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Supporting Information Text
1. The revPBEO-D3 DFT functional

A. Details of the DFT calculations. Both the DFT calculations for constructing the data set used to train and benchmark the
NN potential, and for performing the free energy perturbation from NN to DFT, are performed using the CP2K code (1). We

use the revPBEQ (2-4) functional, which incorporates 25% of exact exchange, and a Grimme D3 dispersion correction (5, 6).

Computational details of the calculations are the same as those used in Ref. (7). We have also attached the CP2K input file as
a part of the supplemental information.

B. The difference in lattice energy between ordered ice Ih and ice Ic. We compute lattice energy of 1) the most stable proton
ordered form of Th (XIh with space-group symmetry Cmc21), and 2) proton ordered cubic ice (Ic with space-group symmetry
I4ymd). Since CP2K currently only supports I'-point calculations for hybrid functionals, these calculations are performed for
64-molecule 2 x 2 x 2 supercells of the conventional 8-molecule orthorhombic unit cells. We perform geometrical optimization
at a few different volumes close to the equilibrium volume of each system, with the optimized cell shape. We find that an
equivalent plane-wave energy cutoff of 1200Ry ensures a smooth energy-volume curve, although the difference in the lattice
energy UH1md _ yoment — _ 3 meV /HO is already converged at 800Ry.

2. Construction of the neural network potential

A. Architecture of the NN potential. The high-dimensional neural network potential for water, which is flexible and fully
dissociable, has been constructed using the method proposed by Behler and Parrinello (8). In this approach the total energy of
the system is determined as a sum of environment-dependent atomic energies. For each atom in the system, the positions of
all neighboring atoms inside a cutoff radius, which has to be converged, are described by a set of atom-centered many-body
symmetry functions (9). These sets of function values are then used as input vectors for the atomic neural networks yielding
the atomic energy contributions. Consequently, the analytic total energy expression is a sum over the outputs of all individual
atomic neural networks, and analytic gradients for the calculation of the forces are readily available.

Atomic environments within a cutoff radius of 12.0 a.u. are described using the symmetry function sets for hydrogen (27
functions) and oxygen (30 functions) atoms, selected by Morawietz et al. (10) in previous work on neural network potentials for
water employing GGA-DFT reference data. The hydrogen and oxygen atomic NNs consist of two hidden layers with 20 nodes
each. We have used the total energies and all force components present in the training set.

B. The training set of the NN potential. The construction and the selection of the training set is of crucial importance in making
an accurate and stable NN potential. In essence, the NN potential stores the shape of the PES as a set of fitting parameters,
which have been adjusted to the reference training set. When employing the NN in an atomistic simulation, the accuracy of the
predicted energy and forces for a given atomic environment is dictated by the structural similarity between this environment
and the ones contained the the reference set. If the given atomic environment is distant from anything the NN has been trained
on, the prediction will have a large error bar. Inaccurate energy predictions, in particular, tend to lead the system to explore
an un-physical part of the phase space.

In our reference set of the neural network, there are a total of 1,593 64-molecule bulk liquid water structures. During the
NN training, these were randomly split into a training set of 80% of the structures to determine the NN parameters, and a test
set of the rest 20% structures to estimate the quality of the NN potential and to help avoid over-fitting. We have released the
whole reference set on the (to be inserted) public repository.

The first 1,000 structures in the training set were selected in order to cover a large part of the configurational space of
possible atomic environment, which is reflected in the relatively large spread in their energies. The remaining 593 structures
were extracted from PIMD simulations at about 300 K.

At the end of the NN fitting procedure, a root-mean-square errors of ~ 7meV/H>0 in energies and ~ 120 meV/ A in
forces are obtained for the test set. These errors are larger compared to those quoted for previous NN fits of water (about
~ 3meV /H20 in energies and ~ 110meV/ A in forces (11)). However, this is simply due to the larger structural (and energetic)
diversity of our test (and training) set. When comparing the predictions of the NN potential and revPBEO0-D3 calculations for
configurations generated from MD and PIMD simulations for liquid water at 300 K, the root-mean-square errors of energies
and forces are ~ 2meV/Hs0 and ~ 110meV/ A, respectively.

The NN potentials generated from our training set are not only very accurate, but also highly stable: MD simulations of
bulk water can be performed at high temperatures of 800 K.

C. A comparison between CP2K and VASP for the training set. In order to assess the intrinsic uncertainties in the revPBE(0-D3
reference data arising from the computational details, the revPBEO-D3 energies of the first 1,000 structures in the training set
were re-computed with VASP (12), using the hard PAW potentials at the I'-point with a plane wave cutoff of 700eV. Apart
from an obvious outlier which may result from an under-convergence of the self-consistent cycle, the agreement between the
results from CP2K and from VASP is very good. After removing the outlier, we measured the root-mean-square error of
energies between the results from the two codes to be 6 meV/H,O for the first 1000 configurations of the training set, which is
smaller compared with the training error of the NN potential.

Considering the subtle difference in predictions from different DFT codes and pseudopotentials (13), we are encouraged by
the agreement between CP2K and VASP for the hybrid revPBE0-D3 functional.
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Fig. S1. A comparison between the revPBE0-D3 energies computed using CP2K and using VASP.
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D. A comparison between CP2K and MB-Pol for the training set. We have also compared our revPBEO-D3 energies to those
obtained from the well-established MB-pol water potential (14), which has been demonstrated to accurately reproduce the
structural, dynamical and thermodynamical properties of liquid water and many phases of ice (14). Because the MB-pol
water is non-dissociative and not designed for highly displaced hydrogen atoms (e.g. in water undergoing autoprotolysis), but
the first 1000 structures in the training set include such configurations, we have re-computed the energies for the last 593
structures in the training set, which was extracted from PIMD simulations. The agreement for these strucutures is excellent
(the root-mean-square error of energies is 2.6 meV/H;0).

For completeness, we have further computed the MB-pol lattice energies of the proton-ordered forms of Th and Ic with
Cmc21 and T41md symmetry, respectively, for which diffusion Monte Carlo (DMC) (15) and random phase approximation
(RPA) (16) values are available for reference. Geometry-optimizations performed for the MB-pol optimized simulation cells

(with molar volumes of 31.2 A* and 31.6 A® for Th Cme2, and Ic I41,,d, respectively) suggest that Th Cmc2; is 2meV/H20

more stable than Ic 741,,d. It is worth noting that upon geometry optimization the C'mc2; of the initial Ih structure is broken.

This is in disagreement both with experiment (that finds the most stable proton-ordered form of Th (XIh) to possess Cmc21
symmetry (17)) and the results of DFT studies employing diverse density functionals, including revPBE0-D3. Meanwhile Ic
I41md retains its symmetry in geometry optimizations.

E. The enthalpy of water based on the NN potential. In Figure S3 we plot the enthalpy of ice Th, Ic and liquid water systems
computed from NPT simulations at 1 bar.

3. Comparison between two neural network potentials
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Fig. S2. A comparison between the revPBEO-D3 energies computed using CP2K, and the energies computed using the MB-Pol potential.
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Fig. S3. The enthalpy of the water systems described by the NN potential.
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Fig. S4. The chemical potential difference between ice |h and Ic predicted using two different neural network potentials (NN-V1 and NN-V2).
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We have trained several NN potentials for the same underlying revPBEO-D3 DFT reference using different training sets
and/or initial random seeds. In general, we notice subtle differences in the predictions of different neural networks. This is
due to that, as mentioned in the main text, the fitting strategy for the NN, the finite cut-off radii applied to the description
of atomic environments, and possible “holes” in the training set (18) inevitably lead to small residual errors between NN
predictions and those obtained at the first-principles level of theory on which the NN is based.

To quantify the differences between different NN potentials, we select two NN potentials: (i) the first version of the NN
(NN-V1) was trained using the first 1,000 liquid structures in the reference set, and (2) a refined version (NN-V2) was trained
using all the 1,593 reference structures. NN-V2 is the NN that is actually employed in the simulations described in the main
text.

Using each of the NN potential, we compute the chemical potential difference Apt=1¢ between ice Ih and Ic at the classical
level, following the steps and simulation setups described in the main text. It can be seen from Figure S4, the predictions on

—lc

the chemical potential difference Aui?NN from the two neural networks differ by as much as 1 meV/H>0. However, after we
promote the results back to the DFT level and obtain Apt=¢, the discrepancy in the predictions largely diminished.

4. Predicting The chemical potential difference between ice Ih and Ic using the MB-Pol potential

We perform a thermodynamic integration in the NPT ensemble, using a parameter A to perform the switching between the NN
Hamiltonian Hxn and the MB-Pol (14) Hamiltonian Hys. In practice, we run multiple simulations with the Hamiltonian
H(A) = (1 = N)Hxx + AHus at A =0.0,0.2,0.8,1.0. The MB-Pol free energies of the ice Ic and Ih systems with 768 molecules
described in the main text is evaluated using

1
Gus(P,T) — Gun (P, T) = / dA\ (Uni — UNN) ppy » (1]
0

where (...)p -, denotes the ensemble average over NPT simulations using the Hamiltonian H(A). As the PESs described by
MB-Pol and NN are extremely close, the integral in Eqn. Eq. (1) can be converged to below 0.01 meV from simulations of less
than 100 picoseconds in total. We find that the difference between the classical chemical potentials of ice Ic and Th using the
MB-Pol potential is 0.2meV/H20 lower than the classical NN prediction Ayi}ﬁﬁﬁf.

5. Other supplementary files

We have uploaded the following data files to the Materials Cloud repository
https://archive.materialscloud.org/2018.0020/v1
and a GitHub repository
https://github.com/BingqingCheng/ab-initio-thermodynamics-of-water.
Additional data table S1 (NN-potential)
Parameters for the water neural network potential based on revPBEO-D3 DFT. Instructions and examples for running MD
using this potential

Additional data table S2 (training-set)

The training (and test) set of the NN potential, including atomic configurations, energies, and forces. We have provided
two formats: “input.data” is suitable for training NN potentials using the RuNNer code (19) or the N2P2 code (20, 21), and
“dataset_ 1593.xyz” is in a libatom xyz format.

Additional data table S3 (input-files)
We have uploaded the necessary input files for all the simulations (e.g. thermodynamic integration, path-integral molecular
dynamics, interface pinning), as well as a Python notebook to help data analysis for the thermodynamic integration method.
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