Supplementary Information

Highly Twisted Supercoils for Superelastic

Multi-Functional Fibers

Wonkyeong Son^{1§}, Sungwoo Chun^{2§}, Jae Myeong Lee¹, Yourack Lee³, Jeongmin Park³, Dongseok Suh³, Duck Weon Lee⁴, Hachul Jung⁵, Young-jin Kim⁵, Younghoon Kim⁶, Soon Moon Jeong¹, Sang Kyu Lim¹ and Changsoon Choi¹*

¹Division of Smart Textile Convergence Research, DGIST, Daegu 42988, South Korea

²Department SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea

³Department of Energy Science, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea

⁴Center for Self-powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea

⁵Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chunbuk 28160, South Korea

⁶Convergence Research Center for Solar Energy, DGIST, Daegu 42988, South Korea

[§] These authors equally contributed to this work.

*To whom correspondence should be addressed. E-mail:cschoi@dgist.ac.kr

Supplementary Figure 1. Photographs of CNT sheets wrapping process on the stretched $(\varepsilon_{fab} = 400\%)$ spandex core fibre

Supplementary Figure 2. SEM images of the spandex@CNT fibre (a) before, and (b) after twist insertion just before first-coil formation (scale bars = $100 \ \mu m$).

Supplementary Figure 3. Schematic illustrations of (a) supercoiled, (b) coiled, and (c) helical coiled fibres

Supplementary Figure 4. Photograph (upper) and magnified optical images (lower) of four different spots on a 60 cm-long supercoil fibre (scale bar = $500 \ \mu m$).

Supplementary Figure 5. Measured electrical resistance versus length of a 60 cm-long supercoil fibre.

Supplementary Figure 6. SEM image of a SEBS-overcoated spandex@CNT supercoiled

fibre (scale bars = $100 \mu m$)

Supplementary Table 1. Quality factor (Q) comparison of presented supercoiled fibres

with prior-art elastic yarn or fibre conductors

Structures and materials (Ref. No.)	Stretchability	Resistance change	Quality factor
	[ΔL/L₀, %]	[ΔR/R₀, %]	$[\Delta L \cdot R_0 / \Delta R \cdot L_0]$
Spandex@ SEBS/CNT supercoiled fibres (present work)	1,000	4.19	238.8
(a) Buckled CNT@sandwich structured rubber fibre (1)	200	3.7	54
(b) Buckled CNT@SEBS fibre (2)	800		65.1
(c) CNT@nylon coiled fibre (3)	150	1373.7	0.109
(d) Buckled CNT@coiled rubber fibre (4)	400	221.7	1.8
(e) CNT@elastomer polymer fibre (5)	700	450	1.55

Supplementary Figure 7. (a) SEM image (scale bar = $10 \mu m$), and (b) EDX elemental analysis of a MnO₂ coated spandex@CNT supercoiled fibre.

Supplementary Figure 8. Optical image of a supercoil based solid-state supercapacitor at 1000% tensile strain application, which comprises of two parallel, symmetric spandex@ MnO_2/CNT supercoil fires and PVA/LiCl gel electrolyte coating (scale bar = $300\mu m$).

Supplementary Table 2. Comparison of specific capacitance for the supercoil supercapacitor with prior-art yarn or fibre based elastic supercapacitors

Electrode Materials (Ref. No.)	<i>C</i> ^{<i>L</i>} [mF cm ⁻¹]	<i>C_A</i> [mF cm ⁻²]	Stretchability [%]
Spandex@MnO ₂ /CNT supercoiled fibres (this work)	21.7	92.1	1,000
MnO ₂ /CNT@coiled nylon fibres (3)	5.4	40.9	150
Buckled MnO ₂ /CNT@coiled rubber fibres (4)	4.8	22.8	400
Buckled MnO ₂ /CNT@sandwich structured rubber fibres (1)	2.4	11.9	200
PANI/CNT@elastomeric polymer fibres (5)	0.9	50.1	400
MnO ₂ /CNT@spandex, CNT@spandex asymmetric fibres (6)	0.26	27.9	100
CNT/graphene/PANI helical-coil fibres (7)	10.3	273.7	800
PEDOT-S:PSS helical-coil fibre (8)		93.1	400
SEBS@CNT/graphene/MnO ₂ helical-coil fibres (9)		14	850

Supplementary References

1. Choi, C. *et al.* Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. *Nano Lett.* **16**, 7677-7684 (2016)

2. Wang, H. *et al.* Downsized sheath–core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors. *Adv. Mater.* **28**, 4998-5007 (2016)

3. Choi, C. *et al.* Stretchable, weavable coiled carbon nanotube/MnO₂/polymer fiber solidstate supercapacitors. *Sci. Rep.* **5**, 9387 (2015)

4. Choi, C. *et al.* Microscopically buckled and macroscopically coiled fibers for ultrastretchable supercapacitors. *Adv. Energy Mater.* **7**, 1602021 (2017)

5. Zhang, Z. *et al.* Superelastic supercapacitors with high performances during stretching. *Adv. Mater.* **27**, 356-362 (2015)

6. Xu, P. *et al.* Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO₂ coated carbon nanotube fibers. *ACS Nano* **9**, 6088-6096 (2015)

7. Lu, Z., Foroughi, J., Wang, C., Long, H. & Wallace, G. G. Superelastic hybrid CNT/graphene fibers for wearable energy storage. *Adv. Energy Mater.* **8**, 1702047 (2018)

8. Wang, z. *et al.* All-in-one fiber for stretchable fiber-shaped tandem supercapacitors. *Nano Energy* **45**, 210-219 (2018)

9. Wang, H. *et al.* Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber. *Nano Research* **11**, 2347-2356 (2018)