

Fig. S1. Gasdermin D deficiency enhances cGAS-induced IFN- β response in primary BMDMs. Related to Figure 2.

(A) Immunoblot showing full length (FL) and cleaved N terminal fragment (NT) of gasdermin D in the lysates of wild-type and $Gsdmd^{-1}$ iBMDMs untreated (Med, medium) or infected with *F. novicida* (Fn) for 6 h.

(B) IFN- β in the supernatants of wild-type and *Gsdmd*^{-/-} primary BMDMs stimulated with poly(dA:dT), *F. novicida* or Sendai virus. IFN- β data are presented as units/ml or ng/ml depending upon the recombinant IFN- β standard used in the ELISA.

(C) Histograms displaying fluorescence intensities of viperin in WT and $Gsdmd^{-1}$ iBMDMs stimulated with *F. novicida*, poly(dA:dT) or IFN- β . The fold increase in mean fluorescence intensity (MFI) of viperin in *F. novicida*-, poly(dA:dT)-, or IFN- β -treated over untreated cells (medium) is also shown.

(D) IFN- β in the supernatants of wild-type, *Gsdmd*^{-/-}, and *NIrp3*^{-/-} primary BMDMs stimulated with *F. novicida* for 6 h.

Data presented as mean are from one experiment representative of three. In the bar graphs, each dot represents a technical replicate.

Fig. S2. Validation of cGAS antibody for immunofluorescence staining. Related to Figure 3.

Confocal images of cGAS-deficient BMDMs stimulated with *F. novicida* or poly(dA:dT) for 5 h. Cells were stained with an antibody for cGAS (green), cholera toxin B for plasma membrane (magenta), and DAPI for nucleus and DNA (blue).Scale bar, 10 μ M. Corresponding confocal images of WT cells (positive controls) are shown in Fig. 3E.

Fig. S3. Glycine treatment prevents pyroptotic lysis without altering K⁺ efflux. Related to Figure 4.

(A) Cell death (% LDH release) and intracellular K^+ in uninfected (medium) or *F. novicida*-infected wild-type (WT) BMDMs in the presence or absence of 50 mM glycine (assessed at 6 h post-infection). Note that glycine treatment reduces LDH release without affecting K^+ efflux.

(B) Immunoblots of FLAG, gasdermin D and β -actin in the lysates of *Gsdmd*^{-/-} iBMDMs reconstituted with the empty vector (EV), WT gasdermin D, or I105N mutant gasdermin D. Arrowhead indicates gasdermin D band.

Data presented as mean are from one experiment representative of three. In the bar graphs, each dot represents a technical replicate.

Fig. S4. Cytosolic DNA-induced IFN- β was not affected by the calcium ionophore (ionomycin) and calcium chelator (BAPTA-AM). Related to Figure 5.

(A) LDH release (at 6 h post-stimulation) by RAW macrophages stimulated with *F. novicida* (MOI of 50) or poly(dA:dT) and treated at 2 h after stimulations with vehicle (ethanol), 2.5 or 5 μ M nigericin or 5 or 10 μ M valinomycin (VM).

(B) IFN- β secretion by RAW macrophages (measured at 6 h post-infection) infected with *F. novicida* and treated with vehicle (ethanol), 1 μ M ionomycin, or 2.5 μ M nigericin.

(C) IFN- β secretion by BMDMs (measured at 6 h post-infection) transfected with poly(dA:dT), and treated with vehicle or 10 μ M BAPTA-AM.

(D) LDH release by BMDMs of indicated genotypes (measured at 6 h post-infection) infected with *F. novicida* and treated with vehicle (ethanol), nigericin, or valinomycin (VM) 2 h post-infection at the indicated concentrations.

Data presented as mean are from one experiment representative of three, and each dot represents a technical replicate.

Fig S5. Induction of K⁺ efflux in inflammasome-deficient macrophages is sufficient to reduce cytosolic DNA-induced type I interferon response. Related to Figure 5.

(A-C) Percent cellular ATP levels and metabolic activity as measured by CellTiter-Glo and PrestoBlue assays, respectively, in indicated macrophages (at 6 h post-stimulation) stimulated with *F. novicida* (MOI of 50) or poly(dA:dT) and treated at 1.5 – 2 h after stimulations with vehicle (ethanol) or increasing concentrations of nigericin (0.0125–2.5 μ M).

(D) IFN- β in the supernatants of, cellular ATP, and metabolic activity as measured by ELISA, CellTiter-Glo, and PrestoBlue assays, respectively, in indicated macrophages (at 6 h post-stimulation) stimulated with *F. novicida* (MOI of 50) and treated at 1.5 – 2 h after stimulations with vehicle (ethanol) or increasing concentrations of valinomycin (0.025–5 μ M).

(E) IFN- β in the supernatants of and cellular ATP in *Casp1^{-/-} Casp11^{-/-}* BMDMs (at 6 h post-stimulation) stimulated with *F. novicida*. At 1.5 h p.i., cells were treated with vehicle or nigericin (100 nM), and 1 h later, media was replaced with media without nigericin.

Data presented as mean are from one experiment representative of three, and each dot represents a technical replicate.