individuals 

of the four focal generations that formed the main dataset for each deme. 

Results 

Figure S5 shows how the different metrics of F differ from each other. We observed that F of 

immigrants (red dots in Figure S5; immigrants were excluded from all other analyses) were 

similar to F of individuals born in the focal deme for Fped, FROH and FH, but they were mostly 

much higher for Falt. Higher Falt of immigrants is a consequence of the high weight given to 

homozygotes of a rare allele. Because different demes in a metapopulation typically have 

different alleles at low frequencies due to genetic drift (e.g. Crow and Kimura 1970, chapter 

2.9), immigrants get very high values of Falt even when they are not more inbred than 

individuals born in the focal population. A similar effect appears to also produce positive 

values of Falt of several individuals with one immigrant parent (blue dots in Figure S5). Such 

individuals are normally the least inbred individuals and their F should thus show values close 

to the low end of the distribution, as is the case for Fped, FROH and FH. 
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As shown in Figure S6, using runs of homozygosity longer than 0.5 yielded unbiased 

estimates of inbreeding load, whereas runs of homozygosity longer than 5 Mbp yielded an 

overestimate. Use of FH underestimated inbreeding load more strongly with smaller subsets of 

neutral loci. Use of Falt overestimated inbreeding load, but decreasingly so with smaller 

subsets of neutral loci. We also investigated how well FH performed when calculated using 

only deleterious loci (situation (i) in Methods section above). FH(del) strongly underestimated 

inbreeding load, even though it was calculated across all loci with effects on survival. As 

discussed and justified in the Supporting Information 4 and Figure S11, this is likely due to 

the fact that deleterious alleles occur at rather low frequencies which have low power to 

predict genomic rates of homozygosity and identity by descent. This is supported by the 

observation that neutral loci with allele frequencies matched to the deleterious loci (situation 

(ii) in Methods section above) were basically useless for estimation of inbreeding load, 

yielding an estimate close to 0. Loci with relatively even allele frequencies (situation (iii) in 

Methods section above) on the other hand led to overestimated inbreeding load (Figure S6). 

We further investigated what effect sample size had by calculating inbreeding load with 

subsets of 500 or 250 randomly selected individuals (Figure S6) out of the ca. 800 individuals 

forming the datasets of each deme. Using smaller sample sizes did not affect mean estimates 

of inbreeding load across all replicates, but increased the spread of estimates for all inbreeding 

coefficients. This suggests that even when using much larger datasets and sufficient genetic 

data, FH and Falt would still yield biased estimates of inbreeding load, whereas FROH would 

yield unbiased estimates of higher precision. 

Figures S7 to S10 impose different cutoffs for loci included in estimation of F. Using only 

loci with a minor allele frequency of more than 5% had some quantitative effects on our 

results, but did not qualitatively affect any conclusions. The values of Falt for immigrants and 

their descendants were still higher than expected (see above for expectations), but less 

extremely so than when not imposing a minor allele frequency cutoff (Figure S7). Biases in 

estimates of inbreeding load remained similar (Figure S8). Additionally pruning loci in high 

linkage disequilibrium (using the same settings as described in the main text for FROH), did 

not affect the results (Figures S9 and S10). 
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Figure S5. Distributions and pairwise relationships of different metrics of F using illustrative 

data from one simulated deme. The axes correspond to the metric of F printed in the 

respective row or column. Red dots indicate immigrants. Immigrants were excluded from all 

other analyses in this manuscript. Blue dots represent individuals with one immigrant parent. 

Grey dots show all other individuals born in the focal deme and with parents that were also 

both born in the focal deme. Inbreeding coefficients shown here were calculated with the 

largest available simulated datasets and FROH used runs of homozygosity larger than 1 Mbp.  
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Figure S6. Legend on following page.  
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Figure S6 (previous page). Inbreeding load estimated in a Poisson GLM with logarithmic 

link function and various methods for estimating inbreeding coefficients (see main text for 

details). Curves on top of the panel show probability densities for the inbreeding coefficients 

based on all recorded genetic markers or pedigree generations. Horizontal lines in the lower 

part of the panel show the 2.5% to 97.5% quantiles, and dots indicate mean estimates across 

all 280 replicates. Asterisks (*) indicate that the mean estimate was different from the true 

value of inbreeding load with a p-value of less than 5%. FH(del) represents FH calculated across 

all deleterious loci (black). The thin red line below the black line represents FH calculated 

from those neutral loci that matched the allele frequencies of the deleterious loci most closely. 

Fped (blue) was based on up to 25 (thick line) or up to 7 (thin line) ancestral generations. FROH 

(orange) was based on runs of homozygosity of at least 1 Mbp (thick line) or at least 0.5, 2, or 

5 Mbp (thin lines). FH (red) was calculated using all polymorphic neutral loci (thick line), or a 

subset of 25,000; 10,000; 5,000; or 1,000 randomly selected loci (thin lines); or based on the 

subset of neutral loci with minor allele frequencies larger than 0.2 (“at even loci”). Falt (green) 

was calculated using all polymorphic neutral loci (thick line), or a subset of 25,000; 10,000; 

5,000; or 1,000 randomly selected loci (thin lines). The area shaded in grey shows the genetic 

reference of actual inbreeding load as calculated from the observed allele frequencies and 

selection coefficients at deleterious loci using equation 1. The lowest eight lines are calculated 

with random subsets of individuals and using all available genetic data.  
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Figure S7. Distributions and pairwise relationships of different metrics of F using illustrative 

data from one simulated deme. Here, only those neutral loci with a minor allele frequency 

higher than 5% were included; this is the difference to the data shown in Figure S5 (see the 

legend there for more details).  
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Figure S8. Same plot as in Figure S6 (see legend there for explanations), except that only 

those neutral loci with a minor allele frequency higher than 5% were included.  
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Figure S9. Distributions and pairwise relationships of different metrics of F using illustrative 

data from one simulated deme. Here, only those neutral loci with a minor allele frequency 

higher than 5% were included, and loci in strong linkage disequilibrium were pruned; these 

are the differences to the data shown in Figure S5 (see the legend there for more details).  
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Figure S10. Same plot as in Figure 2 of the main manuscript (see legend there for 

explanations), except that only those neutral loci with a minor allele frequency higher than 

5% were included, and linkage disequilibrium pruning was conducted for all metrics of F.  
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Supporting Information 3: Heterozygosity or probability 

of identity-by-descent for prediction of survival 

For the genomic simulations described in the main manuscript, we explicitly simulated 

genotypes at loci with deleterious mutations. The genotypes at these loci were the cause of 

fitness effects. In this simulation setup, realized identity-by-descent is not known for 

individual loci, but it is also not necessary to be known because fitness consequences are 

directly caused by the simulated genotypes. In reality, the loci causing fitness consequences 

are typically not or not entirely known, and inbreeding depression is typically studied by 

using neutral loci or loci with unknown fitness effects to estimate inbreeding coefficients, as 

we have done here. Nonetheless, the implicit assumption is that estimates of genome-wide 

identity-by-descent correlate with heterozygosity at loci with fitness effects (i.e. deleterious 

loci). Thereby, one might expect that knowing the actual levels of heterozygosity at 

deleterious loci would explain more variation in fitness than genome-wide levels of 

heterozygosity. We show here in some simplistic simulations that although this expectation 

holds for many situations, it does not hold when the deleterious allele is very rare. 

In our simulations, Fped, FH, and FROH all correlated similarly well with individual survival 

with mean correlation coefficients of -0.07 to -0.06. Correlations of survival with FH at 

deleterious loci only (i.e., FH(del)) was much weaker with a mean correlation coefficient of -

0.04. This finding was initially surprising because the deleterious loci are directly causing 

variation in survival and information about heterozygosity at these loci was thus expected to 

explain most variation in survival. Note that FH(del) is perfectly correlated with heterozygosity 

at deleterious loci. Deleterious loci are under selection and as a consequence, their mean allele 

frequency of 7.8% across all 280 replicates and mean heterozygosity of 0.12 are rather low. In 

such cases, homozygosity (i.e. identity-by-state, IBS) is not very informative about identity-

by-descent (IBD) even at these loci themselves. This information content can be quantified as 

IBD-IBS-discrepancy (Knief et al. 2017). Higher values of IBD-IBS discrepancy correspond 

to marker IBS being a bad predictor of marker IBD. Highly variable and more heterozygous 

markers (i.e. more alleles of similar frequency) lead to lower values of IBD-IBS discrepancy 

because marker variability increases informativeness about IBD (Knief et al. 2017; 

Nietlisbach et al. 2017). Mean IBD-IBS discrepancy was 0.86 at deleterious loci, and 0.60 at 

neutral loci. 
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To investigate if high IBD-IBS-discrepancy might be the reason for the low correlation of 

FH(del) with survival, we conducted explorative simulations across the whole range of 

deleterious allele frequencies. We simulated genotypes at a single recessive lethal locus for 

individuals with a range of inbreeding coefficients. These genotypes were then used to 

calculate survival probabilities and then to simulate actual survival data. We then investigated 

how much variation in survival was explained by heterozygosity at the single deleterious 

locus (red dots in Figure S11), or by the underlying inbreeding coefficients (blue dots in 

Figure S11), i.e. by the genome-wide probability of identity-by-descent used to simulate the 

genotypes at the deleterious locus. We found that when allele frequencies were very low, the 

underlying genome-wide probabilities of identity-by-descent explained slightly more variance 

in survival than heterozygosity at the causal locus. Thus, with high IBD-IBS-discrepancy and 

low deleterious allele frequency, good knowledge of identity-by-descent appears to be more 

useful to predict survival than knowledge of heterozygosity at the causal deleterious locus. 

IBD-IBS discrepancy is also high when the deleterious recessive allele is very common, but 

then heterozygosity is highly correlated with survival, because heterozygous genotypes differ 

in their fitness effects from the genotypes that are homozygous for the deleterious recessive 

allele (which is the most common genotype when deleterious allele frequency is high). Note 

that the discussion in this section of the Supporting Information focused on correlation 

coefficients or their squared value (i.e. the variance explained), because they are not affected 

by different ranges and variances of the various inbreeding coefficients. 

These simulations (Figure S11) suggest that it is likely that high IBD-IBS-discrepancy at the 

deleterious loci and low frequency of deleterious recessive alleles in our simulations are the 

reason for why FH(del) is only weakly correlated with individual survival. In support of this, 

very little variance in survival is explained by heterozygosity at the subset of neutral loci that 

match allele frequencies of deleterious loci most closely, and FH across these loci provided 

practically no information about inbreeding load (i.e. a mean estimate close to 0 as shown for 

“FH at matched neutral loci” in Figure S6). This is not a consequence of a smaller number of 

loci, as even smaller random subsets of neutral loci provided better estimates of inbreeding 

load. These results suggest that it may be more useful for quantifying the effects of inbreeding 

if genome-wide realized identity-by-descent is quantified (e.g. through measuring FROH) than 

if heterozygosity at all deleterious loci was known. 
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Figure S11. Simulations of survival determined by a single recessive lethal locus, whose genotype was determined by a range of inbreeding coefficients that 

represent measures of genome-wide identity-by-descent. See text of the Supporting Information 3 for more information. Panel (a) shows a small section of 

panel (b) for rare deleterious allele frequencies.  



 

 
Supporting Information  Evolutionary Applications 

Nietlisbach, Muff, Reid, Whitlock, Keller (2018)  21 

Supporting Information 4: Additional Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S12. Comparison of statistical properties of inbreeding coefficients and their relationships with 

survival. Absolute covariance, correlation, and slope of observed survival on inbreeding coefficient, 

and variance in inbreeding coefficient were calculated for each replicate. Means across all replicates 

are plotted here, with large dots representing the largest available dataset (bold labels in Figure S6 in 

Supporting Information 2). Smaller dots represent subsets of loci or different minimum length 

requirements for FROH. Note that here slopes of a regression of survival on inbreeding coefficients are 

plotted (i.e. no logarithmic relationship), as this allows for direct comparison with covariances and 

variances, because the regression slope equals the covariance divided by the variance in the 

independent variable. 
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Figure S13. Legend on following page. 
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Figure S13 (previous page). Estimates of inbreeding load from simulations run for 100 generations with increasing degree of inbreeding. Plots are analogous 

to Figure S6 in Supporting Information 2 (see there for further information). (a) Simulations were identical to those presented in the main manuscript except 

that only 100 generations were simulated. (b) No dispersal occurred in an otherwise identical simulation as in (a), i.e. with a population size per deme of up to 

200 individuals. (c) No dispersal occurred in an otherwise identical simulation as in (a), but population size per deme was limited to less than 100 individuals, 

and settings for calculating runs of homozygosity were modified to allow for lower density of polymorphic neutral loci (at least 1 polymorphic locus every 

250 kbp instead of every 100 kbp) and larger stretches without polymorphic loci (up to 4 Mbp instead of 2 Mbp). This was necessary because much fewer loci 

remained polymorphic in the smaller and isolated demes (see panels). In addition, sample size was decreased to a mean of only 414 individuals per replicate, 

thus limiting the reliability of the results plotted in (c). Mean sample sizes were 788 for (a), and 800 for (b). In addition, many demes in (c) were extinct or on 

the path towards extinction. To account for this, we ran simulations for 20 replicate sets of demes, and only used demes with at least 15,000 polymorphic 

neutral loci and at least 300 individuals in the dataset. This resulted in 248 replicate demes used in (c). 
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