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Materials and Methods 
 
Study participants 
All study participants gave informed consent and protocols were approved by the Stanford 
Institutional Review Board. Five humans aged 18-28, including 3 males and 2 females, were 
recruited in 2011. All subjects were apparently healthy and showed no signs of disease. 
 
Sample collection 
Blood was drawn by venipuncture. Peripheral blood mononuclear cells (PBMCs) were isolated 
using a Ficoll gradient and frozen in 10% (vol/vol) DMSO and 40% fetal bovine serum (FBS) 
according to Stanford Human Immune Monitoring Center protocol. Subjects were vaccinated 
with the 2011–2012 seasonal trivalent inactivated influenza vaccine. Blood was collected 3 and 5 
days before vaccination (D-3 and D-5); immediately before vaccination (D0); and 1, 4, 7, 9, and 
11 days afterwards (D1, D4, D7, D9, D11). 
 
RNA extraction and library preparation 
PBMCs were thawed on ice and total RNA was extracted using the Qiagen AllPrep kit (Valencia, 
CA) following manufacturer’s instructions. Sequencing libraries were prepared from samples at 
all time points using 500 ng of total RNA as input following the protocol described in (1). 
Briefly, RNA was annealed to a pool of six isotype-specific IGH constant region primers 
containing 8 random nucleotides (nt), which serve as a molecular barcode for consensus error 
correction, by incubation at 72 C for 3 min, then placed on ice for 2 min. First-strand cDNA 
synthesis was performed using Superscript III reverse transcriptase (Life Technologies, Carlsbad, 
CA) following manufacturer’s protocol. Second-strand cDNA synthesis was performed using 
Phusion HiFi DNA polymerase (Thermo Scientific, Waltham, MA) and a pool of ten IGH 
variable region-specific primers containing 8 random nt (98°C for 4 min, 52°C for 1 min, 72°C 
for 5 min). Double-stranded cDNA product was purified twice using Ampure XP beads (1:1 ratio) 
(Beckman Coulter, Indianapolis, IN). Amplification was performed using Platinum Hifi DNA 
polymerase (Life Technologies, Carlsbad, CA) and primers containing Illumina sequencing 
adapters and dual sample indexes. Products were purified using Ampure XP beads (1:1 ratio), 
then pooled for multiplexed sequencing. 
 We prepared additional sequencing libraries from D7 samples following the protocol 
described in (2). This protocol is identical to that described above, except that ten isotype 
subtype-specific IGH constant region primers and six IGH variable region-specific primers each 
containing 8 or 12 random nt were used. Products are longer amplicons spanning most of the IGH 
variable region and ~100 bp of the IGH constant region. We used a different aliquot of total RNA 
from the same D7 samples as input. All PCR primer sequences are provided in Table S2. 
 
Sequencing 
Sequencing was performed for libraries from all time points using the Illumina HiSeq 2500 
platform (San Diego, CA) using paired-end 101 bp reads. For libraries prepared from the D7 time 
point with longer amplicons, sequencing was performed using the Illumina Miseq platform using 
paired-end 300 bp reads. We obtained 826,472 ± 413,841 reads (mean ± s.d., range 170,477 – 
1,988,165) for each library.  
 
Preprocessing of sequence data 
To process sequencing reads, we used a custom informatics pipeline similar to (2). Briefly, 
consensus sequences were constructed from reads containing the same 16 nt random barcode. 
Quality scores were propagated to the consensus sequence. To implement stringent filtering of 
sequence errors, only consensus sequences formed from >1 read were kept for further analysis. 
Sequences were annotated with V and J germline gene usage and CDR3 length using IgBlast (3). 
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Isotypes were determined using BLASTN against a custom database of IGH constant region 
sequences. Further error filtering was performed by removing sequences supported by only one 
random barcode and separated by exactly one substitution from another sequence having >500 
unique molecular barcodes; these sequences likely originate from errors occurring during library 
preparation. 
 
Identification of clonal B cell lineages 
Sequences belonging to the same clonal B cell lineage were identified using clustering following 
(2). Briefly, sequences sharing the same V and J germline genes and CDR3 length were grouped. 
Within each group, single-linkage clustering was performed with a cutoff of 90% nt sequence 
identity across both the CDR3 and the rest of the variable region. Sequence identity was 
computed by counting mismatches in gapless pairwise sequence alignments. Quality filtering was 
implemented by assuming mismatches at positions where either aligned base had Q ≤ 5. The 
cutoff of 90% was chosen because it is a distinct minimum in the distribution of pairwise 
nucleotide distances between sequences. This approach has been shown to partition sequences 
into clonal lineages with high sensitivity and specificity (2, 4).  
 
Tracking dynamics of clonal B cell lineages 
To track the dynamics of clonal B cell lineages, we calculated the fractional abundance of each 
lineage, defined as the number of unique sequences within the lineage divided by the total 
number of unique sequences observed in the repertoire at that time point. For this calculation, we 
only used reads that were sequenced using the short amplicon protocol. Vaccine-responsive 
lineages were identified based on the fold-change (FC) of their fractional abundance between D0 
and D7 (>50-fold increase). Persistent lineages were identified as those having stable fractional 
abundance between D0 and D7 (<2-fold increase). We further required that each vaccine-
responsive and persistent lineage represent >0.1% of the repertoire at D7 (corresponding to ~40 
distinct sequences) to remove very small clonal lineages from consideration. Isotype composition 
and mutation density were calculated using sequences from all time points. 
 
Identification of non-reference germline variants 
To annotate non-reference germline variants in a personalized manner for each subject, we 
adapted the method developed by Gadala-Maria and colleagues (5). We first grouped sequences 
having the same V or J germline sequence. For each mutation detected by comparison against the 
reference germline sequence, we performed regression on the mutation frequency against the 
mutation count of the entire V or J segment. Specifically, we binned sequences into groups based 
on the number of mutations per sequence and calculated the frequency of the focal mutation in 
each bin. We then fit a linear model to these data using least-squares optimization. Mutations 
with y-intercepts greater than 0.125 at a significance level of P < 0.05 as assessed using Student’s 
t test were considered potential germline variants. Because alleles might contain multiple non-
reference germline variants, bins were excluded from the regression based on detection of outliers 
(bins having more than 1.5-times the interquartile range greater than the third quartile of the 
number of sequences in the bins carrying 1–10 mutations). If an outlier bin was found, then all 
bins having fewer mutations per sequence were excluded from the regression. 
 
Calculation of site frequency spectrums 
We constructed the site frequency spectrum (SFS) of each clonal B cell lineage based on somatic 
mutations relative to the germline V and J genes. For analysis of the SFS and further phylogenetic 
analysis, we used only reads originating from the D7 samples that were sequenced using the long 
amplicon protocol. Vaccine-responsive and persistent lineages having <100 unique sequences in 
these samples were excluded from this analysis. Mutations were called using IgBlast (3) and we 
removed non-reference germline variants for each individual subject as determined above. We 
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calculated the frequency of each mutation within a clonal lineage (number of sequences 
containing the mutation divided by the number of sequences in the lineage). We note that our 
approach conservatively excludes most mutations in the CDR3 because these mutations lie within 
the highly variable untemplated region of the IGH sequence and therefore the ancestral state may 
not be known with high confidence. Because we exclude CDR3 polymorphism, the long 
amplicon sequencing reads contain many more polymorphic sites, which contribute information 
to our phylogenetic analysis, compared to the short amplicon reads. 
 To visualize the SFS, we binned the mutation frequencies using bins spaced according to 
the logit function (inverse logistic transform). Bin edges were 10-5, 10-4, 10-3, 10-2, 10-1, 0.5, 0.9, 
0.99, 0.999, 0.9999, 0.99999. The mutation density within each bin was calculated by 
normalizing by the bin size (number of mutations in bin divided by the width of bin). To calculate 
the average SFS across many lineages (e.g., all vaccine-responsive lineages or vaccine-responsive 
lineages from one study subject), we calculated the SFS for each lineage individually, then 
calculated the average mutation density in each bin. Each lineage is weighted equally and 
therefore the average is not influenced by the population sizes or relative mutational loads of the 
lineages. 

Use of the SFS for detecting selection has several practical advantages. Calculation of the 
SFS does not depend on phylogenetic reconstruction or ancestral sequence reconstruction, and the 
reliability of these inferences. Unlike traditional tree imbalance measures, such as the Colless or 
Sackin indices, the SFS is readily calculated for populations with multifurcating phylogenies, 
such as B cell populations. Finally, unlike approaches that require phylogenetic reconstruction, 
calculation of the SFS scales linearly with the number of sequences and therefore can be 
evaluated readily for lineages having many sequences. 

We note that the behavior of the low-frequency region of the SFS cannot be directly 
interpreted as evidence for selection in our analysis. In our stringent error-filtering process, we 
removed many singleton sequences (supported by only one read or one unique molecular 
barcode). Because some bona fide singleton mutations are very likely removed, the low-
frequency behavior of the SFS is affected and cannot be interpreted quantitatively as a test for 
selection. 
 
Simulations of evolutionary models 
To compare the observed patterns of evolution with evolutionary models, we performed 
simulations of beta coalescent models using the betatree package in Python (6). Specifically, we 
simulated neutral evolution using the Kingman coalescent (α = 2) and evolution under strong 
positive selection using the Bolthausen-Sznitman coalescent (α = 1). For comparison with the 
observed SFSs averaged across many lineages, we simulated ensembles of 100 lineages (similar 
to the number of observed vaccine-responsive lineages) each having a number of leaves sampled 
without replacement from the distribution of population sizes of vaccine-responsive lineages 
(median population size was approximately 1,000 sequences), and calculated the average SFS 
across these lineages (Figure 2A and Figure 2B). To model neutral evolution with population 
expansion, we performed forward-time simulations using custom software. Each simulation was 
initialized with a single individual. At each time step, one individual was chosen to reproduce by 
sampling uniformly at random from the population. During reproduction, mutations were 
introduced following a Poisson distribution with rate parameter of 0.3 (chosen based on observed 
per-base mutation rates due to somatic hypermutation). The simulation was terminated when the 
population size reached the target and the SFS was calculated based on the final mutation 
frequencies. 
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Calculation of test statistics for selection 
We calculated Fay and Wu’s H statistic using the counts of somatic mutations within a clonal 
lineage: 

 
with 

 
and  

, 
where Si is the number of mutations observed in i sequences of the lineage and n is the total 
number of sequences in the lineage, i.e. the population size of the lineage (7). 
 As an alternative metric for selection, we directly estimated the non-monotonicity of the 
high-frequency region of the SFS. Specifically, we fit a quadratic polynomial to the binned SFS 
using least-squares minimization, calculated its first derivative, and determined the maximum 
value of the first derivative in bins representing frequencies >0.25, which we define as the non-
monotonicity D. SFSs having an excess of high-frequency mutations display a characteristic 
“uptick” or non-monotonicity in the high-frequency region and therefore have positive D.  
 
Calculation of the statistical significance of test statistics  
We evaluated the statistical significance of tests for selection by comparison with a null 
distribution of the test statistic generated under a neutral model of evolution (the Kingman 
coalescent). We simulated an ensemble of 1,000 lineages using the Kingman coalescent and 
calculated the test statistic (Fay and Wu’s H or the non-monotonicity D) for each lineage. Thus, 
we created a distribution of the test statistic under the null model. We then fitted the Johnson’s U 
distribution to this data. To evaluate the statistical significance of a test statistic for a focal 
lineage, we calculated the P value of the test statistic (that is, the probability of obtaining by 
chance a value of the test statistic that is at least as extreme as the given value) under the null 
distribution by integrating its probability density. Because population size strongly influences the 
distribution of test statistics, we always tested for selection by comparison against a null 
distribution characterizing populations of a size matched to that of the focal lineage. To 
accomplish this, we simulated the null distribution as described above for a range of population 
sizes (N = 100, 200, 500, 1000, 2000, 5000, 10000, and 20000 leaves). Given a focal lineage, we 
determined the nearest population size within this set and used the corresponding null distribution 
for comparison. We refer to this procedure as matching the population size of the focal lineage to 
the null distribution. 
 
Determining the limit of detection of selection due to population size 
Detection of selection is fundamentally limited by population size. The detection limit was 
calculated by simulating an ensemble of 1,000 lineages under strong positive selection using the 
Bolthausen-Sznitman coalescent model. Fay and Wu’s H statistic was calculated for each lineage 
and its significance was assessed by comparison with the neutral model. This was repeated for 
populations having various sizes (N = 100, 200, 500, 1000, 2000, 5000, 10000, 20000 leaves). 
The fraction of lineages that were identified as significantly positively selected (P < 0.05) in each 
case is the expected rate of detecting positive selection in the scenario where all lineages are 
generated under strong positive selection. 
 



 
 

6 
 

Phylogenetic reconstruction 
We used a fast heuristic algorithm to construct a multiple sequence alignment and reconstruct the 
phylogeny of each clonal lineage. Sequences were first aligned in an ungapped manner using the 
start and end positions of the CDR3 as anchor points. This alignment was refined using MUSCLE 
with “-refine -maxiters 1 -diags -gapopen -5000” (8). The large gap penalty reflects our 
expectation that insertions and deletions are uncommon during somatic hypermutation (9, 10). 
We aligned a germline sequence consisting of the concatenated V and J germline alleles of the 
lineage by profile-profile alignment using MUSCLE with “-profile -maxiters 1 -diags”. We 
reconstructed the phylogeny using FastTree 2 with “-nt -gtr” (11). Finally, we performed joint 
refinement of the multiple sequence alignment and phylogeny by identifying extremely long 
branches (>0.5 substitutions/site), removing them all from the alignment, and realigning one 
sequence at a time by profile-profile alignment using MUSCLE with “-profile -maxiters 2 -
diags”, then repeating phylogenetic reconstruction as described above. 
 
Detecting selection in multiple subclones of a clonal lineage 
We developed an algorithm to identify subclones having evidence of positive selection. Our 
algorithm is based on calculation of the test statistic on subclones, then searching within the 
phylogeny to identify the largest independent subclones displaying significant evidence of 
selection. Specifically, we calculate Fay and Wu’s H statistic on every large clade (having >100 
sequences) based on the frequency of somatic mutations that occurred within the clade, and 
calculate its P value by comparison with the null distribution for phylogenies matched in size to 
the number of leaves in the clade. We then perform a greedy breadth-first search for clades 
having significant evidence of selection. This search strategy yields the deepest subclones having 
evidence of selection and guarantees that all such subclones represent mutually exclusive subsets 
of the lineage. We note that this is a conservative strategy because in a case where a deep clade 
has evidence of selection, but in turn harbors two independent subclades that themselves have 
evidence of selection, the search stops at the deep clade and therefore will not discover the 
selected subclades. To correct for multiple hypothesis testing, we adjusted the P value associated 
with Fay and Wu’s H statistic using the Bonferroni method based on the number of tests 
performed during the search step.  

We observed that standard tests of selection, such as Fay and Wu’s H statistic, often 
failed to detect selection when applied to lineages harboring multiple positively selected 
subclones. When multiple subclones persist, the frequency of a derived mutation which is private 
to a single subclone has a hard upper bound, causing tests based on the presence of high 
frequency mutations to fail (Figure S4E). This highlights the influence of clonal population 
structure on tests for selection, an important design consideration for efforts to detect selection in 
any asexual population.  
 
Identification of candidate affinity-increasing mutations 
Using the reconstructed phylogeny of each clonal lineage as input, we performed fitness inference 
following (12). Fitness inference is based on the idea that nodes having higher fitness create 
offspring at a faster rate than other nodes and therefore the local branching rate of a phylogeny 
carries information about the fitness of sequences within the phylogeny. Fitness was inferred 
using fitness diffusion constant D = 0.5, distance scale = 2.0, and sampling fraction = 0.1. We 
annotated each branch with the mean fitness change from the parent to the child node. To identify 
branches having large fitness enhancements or diminishments, we ranked all branches by their 
fitness change and selected those among the top 3 or bottom 3. Our conclusions also hold true 
when analysis is performed using the top and bottom 1, 5, or 10 branches. We performed 
ancestral sequence reconstruction for each clonal lineage using maximum-likelihood assuming 
equal rates for all mutations. We then identified mutations that occurred on each branch by 
comparing the reconstructed parent and child sequences. We assigned these mutations to regions 
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(CDRs and FWRs) based on the region boundaries identified using IgBlast (3). To compute the 
enrichment of non-synonymous mutations in a region in comparison with synonymous mtuations 
(dN/dS), we calculated the fraction of non-synonymous mutations falling in a region, and then 
divided this fraction by the corresponding fraction calculated using synonymous mutations. We 
calculated the error of this measurement by bootstrap resampling of branches (100 replicates). 
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Figure S1. Dynamics of antibody repertoires and personalized annotation of germline 
variants. 
(A) Effect of cutoff for identifying vaccine-responsive lineages. Plots show the number of 
lineages having a significant change in abundance as a function of the fold-change (FC) cutoff 
used to determine significance. Right panel, comparison of D-5 to D0 (no vaccination). Left 
panel, comparison of D0 to D7 (after vaccination). Dashed line indicates the cutoff of >50-fold 
change chosen for this work because at this value few lineages (27 within all five subjects 
together) are identified as having a significant change in abundance in the absence of vaccination 
(D-5 to D0). The changing abundance of these lineages may be due to environmental exposure to 
antigens, and in fact most of these lineages had undefined fold-change on the interval D-5 to D0 
because they were not detected at D-5. The identity of vaccine-responsive lineages is largely 

Figure S1
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insensitive to the choice of fold-change cutoff across a broad range (10-fold to 10,000-fold 
increase) because most vaccine-responsive lineages are not observed at D0 and therefore have 
undefined fold-change on the interval D0 to D7. 
(B) Dynamical variation in the fractional abundance of vaccine-responsive and persistent 
lineages. Plot shows the distribution of the coefficient of variation of fractional abundance for 
individual lineages across the observation period. 
(C) Personalized annotation of germline variants for study subjects using the method of Gadala-
Maria and colleagues (5). Left panel shows an example of an identified non-reference germline 
variant. Identification is based on the presence of a y-intercept value that is significantly larger 
than zero. Right panel shows the number of non-reference germline variants detected for each 
subject. 
(D and E) Usage of germline V gene segments (D) or J gene segments (E) in vaccine-responsive 
or persistent lineages or the entire repertoire. Segments which are significantly overrepresented in 
either vaccine-responsive or persistent lineages are marked with asterisks (P < 0.05; Fisher’s 
exact test, two-sided). 
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Figure S2. Genetic signatures of selection in individual vaccine-responsive B cell lineages. 
(A) Site frequency spectrums (SFSs) of individual clonal vaccine-responsive B cell lineages. The 
density of mutations in each frequency bin is indicated by color. 
(B) Fay and Wu’s H statistic of each lineage. 
(C) Significance of Fay and Wu’s H statistic in comparison with a null model of neutral drift.  
(D) Non-monotonicity D of the SFS of each lineage. 
(E) Significance of the non-monotonicity D in comparison with a null model of neutral drift. 
In (C) and (E), significance values were calculated by creating a ensemble of lineages via 
simulation of the Kingman coalescent model (neutral drift-like evolution with constant population 
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size) with each lineage having a population size matching that of the focal lineage, calculating the 
desired test statistic on each simulated lineage, fitting the Johnson’s U distribution to the 
simulated distribution of test statistics, then calculating the P value of the observed value of the 
test statistic. 
(F) Number of sequences in each lineage observed at D7 using long amplicon sequencing (paired-
end 300 bp sequencing of 480 bp amplicons). 
(G) Subject of origin of each clonal B cell lineage. 
(H) Distribution of mutations across sequence regions for mutations of different frequencies 
found in vaccine-responsive lineages. All mutations were placed into bins based on their 
frequency, then within each bin the fraction of mutations falling in each region was calculated. 
Error bars show exact binomial 95% confidence intervals. 
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Figure S3. Genetic signatures of neutral evolution in individual persistent B cell lineages. 
(A) Site frequency spectrums (SFSs) of individual clonal persistent B cell lineages. The density 
of mutations in each frequency bin is indicated by color. 
(B) Fay and Wu’s H statistic of each lineage. 
(C) Significance of Fay and Wu’s H statistic in comparison with a null model of neutral drift.  
(D) Non-monotonicity D of the SFS of each lineage. 
(E) Significance of the non-monotonicity D in comparison with a null model of neutral drift. 
In (C) and (E), significance values were calculated as described in Figure S2.  
(F) Number of sequences in each lineage observed at D7 using long amplicon sequencing (paired-
end 300 bp sequencing of 480 bp amplicons). 
(G) Subject of origin of each clonal B cell lineage. 
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Figure S4. Limits of detection on selection. 
(A and B) Rate of detecting selection among vaccine-responsive (A) and persistent (B) lineages 
of varying size. Detection limit imposed by population size is shown for comparison, assuming a 
false discovery rate (FDR) of 0.05. Error bars show exact binomial 95% confidence intervals. 
(C) Relationship between lineage size and signatures of selection (by comparison with neutral 
model without population expansion). Each dot is a lineage. 
(D) Relationship between lineage size and total genetic diversity (measured as total branch length 
in phylogeny). Each dot is a lineage and is colored to indicate whether it is vaccine-responsive or 
persistent (as in A and B). 
(E) Distributions of Fay and Wu’s H statistic for vaccine-responsive lineages in which one, 
multiple, or no subclones have evidence for positive selection (FDR = 1%). Lineages in which 
multiple subclones were selected display a rightward shift in the distribution of H, reflecting the 
hard upper bound on the frequency of mutations that are private to each subclone and causing this 
test for selection to fail when applied to the entire lineage. 
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Figure S5. Explanation of relationships between positive selection, neutrality, phylogenetic 
tree shape, and the site-frequency spectrum (SFS). 
Schematic illustrating how the shape of phylogenetic trees (top panels) and the site frequency 
spectrum (SFS) (bottom panels) differ between populations evolving under positive selection (left 
panels) and neutral drift (right panels). In populations undergoing continuous adaptation driven 
by positive selection, repeated appearance of beneficial mutations leads to an unbalanced tree 
shape. Beneficial mutations are present at high frequency. In contrast, in populations evolving 
neutrally, all mutations are neutral and do not confer any fitness benefit. Thus, similar numbers of 
progeny are present on each branch, leading to a balanced tree shape. The SFS is a histogram of 
the mutation frequencies in the population. During continuous adaptation driven by positive 
selection, beneficial mutations become present at high frequency, unlike in populations evolving 
neutrally. Thus, an excess of mutations at high frequency is a characteristic signature of strong 
positive selection driving recurrent selective sweeps. 
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Table S1. Vaccine-responsive and persistent lineages found in each subject. 
 
Subject Vaccine-responsive lineages Persistent lineages Total lineages 

1 16 111 55,545 
2 32 97 30,823 
3 49 44 41,633 
4 45 76 18,104 
5 40 89 23,263 

 
  



 
 

16 
 

Table S2. PCR primers used for library preparation. 
Short amplicon primers were used to prepare libraries for paired-end 100 bp sequencing from 
samples from all time points. Long amplicon primers were used to prepare libraries for paired-
end 300 bp sequencing from samples from D7. RT, reverse transcription; SS, second-strand 
synthesis. 
 
Amplicon type Step Name Sequence (5’–3’) 
Short  RT  G TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNAAGACCGATGGGCCCTTG 

  A TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNGAAGACCTTGGGGCTGGT 

  M TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNGGGAATTCTCACAGGAGACG 

  D TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNGGGTGTCTGCACCCTGATA 

  E_1 TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNGAAGACGGATGGGCTCTGT 

  E_2 TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNTTGCAGCAGCGGGTCAAGGG 

 SS V1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNAGCCTACATGGAGCTGAGC 

  V2 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNAGGTGGTCCTTACAATGACCAAC 

  V3_1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNTCTGCAAATGAACAGCCTGA 

  V3_2 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNTGTTCAAATGAGCAGTCTGAGAG 

  V3_3 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNTCTGCAAATGGGCAGCCTGA 

  V4/6 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNTTCTCCCTGAAGCTGAACTCTG 

  V5 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNGCCTACCTGCAGTGGAGCAG 

  V6 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNTTCTCCCTGCAGCTGAACTCTG 

  V7_1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNGCATATCTGCAGATCAGCAGC 

  V7_2 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNCAGATCAGCAGCCTAAAGGC 

Long  RT IgA_08N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNGGGGAAGAAGCCCTGGAC 

  IgA_12N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNNNGGGGAAGAAGCCCTGGAC 

  IgG_08N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNGGGAAGTAGTCCTTGACCA 

  IgG_12N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNNNGGGAAGTAGTCCTTGACCA 

  IgM_long_8N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNGAAGGAAGTCCTGTGCGAG 

  IgM_long_12N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNNNGAAGGAAGTCCTGTGCGAG 

  IgE_long_8N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNAAGTAGCCCGTGGCCAGG 

  IgE_long_12N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNNNAAGTAGCCCGTGGCCAGG 

  IgD_long_8N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNTGGGTGGTACCCAGTTATCAA 

  IgD_long_12N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNNNTGGGTGGTACCCAGTTATCAA 

 SS V1_1_70 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNSCAGCTGGTGCAGTCTGG 

  V1/3/5_70 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNGTGCAGCTGGTGGAGTCTG 

  V2_70 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNGTGCAGCTGGTGGAGTCTG 

  V4_1_70 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNTGCAGCTGCAGGAGTCG 

  V4_2_70 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNGTGCAGCTACAGCAGTGG 

  V6_70 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNGTACAGCTGCAGCAGTCA 
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