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Here we present further information on the availability of
the products used in our study, the uncertainty quantification
in GF and datasets, and the regional time-dependent OHC
estimates.

A. Data Availability. In addition to the references provided
in the main text and the Materials and Methods sec-
tion, we are listing the links to all datasets used in the
present study. The ECCO-GODAE data can be downloaded
from http://www.ecco-group.org/products.htm. The Hadley cen-
ters SST datasets are at https://www.metoffice.gov.uk/hadobs/
hadisst/. The NCEI OHC and salinity data are avail-
able at https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/
heat_global.html and https://www.nodc.noaa.gov/cgi-bin/OC5/
SAL_ANOM/showfiganom.pl?action=start, respectively. The
IAP, Ishii and Domingues data are available from http://
159.226.119.60/cheng/, https://climate.mri-jma.go.jp/pub/ocean/
ts/v7.2/doc/00README, and http://www.cmar.csiro.au/sealevel/
thermal_expansion_ocean_heat_timeseries.html, respectively.

B. Code Availability. The TMM code and climatological trans-
port matrices extracted from the ECCO-GODAE state esti-
mate are available on GitHub https://github.com/samarkhatiwala/
tmm, and the GFs are available from the corresponding author
upon request.

C. Error Estimates: GFs reconstructions. The OHC recon-
struction from GFs presented in this study is subject to two
primary sources of uncertainty: 1) errors in the imperfect
representation of ocean transport processes (e.g., advection,
mixing) in ECCO-GODAE, which can be due to the model
resolution and parametrizations and/or the lack of data in
some regions - this will then translate into errors in the com-
puted GFs and pathways between the ocean interior and the
surface; and 2) errors in SSTs due to poor spatial and temporal
sampling, particularly outside the Atlantic basin and in the
early part of the record. In this study, we have devised a
strategy, described below, to both minimize the dependence
of the OHC estimates on model and observational biases, and
also to partially account for the uncertainty associated with
the imperfect knowledge of ocean transport and SSTs from
data and ECCO-GODAE.

We select broad areas both at the surface for SSTs and in the
ocean interior for the GFs, which led to more robust patterns
of OHC and associated uncertainties despite reducing the hor-
izontal resolution of the estimates. The transport matrix and
GFs, themselves, are subject to uncertainty associated with
the ECCO-GODAE representation of ventilation pathways,
which are affected in part by model resolution and numerical
mixing. The patterns and magnitude of the ECCO-GODAE
time-mean barotropic and Sverdrup transport are in agree-
ment to those derived directly from observational products

(1–4). However, a comparison of simulated bomb radiocarbon
with observations suggests that shallow–to–deep exchange in
ECCO-GODAE may be too efficient (5, 6). Despite this bias,
the inventory and spatial distribution of anthropogenic CO2
simulated by ECCO-GODAE have been shown to be in line
with observational estimates (6, 7). In addition, a detailed
analysis (8) using a more recent version of ECCO, which is not
qualitatively different from previous ECCO versions (except
for the longer period of assimilation), produces abyssal heat
content changes at high Southern latitudes that are consistent
with those of (9) (as also shown here in Fig. 1C).

Nonetheless, ECCO-GODAE pathways are derived from an
ocean model at 1◦ horizontal resolution which inevitably pos-
sesses some biases, despite being constrained by observations.
To include this uncertainty, without having to recalculate the
GFs for several ocean reanalyses, which is computationally
challenging, we have opted to perturb our estimates of the
GFs. The uncertainty in observationally-based, basin-averaged
GFs has been estimated to be O(10-20%) (10). In addition,
crude estimates derived from previous studies (5, 6) suggest
O(20-30%) error in shallow to deep exchange of water. Finally,
comparison of ocean reanalysis products (11) shows a 20 to
30% spread in the amplitude of the upper and lower overturn-
ing cells. Therefore, we perturb the GFs by 20% in the upper
2000 m and 40% below 2000m in an attempt to represent
the transport uncertainty derived from ocean reanalyses, and
tracer-based observational estimates. The perturbations are
applied while imposing mass conservation by renormalizing
the GFs. This uncertainty representation is potentially con-
servative and will be investigated in future work by using
GFs estimated from different observation-based products (e.g.,
other ECCO state estimates, or direct climatological products
such as GLODAP), and/or over different time periods.

Finally, we convolve the GFs with 10 different realizations
from HadISST v2.0, rather than using HadISST v1 alone
to include uncertainty in surface boundary conditions. The
ensemble-mean estimate of OHC, from 1955 onwards, based
on HadISST v2.0 is only within 2% of the one based on
HadISST v1. The error prior to 1955 is large due to the reduced
availability of surface temperatures. Using two additional SST
estimates from the NOAA Extended Reconstruction SSTs
V4 (12) or from COBE (13) did not result in different OHC
estimates (less than a few percents change) and those estimates
are therefore left out of the present study.

Overall, the OHC and associated errors from the GFs are
comparable to the ensemble-mean and the spread from different
observational estimates (e.g., 14, 15, and Fig.1 here). The
values of regional trends in OHC and thermosteric sea level
rise mentioned in the manuscript are only discussed if the
discrepancies between observations and GF estimates are larger
than the error estimates derived here.
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D. Error estimates: observational products. There is a vast
literature describing observational products and associated
errors (e.g., 16–18). In addition to the sparsity of the data,
especially at high latitudes and in the early part of the histor-
ical record, there are other factors leading to uncertainty in
OHC estimates: error related to the measurements themselves
(i.e., instrumental error), and errors due to the methods used
to filling the gap in data sampling. The methods include
infilling of data gaps via statistical methods, which often re-
lies on knowledge of temporal and spatial covariance of the
data. The uncertainty associated with mapping techniques
has been well documented in previous studies (18, 19). Other
methods to cover the gap in sampling is to rely on data as-
similation techniques, which combines observations with a
numerical model –none used in the present study (20). As
shown in Fig. 1, there are substantial differences among the
observationally-based estimates using direct in-filling. Our
GFs estimates are often situated within the bounds of the
different products, except perhaps for the early part of the
record – however error uncertainty estimates might also be
underestimated in all products. To easily compare with obser-
vations, we have presented the observational linear trends in
Fig. 1 (and associated discussion in the main manuscript) as
an ensemble-mean, with the error given by the one standard
deviation. This type of quantification of uncertainty estimate
is likely optimistic, as discussed by (4), especially given that
the uncertainty associated with the sparsity of data in the
earlier part of the record are not adequately represented by
such an unbiased uncertainty quantification.

E. Timeseries of OHC as a function of latitudes. Heat redis-
tribution by changes in ocean circulation integrates to zero
globally; a property that is respected by the use of GFs. How-
ever, as shown in Fig. 3, a signature of ocean circulation
change is present on a regional scale in the North Atlantic.
Since the OHC trends are not necessarily linear, and exhibit
strong variability on a wide range of timescales (Figs. 1 and 3),
let us consider the temporal evolution of OHC. In the South-
ern Ocean between 80◦ S and 60◦ S, there are weak trends
over 1955-2017 in both observations (Figs. S3, grey shading
representing observational estimates) and GFs (orange curves).
Note that the lack of trends in the Southern Ocean could be
due to lack of observations (21). Between 60◦ S and 40◦ S, the
increase in heat storage is weaker in the GF estimates than
that observed (0.03 ZJ/◦lat), yet still within observational
uncertainty. There is a warming trend at all latitudes ranging
from 60◦ S to 20◦ N in both GF estimates and observations,
with magnitudes of 1-2 and 0.5-1 ZJ/◦lat, respectively, occur-
ring in the upper 2000 m over the last 60 years. Between 20◦

N and 50◦ N, discrepancies in trends and variability between
the GF and observational estimates are further discernible,
indicating strong changes in ocean transport on all timescales.

At high latitudes in both hemispheres, there is a signature
of decadal variability in the upper 2000 m, rather than distinct
warming trends. Between 80◦ S and 60◦ S in the Southern
Ocean, the low-frequency variability in the GF and observa-
tional timeseries are anti-correlated (Fig. S3), indicating a
role for ocean circulation change on decadal timescales in the
Weddell and Ross Sea regions and north of it as the water
enters the Atlantic and Pacific Oceans. In observations, this
variability is significant in the South Atlantic south of 40◦

S, with an amplitude of up to 0.3 ZJ/◦lat, while in the GF

estimates only south of 60◦ S is the decadal variability (on the
order of 0.2 ZJ/◦lat) dominating the linear trend. In the North
Atlantic, the GF-inferred variability is substantial in both the
subtropical and subpolar gyres, and can be comparable to
the trend, as discussed in the main text. Decadal variability
dominates north of 50◦ N with no obvious detectable warming
or cooling trends (similarly to SSTs, Fig. S1) in observations
and GF estimates. However, the magnitude of North Atlantic
OHC changes in observations is rather different than in GF
estimates. Figs. 3 and S3 are therefore consistent and ocean
transport must have been altered to explain the observed pat-
terns of warming north of 20◦ S. However, the cause ocean
transport changes remain to be further analyzed, in particu-
lar the contribution of natural variability and anthropogenic
forcing.
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Fig. S1. Areas for the 26 surface patches used for the SST anomalies, and associated area-weighted timeseries from HadISST1 for individual patches in the Atlantic Ocean
(top), Pacific Ocean (middle), and Indian Ocean (bottom). The colorbar is associated with the patch number in each basin.
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a) OHC Indian Top 2000m

b) OHC Pacific Top 2000m
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Fig. S2. Timeseries of OHC change in ZJ (1ZJ = 1021J). Change, relative to 2006-2014, for the top 2000 m in the a) Indian Ocean, and b) Pacific Ocean for the GFs
estimates (orange) and observational estimates (grey). GFs estimates, relative to 1971, in the c) Atlantic basin; d) Indian basin; e) Pacific basin for different depth ranges:
orange = full depth; purple = 0-700 m ; blue = 700-2000 m; green = below 2000 m.
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OHC (top 2000m) timeseries for different latitudes [ZJ/ olat]
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Fig. S3. Timeseries of Atlantic OHC in the upper 2000 m, in [ZJ /◦lat], using 20◦ or 10◦ latitudinal bands. This includes the reconstruction based on GFs (orange) and the
ensemble mean of all observational estimates (black), and associated uncertainty (shading).
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Atlantic Linear Trends 1871-1955
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Fig. S4. Atlantic OHC GFs trends for 1871 to 1955 as a function of latitudes, as in Fig 3A-D: a) Top 700 m; b) 700-2000 m; c) top 2000 m; d) below 2000 m.
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