
Supplementary Materials for “Quantile Regression in

the Secondary Analysis of Case-Control Data”

1 Additional Simulation Studies

1.1 Simulations results for Models (1) and (3) in Section 3.1
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τ= 0.5 τ= 0.9

n Methods RB (%) SE MSE ×n RB (%) SE MSE ×n

QR_controls -13.0 0.044 4.3 -13.2 0.060 8.0

QR_cases 10.8 0.041 3.8 -0.6 0.055 6.0

2000 QR_case-control 39.4 0.032 6.5 25.2 0.043 6.4

IPW -4.8 0.042 3.6 -2.5 0.056 6.3

KS -4.7 0.042 3.6 -2.0 0.056 6.3

SICO (m=1) -4.6 0.047 4.4 -1.9 0.064 8.1

SICO (m=10) -3.5 0.042 3.5 -1.6 0.055 6.0

SICO (m=100) -3.9 0.042 3.5 -2.0 0.055 6.0

QR_controls -7.3 0.089 4.0 -6.1 0.122 7.4

QR_cases 12.2 0.087 3.9 4.7 0.116 6.7

500 QR_case-control 41.0 0.064 3.2 31.0 0.086 4.8

IPW 0.1 0.084 3.5 2.0 0.112 6.3

KS 0.3 0.086 3.7 -0.3 0.114 6.5

SICO (m=1) -0.6 0.088 3.9 -0.6 0.116 6.7

SICO (m=10) -1.3 0.082 3.4 -2.9 0.105 5.5

SICO (m=100) 4.1 0.081 3.3 5.4 0.104 5.4

Table 1: Relative bias (RB), standard error (SE) and mean squared error (MSE) of the estimated

quantile coefficients under Model (1) at quantile levels 0.5 and 0.9. In Model (1),x i = ui,1 + ui,2

where ui,1 and ui,2 are iid bernoulli random variables with p = 0.3, zi ∼ N(0,1), and ei ∼ N(0, 1).

“QR_controls” stands for unadjusted quantile regression using controls only. “QR_cases” stands for

unadjusted quantile regression using cases only. “QR_controls” are unadjusted quantile regression

using both case and control samples. IPW is the estimates using inverse probability weighting;“KS” is

the KS estimates using kernel smoothing. SICO(m) is the SICO estimates with m replicate.
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τ= 0.5 τ= 0.9

n Methods RB (%) SE MSE ×n RB (%) SE MSE ×n

QR_controls -7.4 0.030 2.0 -11.3 0.042 4.0

QR_cases 10.0 0.029 2.0 3.3 0.042 3.6

2000 QR_case-control 46.0 0.023 7.1 31.8 0.031 6.2

IPW 1.2 0.029 1.7 0.1 0.039 3.1

KS 2.8 0.031 1.9 1.2 0.041 3.4

SICO (m=1) 0.8 0.031 2.0 -1.2 0.044 3.8

SICO (m=10) 1.5 0.029 1.6 0.0 0.038 2.9

SICO (m=100) 1.6 0.028 1.6 -0.2 0.038 2.9

QR_controls -9.0 0.059 1.8 -8.9 0.083 3.5

QR_cases 7.8 0.061 1.9 1.0 0.081 3.3

500 QR_case-control 45.0 0.046 2.5 31.6 0.062 2.9

IPW -1.2 0.057 1.6 1.1 0.077 2.9

KS -0.3 0.062 1.9 -0.3 0.081 3.3

SICO (m=1) -0.8 0.061 1.9 -2.1 0.078 3.1

SICO (m=10) -2.2 0.054 1.5 -3.6 0.071 2.5

SICO (m=100) 4.2 0.054 1.5 5.4 0.070 2.5

Table 2: Relative bias (RB), standard error (SE) and mean squared error (MSE) of the estimated

quantile coefficients under Model (3) at quantile levels 0.5, and 0.9. In Model (3), x i ∼ N(0, 1), zi ∼

N(0, 1), and ei ∼ N(0, 1). “QR_controls” stands for unadjusted quantile regression using controls only.

“QR_cases” stands for unadjusted quantile regression using cases only. “QR_controls” are unadjusted

quantile regression using both case and control samples. IPW is the estimates using inverse probability

weighting;“KS” is the KS estimates using kernel smoothing. SICO(m) is the SICO estimates with m

replicate.
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1.2 Bandwidth selection in KS estimates

We use kernel smoothing to approximate the expectation terms in the estimating equations,

and proposed a cross-validation (CV) approach to select the best bandwidth. To address the

question of whether the estimation is sensitive to the choice of bandwidth, and whether the

proposed CV-based bandwidth selection provides a reasonable estimation, we simulate 100

Monte-Carlo samples from Models (1) and (2) respectively. For each sample, we repeatedly

apply the proposed estimation procedure to a sequence of fixed bandwidths, ranging from

0.02 to 100, and then evaluate the resulting mean absolute bias with each bandwidth. To see

whether the estimates from smaller sample sizes are more sensitive to bandwidth selection, we

repeat this procedure on a subset of 500 cases and 500 controls. In Figure 1, we plot the mean

absolute biases of the estimated quantile coefficients from Model (1) against the logarithm of

their corresponding bandwidths. The horizontal line is the mean absolute bias of the estimated

coefficients with CV selected bandwidth. Similarly, we plot in Figure 2 the mean absolute

biases with fixed and CV selected bandwidth from Model (2). We found that the biases are well

controlled within 0.02 regardless of the selection of bandwidth. Hence we conclude that the

proposed method is not sensitive to the choice of bandwidth. The estimates are close for a fairly

wide range of bandwidth. The estimates using CV selected optimal bandwidth outperform

most of those with fixed bandwidths, which suggested that the proposed bandwidth selection

works reasonably well. The advantage of CV selected bandwidth is more visible at the 0.5th

quantile when the outcome is normally distributed (Model (1)), and at 0.1th quantile when

the outcome follows chi-square distribution(Model (2)). In other words, the selection is more

helpful for the quantile levels at which the density is higher.
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Figure 1: Mean absolute biases of the estimates with different bandwidths from Model (1).

The horizontal line is the mean absolute bias of the estimated coefficients with CV selected

bandwidth. The dots are the mean absolute biases of the estimated quantile coefficients with

fixed bandwidths.
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Figure 2: Mean absolute biases of the estimates with different bandwidths from Model (2).

The horizontal line is the mean absolute bias of the estimated coefficients with CV selected

bandwidth. The dots are the mean absolute biases of the estimated quantile coefficients with

fixed bandwidths.
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2 Technical Details for Theorems 2.1 and 2.2

In this appendix, we provide the technical proofs of the asymptotic behaviors of SICO estimate

bβ n,τ and KS estimate eβ n,τ.

2.1 Consistency of bβ
(`)
n,τ

We first establish the following Lemma, which will be used to show the consistency of bβ
(`)

.

Lemma 1 Let Un(β) = n−1
∑n

i=1{[Ψτ( ỹi,xi,β) − Ψτ(bỹi,xi,β)]p(1 − di|xi)}, where bỹi is

a random draw from the estimated conditional quantile function x>i
bβ
(1−di)

n (τ), and U(β) =

limn→∞ Un, then under Assumptions 2 and 3, for any ε, we have

pr(sup
β∈Θ
‖Un(β)− U(β)‖> ε)→ 0 (1)

Proof of Lemma 1: Following the Huber’s chaining argument, we partition the parameter

space into Ln disjoint small cubes Γl with diameters less than C1/n for some constant C1. Let

ξl be the center of the l-th cube, the left side of (1) is bounded by the sum of the following

two probabilities, P1 + P2, where

P1 = Prob

�

max
l

sup
β∈Γl
‖Un(β)− Un(ξl)− U(β) + U(ξl)‖ ≥ ε

�

and

P2 = Prob
�

max
l
‖Un(ξl)− U(ξl)‖ ≥ ε/2

�

.
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We first note that

‖Un(β)− Un(ξl)‖

= n−1











n
∑

i=1

�

Ψτ( ỹi,xi,β)−Ψτ( ỹi,xi,ξl) +Ψτ(bỹi,xi,β)−Ψτ(bỹi,xi,ξl)
	

p(1− di|xi)











= n−1











n
∑

i=1

�

I{ ỹi ≤ x>i β} − I{ ỹi ≤ x>i ξl}+ I{bỹi ≤ x>i β} − I{bỹi ≤ x>i ξl}
�

p(1− di|xi)xi











≤ n−1











n
∑

i=1

�

I{| ỹi − x>i ξl | ≤ |x>i (β − ξl)|}+ I{|bỹi − x>i ξl | ≤ |x>i (β − ξl)|}
�

p(1− di|xi)xi











≤ n−1











n
∑

i=1

�

I{| ỹi − x>i ξl | ≤ ‖xi‖qn}+ I{|bỹi − x>i ξl | ≤ ‖xi‖qn|}
�

p(1− di|xi)xi











Let gi() be the density of eyi, then gi is a continuous function and bounded away from zero

and infinity according to Assumption 3. Following the mean value theorem, there exists an z∗i

such that

prob(|eyi − x>i ξl | ≤ ‖xi‖qn) = 2‖x i‖qn gi(z
∗
i − x>i ξl). (2)

On the other hand, prob(|beyi − x>i ξl | ≤ ‖xi‖qn) =
∫ x>i ξl+‖xi‖qn

x>i ξl−‖xi‖qn

bf 1−di
n (ey|xi)dey where bfn(ey|xi) is

the density function of eyi estimated from alternative population using quantile regressions.

Following (A.2) in Wei, Ma and Carroll (2011), sup(y,x) |bfn(ey|xi) − f (ey|xi)| = op(1) under

Assumptions 2 and 3. Therefore, the

prob(|beyi − x>i ξl | ≤ ‖xi‖qn)≤ 2‖x i‖qn gi(z
∗
i − x>i ξl) + op(1) (3)

Combing (2), (3), and the fact that maxi ‖xi‖= Op(1), we have

prob(max
l

sup
β∈Γl
‖Un(β)− Un(ξl)‖ ≥ ε/4)→ 0

Following similar arguments, we can also show that prob(maxl supβ∈Γl ‖U(β) − U(ξl)‖ ≥

ε/4) → 0, which in turn implies P1 = op(1). On the other hand, let ui(l, m) = [I{ ỹi ≤
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x>i β}− I{bỹi ≤ x>i β}]xm,i p(1−di|xi), where xm,i is the m-th component of xi with m= 1, ..., p.

A sufficient condition for P2 = op(1) is that, for any xm, we have

Prob

�

max
1≤l≤Ln;1≤m≤p

�

�

�

�

�

n
∑

i=1

ui(l, m)− Eui(l, m)

�

�

�

�

�

≥ ε/2

�

= op(1).

Under Assumption 2, ui(l, m) is bounded for all i’s. Applying Bernstein’s inequality to the

probability term above, we have

Prob

�

max
l,m

n−1

�

�

�

�

�

n
∑

i=1

[ui(l, m)− Eui(l, m)]

�

�

�

�

�

> ε/2

�

≤
Ln
∑

l=1

p
∑

m=1

Prob

�

n−1

�

�

�

�

�

n
∑

i=1

[ui(l, m)− Eui(l, m)]

�

�

�

�

�

> ε/2

�

≤ Lnp exp

�

−
n2ε2

2n maxi x2
m,i + 2/3 maxi xm,inε

�

→ 0

when maxi ‖xi‖2/n → 0. We now have shown that both P1 and P2 = o(1), which in turn

implies the uniform convergence (1). Lemma 1 is hence proved.

9



Proof of the consistency of bβ
(`)

n

Recall that bβ
(`)

n,τ is the solution to

cSn,τ(β) =
n
∑

i=1

¦

Ψτ(yi,xi,β)bp(di | xi) +Ψτ(bey
(`)
i ,xi,β)bp(1− di | xi)

©

= 0.

We can equivalently define

bβ
(`)

n,τ = arg min
β











n
∑

i=1

¦

Ψτ(yi,xi,β)bp(di | xi) +Ψτ(bey
(`)
i ,xi,β)bp(1− di | xi)

©











We also define

Sn,τ(β) =
n
∑

i=1

{Ψτ(yi,xi,β)p(di | xi) +Ψτ(eyi,xi,β)p(1− di | xi)} ,

where eyi is actual unobserved counter-factual outcome, and p is true conditional disease

probability, and its liming function Sτ(β) = limn→∞Sn,τ(β). Following Assumption 1, β0,τ

uniquely minimizes ‖S (β)‖. Since Sτ(β) is continuous function in β , a sufficient condition

for the consistency of bβ
(`)

n,τ is

sup
β∈Θ

n−1‖cS (`)n,τ (β)−Sτ(β)‖= op(1) (4)

as n→∞, kn→∞ and kn/n→ 0. We first note that

cS (`)n,τ (β)−Sn,τ(β)

=
n
∑

i=1

Ψτ(yi,xi,β){bp(di | xi)− p(di | xi)}+
n
∑

i=1

Ψτ(bey
(`)
i ,xi,β){bp(1− di | xi)− p(1− di | xi)}

+
n
∑

i=1

{Ψτ(bey
(`)
i ,xi,β)−Ψτ(eyi,xi,β)}p(1− di | xi).

The left side of (4) is then bounded by

sup
β∈Θ

n−1‖
n
∑

i=1

Ψτ(yi,xi,β){bp(di | xi)− p(di | xi)}‖

+ sup
β∈Θ

n−1‖Ψτ(bey
(`)
i ,xi,β){bp(1− di | xi)− p(1− di | xi)}‖+ sup

β∈Θ
n−1‖Un‖.

= I1 + I2 + sup
β∈Θ

n−1‖Un‖
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The uniform convergency of I1 and I2 follows readily from Assumption 2. So we only need to

show supβ∈Θ n−1‖Un‖= op(1).

In what follows, we show that

sup
β∈Θ
‖U(β)‖= o(1) (5)

Following the law of large number,

U(β) = lim
n→∞

n−1

¨

n
∑

i=1

[I{ ỹi ≤ x>i β} − I{bỹi − x>i β}]xi p(1− di|xi)

«

= lim
n→∞

n−1

¨

n
∑

i=1

[F ỹi
(x>i β)− bFn(x

>
i β)]xi p(1− di|xi)

«

Due to the uniform convergence of bβ n(τ), supβ∈Θ |bFn(x>i β) − F ỹi
(x>i β)| = op(k1/2

n n−1/2) as

shown in Wei and Carroll (2009). Combing Assumption 2, we have supβ∈Θ ‖U(β)‖= op(k1/2
n n−1/2),

which together with Lemma 1 imply (5).

2.2 Asymptotic normality of bβ
(`)
n,τ

Similar arguments as those used in proving Lemma 4.6 of He and Shao(1996) yield the fol-

lowing uniform convergence results. For any descending sequence δn→ 0,

sup
‖β−β0,τ‖<δn

n−1/2






cS (`)n,τ (β)− cS (`)n,τ (β0,τ)− E cS (`)n,τ (β) + E cS (`)n,τ (β0,τ)




= op(1).

Due to the consistency of bβ
(`)

n,τ,

n−1/2






cS (`)n,τ (bβ
(`)

n,τ)− cS (`)n,τ (β0,τ)− E cS (`)n,τ (bβ
(`)

n,τ) + E cS (`)n,τ (β0,τ)




= op(1).

Since cS (`)n,τ (bβ
(`)

n,τ)≈ 0, we Taylor expand E cS (`)n,τ (bβ
(`)

n,τ) around β0,τ, so that
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0 ≈ n−1/2
cS (`)n,τ (β0,τ) + n−1

∂ E cS (`)n,τ (β0,τ)

∂β0,τ
n1/2(bβ

(`)

n,τ −β0,τ) + op(1)

= n−1/2
n
∑

i=1

¦

Ψτ(yi,xi,β0,τ)p(di | xi) +Ψτ(bey
(`)
i ,xi,β0,τ)p(1− di | xi)

©

+n−1







n
∑

i=1

Eyi
[Ψτ(yi,xi,β)|xi]

∂β

�

�

�

�

β=β0,τ

p(di|xi) +
Eyi
[Ψτ(bey

(`)
i ,xi,β)|xi]

∂β

�

�

�

�

�

β=β0,τ

p(1− di|xi)







×n1/2(bβ
(`)

n,τ −β0,τ) + op(1)

Note that

n−1
∂ E cS (`)n,τ (β0,τ)

∂β0,τ

= n−1







n
∑

i=1

Eyi
[Ψτ(yi,xi,β)|xi]

∂β

�

�

�

�

β=β0,τ

p(di|xi) +
Eyi
[Ψτ(bey

(`)
i ,xi,β)|xi]

∂β

�

�

�

�

�

β=β0,τ

p(1− di|xi)







= n−1
n
∑

i=1

¦

f yi
(x>i β0,τ)p(di|xi) + f

b

eyi
(x>i β0,τ)p(1− di|xi)

©

xi

= n−1
n
∑

i=1

�

f yi
(x>i β0,τ)p(di|xi) + { feyi

(x>i β0,τ) + op(1)}(x>i β0,τ)p(1− di|xi)
�

xi

= n−1
n
∑

i=1

�

f yi
(x>i β0,τ)p(di|xi) + f

eyi
(x>i β0,τ)p(1− di|xi)

�

xi + op(1)

Ò= Gn + op(1)

On the other hand,

var

�

n−1/2
n
∑

i=1

¦

Ψτ(yi,xi,β0,τ)p(di | xi) +Ψτ(bey
(`)
i ,xi,β0,τ)p(1− di | xi)

©

�

= Vn,1 + Vn,2 + 2Un,1,
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where Vn,1 , Vn,2 and Un,1 are defined in Section 2.6. Consequently,

n1/2(bβ
(`)

n,τ −β0,τ) = −G−1
n n−1/2

n
∑

i=1

¦

Ψτ(yi,xi,β0,τ)p(di | xi) +Ψτ(bey
(`)
i ,xi,β0,τ)p(1− di | xi)

©

+ op(1)

= AN(0, G−1
n (Vn,1 + Vn,2 + 2Un,1)G

−1
n ) (6)

n1/2(bβ n,τ −β0,τ)

= m−1
m
∑

`=1

n1/2(bβ
(`)
−β0,τ)

= −D−1
n

1
m

m
∑

`=1

�

n−1/2
n
∑

i=1

¦

Ψτ(yi,xi,β0,τ)p(di | xi) +Ψτ(bey
(`)
i ,xi,β0,τ)p(1− di | xi)

©

+ op(1)

�

= −D−1
n n−1/2

n
∑

i=1

¨

Ψτ(yi,xi,β0,τ)p(di | xi) +
1
m

m
∑

`=1

Ψτ(bey
(`)
i ,xi,β0,τ)p(1− di | xi)

«

+ op(1)

=

13



Technical proofs

Proof of consistency Recall that

Sn,τ(β) =
1
n

n
∑

i=1

Ψτ(yi,xi,β)p(di | xi) + eΨτ(xi,β)p(1− di | xi),

where eΨτ(xi,β) is the expected quantile regression estimating function given the opposite

disease status of the ith subject and his covariates xi, i.e.,

eΨτ(xi,β) = E ỹi
{Ψτ( ỹi,xi,β) | xi, Di = 1− di} ,

and p(di | xi) is the true probability of being disease given xi. Then the true parameter β0,τ is

the unique solution to S(β) = 0, where Sτ(β) = limn→ Sn,τ(β). Further recall that bp(di|xi) is

the estimated probability and beΨτ(xi,β) is kernel estimated eΨτ(xi,β) as in (??). The working

estimation equations are

bSn,τ =
1
n

n
∑

i=1

Ψτ(yi,xi,β)bp(di | xi) +
b

eΨτ(xi,β)bp(1− di | xi),

and the estimator bβ n,τ is the solution of bSn,τ(β) = 0.

Following the arguments in Amemiya (1985, pp.106-108), the following conditions suf-

fices the consistency of bβ n,τ.

(1) β0,τ ∈ Θ is the unique solution to Sτ(β) = 0;

(2) Sτ(β) is a continuous function for β ∈ Θ;

(3) supβ∈Θ ‖bSn,τ(β)− Sτ(β)‖= op(1).

The uniqueness of β0,τ is assumed in Assumption 1, and the continuity of Sτ(β) is implied

readily from the continuity of the conditional density f (Y |X , D), which is assumed in Assump-

tion 3. Hence, we only need to show the condition (3) to obtain the consistency. To do so, we
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bound

sup
β∈Θ
‖bSn,τ(β)− Sτ(β)‖ ≤ sup

β∈Θ
‖bSn,τ(β)− Sn,τ(β)‖+ sup

β∈Θ
‖Sn,τ(β)− Sτ(β)‖. (7)

Note that

‖bSn,τ(β)− Sn,τ(β)‖ =
1
n

n
∑

i=1



Ψτ(yi,xi,β)− eΨτ(xi,β)


 {bp(di|xi)− p(di|xi)}

+
1
n

n
∑

i=1







b

eΨτ(xi,β)− eΨτ(xi,β)




bp(1− di|xi) (8)

Following Fan and Gilbels (1996), the bias of the kernel estimated beΨτ(xi,β) converges to zero

at the rate of O(h2). Since eΨτ(xi,β) is a continuous function, the bias convergences to zero

uniformly as h→ 0. Moreover, when h= o(n−1/5), and hn→∞, we consequently have

max
xi

sup
β∈Θ

p

nh






b

eΨτ(xi,β)− eΨτ(xi,β)




= op(1),

which further leads to,

sup
β∈Θ

1
n

n
∑

i=1







b

eΨτ(xi,β)− eΨτ(xi,β)




bp(1− di|xi) = o(n−1/2h−1/2) = op(1). (9)

On the other hand, since


Ψτ(yi,xi,β)− eΨτ(xi,β)


 is bounded away from infinity, Assumption

3 also implies

sup
β∈Θ

1
n

n
∑

i=1



Ψτ(yi,xi,β)− eΨτ(xi,β)


 {bp(di|xi)− p(di|xi)}= op(1). (10)

Combining (8) -(10), we have

sup
β∈Θ
‖bSn(β)− Sn(β)‖= op(1). (11)

On the other hand, following the similar chaining argument in Lemma 2 of Wei and Carroll

(2009), we have

sup
β∈Θ
‖Sn(β)− S(β)‖= op(1). (12)
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The uniform convergence (11) and (12) together implies the condition (3) holds. The con-

vergence of bβ n,τ is approved.

Proof of normality Following the similar argument as in Lemma 2 of Wei and Carroll(2009),

we can show that for any positive descending sequence dn→ 0, we have

sup
‖β−β0,τ‖>dn

n1/2‖Sn(β)− Sn(β0,τ)− S(β) + S(β0,τ)‖= op(1) (13)

Due to the consistency of bβ n,τ, the uniform convergence (13) implies that

n1/2‖Sn(bβ n,τ)− Sn(β0,τ)− S(bβ n,τ) + S(β0,τ)‖= op(1) (14)

Note that bβ n,τ is the solution to bSn(β) = 0, we have

op(1) = n1/2
bSn(bβ n,τ) = n1/2Sn(bβ n,τ) + n1/2{bSn(bβ n,τ)− Sn(bβ n,τ)}

= n1/2Sn(bβ n,τ) + n−1/2
n
∑

i=1

[beΨτ(xi,β)− eΨτ(xi,β)]p(1− di|xi)

= n1/2Sn(bβ n,τ) + op(h
−1/2).

The last equality follows from (9). Consequently, n1/2Sn(bβ n,τ) = op(1), which in turn implies

the following convergence.

n1/2‖Sn(β0,τ)− S(bβ n,τ)‖= op(1) (15)

Taylor expending S(bβ n,τ) around S(β0,τ), we have

p
n(bβ n,τ −β0,τ) = −G−1

n Sn(β0,τ) + op(1),

where

Gn = n−1
n
∑

i=1

¨

∂ Eyi
[Ψτ(yi,xi,β)|xi, di]

∂β

�

�

�

�

β=β0,τ

p(di|xi) +
∂ eΨτ(xi,β)
∂β

�

�

�

�

β=β0,τ

p(1− di|xi)

«

.
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Under the Assumptions 4 and 5, limn→∞ Gn → G0 in probability, and limn→∞ Vn = V . It

follows immediately from the Central Limit Theorem that

p
n(bβ n,τ −β n,τ) = AN(0, G0V−1

0 G0).
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