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1.1 The model2

The coalescent process for two samples under a multi-deme model can be described by a3

continuous time Markov chain (CTMC) (Bahlo and Griffiths, 2001). Let i, j represent sam-4

pled lineages and α, β their locations, respectively, d is the number of demes (or populations)5

and (α, β) ∈ {1, · · · , d}×{1, ..., d}. Let c denote the coalescent state. The infinitesimal rate6

matrix R of this CTMC is7

R(α,β),(γ,β) = mα,γ β = 1, ..., d, γ 6= α

R(α,β),(α,γ) = mβ,γ α = 1, ..., d, γ 6= β

R(α,α),(c) = qα

R(α,β),(α,β) = −(mα+ +mβ+)− δαβqα
R(c),(c) = 0

R(c),β = 0 β = 1, ..., d

R(α,β),(γ,κ) = 0 γ, κ = 1, ..., d, γ 6= α, κ 6= β,

(S1)

where M = 〈mα,β〉 denotes the migration rate matrix, and mα,β is the migration rate between8

demes α, β and qα = 1
2Nα

is the coalescent rate of deme α which is proportional to the inverse9

of the population size at deme α (Nk), and mα+ =
∑

γ 6=αmα,γ. Let Ti,j denote the (random)10

coalescent time between the pair of sampled lineages, and fTi,j(t) denote the probability11

density of a coalescent event at time t. Here, we derive fTi,j(t) by conditioning on the12

position of the two lineages.13

Lemma 1.1 Let
(
Xi(t), Xj(t)

)
∈ {1, · · · , d}× {1, ..., d} denote the position of lineage i and14

lineage j at time t respectively and are moving according to the CTMC defined by (S1). The15

probability density fTi,j(t) that lineage i and j coalesce at time t is given by
∑d

κ=1 qκP (Xi(t) =16

κ,Xj(t) = κ).17

For ∆t ≈ 0,18
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P (Ti,j ∈ [t, t+ ∆t]) (S2)

≈
d∑

κ=1

P (Ti,j ∈ [t, t+ ∆t]|Xi(t) = κ,Xj(t) = κ)P (Xi(t) = κ,Xj(t) = κ)

(S3)

≈
d∑

κ=1

qκ∆tP (Xi(t) = κ,Xj(t) = κ). (S4)

Taking the limit ∆t→ 0, we arrive at the density19

fTi,j(t) = lim
∆t→0

P (Ti,j ∈ [t, t+ ∆t])/∆t =
d∑

κ=1

qκP (Xi(t) = κ,Xj(t) = κ). (S5)

The random walk approximation to the coalescent20

Here, we introduce an approximation,21

P (Xi(t) = κ,Xj(t) = κ) ≈ P (Xi(t) = κ)P (Xj(t) = κ). (S6)

The intuition is that the probability that lineage i and j coalesce before time t is extremely22

small such that the two lineages approximately behave like two independently moving par-23

ticles. Each lineage can be modeled by a random walk with transition matrix M . These24

assumptions were also made in the context of continuous spatial diffusion models for hap-25

lotype sharing Baharian et al. (2016); Ringbauer et al. (2017) , and even further back, as a26

general approximation to the two-dimensional continuous-space coalescent process (Barton27

et al., 2002; Wilkins, 2004; Blum et al., 2004; Novembre and Slatkin, 2009; Robledo-Arnuncio28

and Rousset, 2010).29

This approximation implies that30

fTi,j(t) ≈
∑
κ

qk(e
−Mt)α,κ(e

−Mt)β,κ, (S7)

where lineages i, j are initially sampled in deme α, β. Or equivalently in matrix form,31

fTi,j(t) ≈
(
e−MtQe−Mt

)
i,j

, (S8)

where Q = diag(q1, ..., qd).32
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Varying migration rates and population sizes across time33

Corollary 1.1.1 Let time slice k be defined by the interval tk−1 < t < tk, Mk denote

the migration rate matrix in time slice k, and Qk = diag(qk1 , ..., q
k
d) where qkα denotes the

coalescent rate in deme α at time slice k. Let Ti,j denote the coalescent time between lineage

i, j sampled in demes α, β, then under the independence assumption, for t ∈ (tK−1, tK),

fTi,j(t) ≈
(
GK(t)QKGK(t)

)
α,β

, (S9)

where GK(t) =

(∏K−1
k=1 exp

(
− (tk − tk−1)Mk

))
exp

(
− (t− tK)MK

)
34

Expected number of lPSC segments given the demography Θ35

Lemma 1.2 It follows that E[Xµ
i,j|Θ] ≈ G

∫∞
µ
fL(l|Θ)/l dl where Xµ

i,j denotes the number36

of PSC segment greater than µ basepairs shared between haploid individuals i, j, Θ denotes37

the demographic model, G denote the size of the genome, L denotes the random length (in38

base-pairs) of the PSC segment between i and j containing a pre-specified position in the39

genome, and fL(l|Θ) the probability densite of L conditional on Θ.40

Let E[Fµ|Θ] denote the expected fraction of the genome between i, j that lies in PSC seg-41

ments greater than µ, and E[sµ|Θ] the expected size of a PSC segment conditional on it42

being at least length µ. According to equations 9-14 from (Palamara et al., 2012),43

E[Xµ
i,j|θ] ≈

GE[Fµ|Θ]

E[sµ|Θ]
, (S10)

E[Fµ|Θ] =

∫ ∞
µ

fL(l|Θ)dl, (S11)

E[sµ|Θ] =

∫∞
µ
fL(l|Θ)dl∫∞

µ
fL(l|Θ)/l dl

. (S12)

We obtain the desired result by substituting (S11) and (S12) into (S10) and canceling like-44

terms.45

Expected age of a segment46

We choose PSC segment lengths based on their expected age which is derived below.47
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Lemma 1.3 The expected coalescent time (t, in generations) of PSC segments between48

length L1 centiMorgans and L2 centiMorgans is approximately 300
4

( 1
L1

+ 1
L2

) if the effective49

population size (N) is sufficiently large.50

We choose to work in units of basepairs, and will convert back to units of morgans at the51

end. We convert L1 into units of base-pairs with the transformation: µ = L1

100r
and similarly52

ν = L2

100r
.53

Let us denote T |l, N as the random coalescent time of a PSC segment that is at least

length l under a single-deme demography model with population size N . The expected

coalescent time of an PSC segment longer than µ base-pairs can be expressed as

E[T |l ≥ µ,N ] =

∫ ∞
0

tfT (t|l ≥ µ,N)dt =

∫ ∞
0

t
fL(l ≥ µ|t)fT (t|N)

fL(l ≥ µ|N)
dt

=

∫∞
0
tfL(l ≥ µ|t)fT (t|N)dt∫∞

0
fL(l ≥ µ|t)fT (t|N)dt

,

(S13)

where fL(l|t) = 4r2t2le−2trl denotes the probability density that a PSC segment is of length54

l given it has a common ancestor event at time t, fT (t|N) denotes the probability density55

that a coalescent event occurs at time t under the demography model with population size56

N .57

Next, we expand a key term in equation (S13)

fL(l ≥ µ|t) =

∫ ∞
µ

fL(l|t)dl = (2rtµ+ 1) exp

(
− 2rtµ

)
(S14)

and assume,

fT (t|N) =
e−t/N

N
. (S15)

Putting everything together,58

E[T |l ≥ µ,N ] =
N(1 + 6Nrµ)/(1 + 2Nrµ)3

(1 + 4Nrµ)/(1 + 2Nrµ)2
=

N(1 + 6Nrµ)

1 + 6Nrµ+ 8N2(rµ)2
. (S16)

We can remove the dependence of N by taking limN→∞ as done similarly in Baharian et al.59

(2016),60

lim
N→∞

E[T |l ≥ µ,N ] =
3

4rµ
(S17)

Now that we have derived the expected age of PSC segment longer than µ, it is quite simple
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to expand the equation for PSC segments between µ and ν base-pairs,

E[T |µ ≤ l ≤ ν] =

∫∞
0
tfL(µ ≤ l ≤ ν|t)fT |N(t)dt∫∞

0
fL(µ ≤ l ≤ ν|t)fT |N(t)dt

=

∫∞
0
t

(
fL(l ≥ µ|t)− fL(l ≥ ν|t)

)
fT |N(t)dt

∫∞
0

(
fL(l ≥ µ|t)− fL(l ≥ ν|t)

)
fT |N(t)dt

=
3

4

(
1

rµ
+

1

rν

)
(S18)

We transform back to units of centimorgans: let L1 = 100rµ and L2 = 100rν be in units of61

centiMograns, we get the desired result62

lim
N→∞

E[T |µ ≤ l ≤ ν] = 75

(
1

L1

+
1

L2

)
. (S19)

1.2 Transformation of migration rates to dispersal rates63

Migration rates inferred under a discrete model can be transformed to dispersal distances64

representing parameters in continuous space. Here, we derive the transformation.65

Lemma 1.4 Consider a random walk on a 2D grid, where steps are taken according to a66

Poisson process with rate m measured in generations, and let X(t) be a vector denoting the67

coordinates of the particle at time t. The distribution of X(t) approximately only depends on68

the compound parameter m(∆x)2 (or equivalently
√
m∆x) where ∆x denotes the step size69

in the grid (i.e. edge length).70

X(t) =

N(t)∑
i=1

Zi, (S20)

where N(t) is the number of steps taken by time t, and Zi is a random variable representing71

the direction and magnitude taken at step i. Since X(t) is a sum of iid variables, a form of72

the central limit theorem applies here and X(t) converges to the normal distribution (Rényi,73

1960).74

In a random walk on a triangular grid, a particle can move in one of the 6 directions75

(upper-right, right, lower-right, left, upper-left, and lower-left):76
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Zi

= (∆x/2,∆x
√

3/2)T with p = 1/6

= (∆x, 0)T with p = 1/6

= (∆x/2,−∆x
√

3/2)T with p = 1/6

= (−∆x, 0)T with p = 1/6

= (−∆x/2,∆x
√

3/2)T with p = 1/6

= (−∆x/2,−∆x
√

3/2)T with p = 1/6

where ∆x represents the step size in the grid (i.e. edge length). The mean and variance are77

given by,78

E[X(t)] = 0 (S21)

and,79

V ar[X(t)] =
mt(∆x)2

2
I2. (S22)

where I2 is the identity matrix. We do not show the additional steps of using the law of80

total variance conditioning on N(t) and using E[N(t)] = mt. Under normality, the mean81

and variance are sufficient statistics. Note that (S21) and (S22) also hold for square grids.82

Interpretation of the migration diffusion parameter m(∆x)2
83

Here, we discuss how we interpret the diffusion constant m(∆x)2. Let the distance d =

‖X(t)‖ =
√
x2

1 + x2
2, then

E[d2]/t = E[x2
1 + x2

2]/t = E[x2
1]/t+ E[x2

2]/t =
m(∆x)2

2
+
m(∆x)2

2
= m(∆x)2. (S23)

Thus the square root of the diffusion constant can be written as
√
m∆x =

√
E[d2]
t

which84

suggests an interpretation as the distance traveled by an individual after one generation, and85

sometimes is called the “dispersal” distance or the “root mean square dispersal distance”.86

In these units, dispersal is more directly comparable to empirical estimates of dispersal from87

pedigree data Kaplanis et al. (2018). However, interpolating the distance traveled over many88

generations is not trivial here because the the distance does not scale linearly with time (i.e.89

the units of dispersal distance are km per square root generation).90
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1.3 Diversity rates versus coalescent rates91

For computational efficiency, the EEMS software uses a combination of the resistance dis-92

tance model and within-deme “diversity rates” to approximate expected pairwise coalescent93

times, in which,94

ˆE[Tα,β] =


Rα,β

4
+

eqα+eqβ
2

if α 6= β

eqα if α = β
. (S24)

where ˆE[Tα,β] is the resistance distance approximation to the expected coalescent time be-

tween deme α and deme β, eqα is the “diversity rate” in deme α, and Rα,β is the resistance

distance between demes α, β (Petkova et al., 2016). The diversity rates have no simple ex-

pression in terms of population-genetic parameters under the multi-deme coalescent model.

As an alternative, diversity rates can be interpreted as reflecting average within deme het-

erozygosity since eq = E[T̂w] ∝ Hα where the heterozygosity for deme α (Hα) is defined

as,

Hα =
1(
nα
2

) ∑
i<j,i∈α,j∈α

Di,j, (S25)

where Di,j is the average number of differences between (haploid) individuals i and j.95

Migration and population sizes are identifiable in MAPS96

MAPS models the recombination process using rates estimated from a recombination rate97

map. In this model, population sizes and migration rates can be inferred separately rather98

than as a joint parameter. Intuitively, the recombination rate serves an independent clock99

to calibrate estimates.100

More formally, a statement of identifiability is a statement regarding the likelihood.101

MAPS models the expected number of lPSC segments shared between pairs of (haploid)102

individuals, and can be computed with an integral. The integral can be broken up into a103

product of two functions: a function describing the decay of PSC segments as a function104

of time (“recombination rate clock”), and the coalescent time probability density fTi,j(t).105

The migration rates and population sizes only appear in fTi,j(t), and cannot be factored into106

parameters involving combinations of the migration rates and population sizes.107

1.4 The prior108

The structure of the prior closely resembles the prior in the EEMS method Petkova et al.109

(2016). The tessellation for the migration rates (Tm) is encoded by a list (lm,m, cm, µm)110
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where lm are the locations of each cell, m the rates of each cell, and are vectors of length111

cm (i.e. number of Voronoi cells), and µm is the overall mean migration rate. The Voronoi112

tessellation for the coalescent rates is Tq = (lq, q, cq, µq).113

The location of each (unordered) Voronoi cell is distributed uniformly across the habitat,114

lmc
iid∼ U(H), (S26)

where U denotes the uniform distribution. The number of cells (a-priori) are drawn from a115

negative binomial distribution,116

cm ∼ NegBi(rm, pm). (S27)

The effects of each Voronoi cell is normally distributed with variance ω2.117

log10(mi)
iid∼ N(µm, ω

2
m) (S28)

log10(qi)
iid∼ N(µq, ω

2
q ) (S29)

The probability of a particular (unordered) cell configuration is,118

p(m|cm) = cm!
cm∏
i=1

N(log10(mi)|µm, ω2
m) (S30)

We assume,119

log10(ωm) ∼ U(−3, log10(1.5)) (S31)

log10(ωq) ∼ U(−3, log10(1)) (S32)

We set 1.5 as the upper bound for log10(ωm). For the normal distribution, 95% of the density120

is within two standard deviations of the mean. As a result, by setting the upper bound for121

for log10(ωm) to be 1.5, we are constraining m so that the probability that it is within 3122

orders of magnitude from the mean is 0.95 a priori, and similarly we set 1 as the upper123

bound for log10(ωq) to restrict the population sizes so to be within 2 orders of magnitude124

from the mean with probability 0.95 a priori.125

We assume,126

µm ∼ U(−10, 4) (S33)
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µq ∼ U(−10, 4). (S34)

We place a uniform prior on the log of the mean rates to reflect that we are uncertain about127

the order of magnitude. Here, the data is highly informative of the mean, as a result, we128

can allow the support of the prior to vary by many orders of magnitude.129

1.5 MCMC130

Re-parameterization131

In this section, we describe how we try to decorrelate parameters in order to improve mixing132

of the MCMC. We decouple the migration rates from the mean rate (µ), and variance (ω)133

by introducing a new variable ei,134

ei
iid∼ N(0, 1). (S35)

We can write the cell specific migration rates as,135

log10(mi) = eiω + µ. (S36)

Written this way, we can make separate updates to the cell effects (ei), the mean (µ) and136

the variance scale (ω), instead of for example, updating mi which depends on all three137

parameters.138

Furthermore, we want to ensure that the mean cell effect is zero, i.e. ē =
∑
i ei
c
≈ 0 and139

have the parameter µ to absorb any change in the mean cell effects. This does not always140

happen in practice because of poor MCMC mixing. To ensure that the mean cell effect is141

zero, we add MH joint random-walk updates to µ and ei as follows,142

µ′ = µ+ ε, (S37)

e′i = ei −
ε

ω
, (S38)

where ε ∼ N(0, 1). The intuition here is that a constant ε is subtracted from the mean,143

which then gets added to the individual cell effects ei which ensures that the mean cell effect144

is approximately 0.145

The steps above are applied to both the migration rates and coalescent rates.146
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Updating the number of cells147

The number of cells change the dimension of the likelihood, and a result, we must use148

a Reversible Jump MCMC step so that the ratio of densities in the Metropolis-Hastings149

acceptance ratio is well-defined (Green, 1995). We choose to update the number of cells with150

a birth-death update (Stephens, 2000). Fortunately, in such a case, the updates reduce to151

standard Metropolis-Hastings because the dimension matching constant (i.e. the ”Jacobian”)152

equals one (Petkova et al., 2016; Stephens, 2000). See equations S31 and S32 in Petkova153

et al. (2016) for formulas regarding the birth-death update. Here, we use nearly identical154

updates (with a slight modification).155

When increasing the number of cells from c to c + 1 (i.e. a birth-update), we randomly156

choose a location uniformly across the habitat, and the new migration is proposed from157

a standard normal because our cell effects are standardized to improve MCMC mixing as158

discussed above. In contrast, EEMS proposes cell effects migration to be normally distributed159

around a cell effect at a randomly chosen point in the habitat. Here we set, p(birth) =160

p(death) = 0.5 if the number cells ≥ 1, otherwise p(birth) = 1.161

The acceptance ratio for a birth update (going from c cells to c+ 1 cells) is

α(x, x′) = min(1,
p(death)

p(birth)

l(x′)p(x′) 1
c+1

l(x)p(x)N(ec+1|0, 1)
), (S39)

where x denotes the current state of the MCMC, x′ the proposed state, ec+1 is the proposed

cell effect drawn from a standard normal, l() is the likelihood function, and p() is the prior.

Conversely, in a death-update, we randomly choose one cell uniformly to kill. In this case,

the acceptance ratio for a death proposal (going from c+ 1 cells to c cells) is

α(x, x′) = min(1,
p(birth)

p(death)

l(x′)p(x′)N(ec|0, 1)

l(x)p(x) 1
c+1

). (S40)
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