1	Supporting Information
2	
3	Treatment of Perfluoroalkyl Acids by Heat-Activated Persulfate Under
4	Conditions Representative of In Situ Chemical Oxidation
5	
6	
7	
8	Thomas A. Bruton [†] and David L. Sedlak [†] *
9	[†] Dept. of Civil and Environmental Engineering, University of California at Berkeley,
10	Berkeley, CA 94720 USA
11	
12	
13	* Corresponding author, e-mail: sedlak@berkeley.edu , phone (510) 643-0256
14	
15	
16	
17	Submitted to Chemosphere
18	
19	

1 Table of Contents

2	Table S1: Full names, abbreviations, and molecular formulae for PFAA analytes measured in this study
4	neusureu ni inis study.
5	Table S2: Physico-chemical properties of aquifer sediment.
6	
7	Table S3: Internal standard, monitored ion transitions, and MS conditions used for
8 0	quantification of each analyte.
10	Figure S1: Persulfate decomposition kinetics.
11	
12 13	Figure S2: PFOA removal kinetics in unbuffered water with $pH_0 = 1.0, 2.0, \text{ or } 3.2$.
14	Figure S3: Analysis of SO ₄ . fate in reaction systems with different pH.
15	
16 17	Figure S4: Heat-activated persulfate treatment of PFOS in water.
17	Figure S5: Effect of initial C1 ⁻ concentration on observed pseudo-first order rate
19	constants for PFOA loss.
20	
21	Figure S6: Loss of Cl ⁻ and production of ClO ₃ ⁻ during heat-activated persulfate treatment
22	of PFOA in aquifer sediment slurry.
23	
24	Figure S7: Total organic carbon concentration during heat-activated persulfate treatment
25	of PFOA in aquifer sediment slurry.
26	
27	Figure S8: Heat-activated persulfate treatment of PFOA in surficial soil slurry.

Name	Abbreviation	Molecular Formula					
Perfluorocarboxylates							
Perfluorobutyrate	PFBA	C ₃ F ₇ COO ⁻					
Perfluoropentanoate	PFPeA	C ₄ F ₉ COO ⁻					
Perfluorohexanoate	PFHxA	C ₅ F ₁₁ COO ⁻					
Perfluoroheptanoate	PFHpA	C ₆ F ₁₃ COO ⁻					
Perfluorooctanoate	PFOA	C ₇ F ₁₅ COO ⁻					
Perfluorosulfonates							
Perfluorobutane sulfonate	PFBS	$C_4F_9SO_3^-$					
Perfluorohexane sulfonate	PFHxS	$C_6F_{13}SO_3^-$					
Perfluoroheptane sulfonate	PFHpS	$C_7F_{15}SO_3^-$					
Perfluorooctane sulfonate	PFOS	C ₈ F ₁₇ SO ₃					

Table S1. Full names, abbreviations, and molecular formulae for PFAA analytes

3 measured in this study.

Sand	Silt	Clay	pН	BET	Total Fe	Total	Fe-CBD	Mn-	TC
(wt. %)	(wt. %)	(wt. %)		surface	(mg/kg)	Mn	(mg/kg)	CBD	(%)
				area		(mg/kg)		(mg/kg)	
				(m^2/g)					
82	10	8	7.8	14.3	16,700	287	8,010	191	0.03

2	Table S2. Physico-chemical properties of aquifer sediment. Surface area was
3	measured at the University of California, Berkeley. All other properties were
4	determined by the Analytical Laboratory at the University of California, Davis.
5	Details on the analytical protocols are available at <u>http://anlab.ucdavis.edu/methods-</u>
6	of-analysis . Fe-CBD and Mn-CBD are the concentrations of Fe and Mn remaining in
7	the sediments after treatment with a citrate-bicarbonate-dithionite extraction as
8	described previously ¹ . The CBD extraction procedure is designed to remove free Fe
9	and Mn oxides, leaving only structural Fe and Mn.
10	

Compound	Internal	Molecular	Fragmentor	Quant.	Collision	Qual.	Collision	Polarity	
_	Standard	Ion	Voltage	Ion	Energy	Ion	Energy		
			(V)	(m/z)	(V)	(m/z)	(V)		
	Perfluorocarboxylates								
PFBA	$[^{13}C_4]$ PFBA	213	50	169	2			(-)	
PFPeA	$[^{13}C_3]$ PFPeA	263	60	219	2			(-)	
PFHxA	[¹³ C ₂] PFHxA	313	80	269	2	119	15	(-)	
PFHpA	[¹³ C ₂] PFHxA	363	80	319	2	169	2	(-)	
PFOA	[¹³ C ₄] PFOA	413	80	369	3	169	14	(-)	
			Perfluorosu	lfonates					
PFBS	[¹⁸ O ₂] PFHxS	299	120	80	70	99	30	(-)	
PFHxS	[¹⁸ O ₂] PFHxS	399	160	80	80	99	50	(-)	
PFHpS	$[^{13}C_4]$ PFOS	449	160	80	80	99	50	(-)	
PFOS	$[^{13}C_4]$ PFOS	499	180	80	80	99	50	(-)	
Internal Standards									
$[^{13}C_4]$ PFBA		217	50	172	5			(-)	
[¹³ C ₃] PFPeA		266	60	222	2			(-)	
[¹³ C ₂] PFHxA		315	60	270	5			(-)	
[¹³ C ₄] PFOA		417	70	372	2			(-)	
[¹⁸ O ₂] PFHxS		403	150	103	40			(-)	
$[^{13}C_4]$ PFOS		503	190	80	60			(-)	

- 2 Table S3. Internal standard, monitored ion transitions, and MS conditions used for
- 3 quantification of each analyte.

Figure S1 *[use color]*. Persulfate decomposition kinetics. $[S_2O_8^{2^-}]_0 = 50 \text{ mM}$, $[PFOA]_0$ = 5 µM, T = 85°C. "Water" is unbuffered water, "Sediment 1st dose" and "Sediment 2nd dose" are the 1st and 2nd aliquots of persulfate added to the sediment slurry reactors, respectively.

3 Figure S2 [use color]. PFOA removal kinetics in unbuffered water with $pH_0 = 1.0, 2.0,$

4 or 3.2.
$$[S_2O_8^{2-}]_0 = 50 \text{ mM}, [PFOA]_0 = 0.5 \mu\text{M}, T = 85^{\circ}\text{C}.$$

2 **Figure S3** *[use color]*. Analysis of SO_4 . fate in reaction systems with different pH.

3 [PFOA] = $0.5 \mu M$, $[S_2O_8^{2-}] = 50 mM$. f_A is the fraction of SO₄⁻⁻ reacting with a given

4 species, A, where A is OH^- , H_2O , PFOA, or $S_2O_8^{2-}$.

Figure S4. Heat-activated persulfate treatment of PFOS in water. $[S_2O_8^{2-}]_0 = 50 \text{ mM},$

3 unbuffered, $T = 85^{\circ}C$.

2 Figure S5. Effect of initial Cl⁻ concentration on observed pseudo-first order rate

3 constants for PFOA loss. $[S_2O_8^{2-}]_0 = 50 \text{ mM}, [PFOA]_0 = 0.5 \mu \text{M}, T = 85^{\circ}\text{C},$

4 unbuffered. The observed-first order rate constants (k_{obs}) were obtained by performing a

5 linear regression of data from the first 60 minutes of reaction.

2 Figure S6 *[use color]*. Loss of Cl⁻ and production of ClO₃⁻ during heat-activated

3 persulfate treatment of PFOA in aquifer sediment slurry. 200 g/L aquifer

4 sediments,
$$[S_2O_8^{2^-}]_0 = 50 \text{ mM}$$
, $[PFOA]_0 = 0.5 \mu M$, unbuffered, $T = 85^{\circ}C$.

5

1

3 Figure S7 *[use color]*. Dissolved organic carbon concentration during heat-activated

4 persulfate treatment of PFOA in aquifer sediment slurry. 200 g/L aquifer

5 sediments, $[S_2O_8^{2-}]_0 = 50$ mM, $[PFOA]_0 = 0.5 \mu$ M, unbuffered, $T = 85^{\circ}$ C.

2 **Figure S8** *[use color]*. Heat-activated persulfate treatment of PFOA in surficial soil

3 slurry. (a) PFOA concentration, and (b) PFCA concentrations. 200 g/L soil, $[S_2O_8^{2-}]_0 =$

- 4 50 mM x 2, $[PFOA]_0 = 0.5 \mu M$, unbuffered, $T = 85^{\circ}C$.
- 5

REFERENCES 1

- Pham, A. L. T.; Doyle, F. M.; Sedlak, D. L., Kinetics and efficiency of H2O2 1.
- 3 4 5 6 activation by iron-containing minerals and aquifer materials. Water Research 2012, 46
- (19), 6454-6462.