

Supplementary Information for

The RNA degradosome promotes tRNA quality control through clearance of hypomodified tRNA

Satoshi Kimura and Matthew K. Waldor

Satoshi Kimura Email: s.kimura.res@gmail.com Matthew K. Waldor Email: mwaldor@research.bwh.harvard.edu

This PDF file includes:

Figs. S1 to S7 Tables S1 and S2 Captions for Datasets S1 to S3 References for SI reference citations

Other supplementary materials for this manuscript include the following:

Datasets S1 to S3

Fig. S1. Thil accounts for s⁴U synthesis in *V. cholerae*

(A) Schematic secondary structure of tRNA and chemical structure of 4-thiouridine (s⁴U).
Numbers indicate the positions that are modified to s⁴U. The anticodon is colored in orange.
(B) Chromatograms of HPLC analysis of total nucleosides from wild-type (WT) and Δ*thiI* (Δ*thiI*) *V. cholerae* RNA and chemical standard of s⁴U (s⁴U). Blue and red lines represent UV traces at 254 nm and 334 nm, respectively.

		Stationary			Stationary
Ala1A			Leu1A		
Ala1B			Leu1B		
Ala2			Leu2		
Arg2AC			Leu3A		
Arg2B			Leu3B		
Arg3			Leu4		
Arg4			Leu5		
Asn1			Lys	******	
Asn2			Met1		
Asn3			Met2		*
Asp			Phe1	· · · · · ·	
Cys1			Phe2		
Cys2			Pro2		
fMetA			Pro3AE		
fMetB			Ser1		
fMetC	******		Ser3A	•••••	
fMetD	******		Ser3B		
Gln1A	******	***=-*	Ser5	· · · · · · ·	
Gln1B	******		Thr1		
GIn1C	******		Thr3	******	
Glu	*****		Thr4A	******	******
Gly2	· · · · · · ·	*	Thr4B	1:::::	
Gly3		*	Trp		
His			Tyr	******	
lle1	· · · · · ·		Val1	*****	
lle2		1.1.1.1.1	Val2	******	
			Val2B	******	******

Fig. S2. Northern blots of all *V. cholerae* tRNA species derived from log and stationary phase cultures; data used for Figure 1B.

Fig. S3. Growth curves used for time course and decay measurement experiments (related to Fig. 1, 3, 4 and 6.

- (A) Growth curves (culture OD₆₀₀ over time) from time course experiment in Fig. 1D.
- (B) Growth curves associated with RNA decay measurements for log phase cultures (Fig. 1E).
- Rifampicin was added at OD₆₀₀ 0.3.
- (C) Growth curves associated with RNA decay measurements for stationary phase cultures (Fig.
- 1F). Rifampicin was added one hour after OD_{600} 0.5.
- (D-F) Growth curves from decay measurement in log phase (Fig. 3F). Rifampicin was added at
- OD₆₀₀ 0.3.

(G and H) Growth curves from decay measurements in stationary phase (Fig. 4). Rifampicin was added one hour after OD₆₀₀ 0.5.

(I) Growth curves from decay measurement in stationary phase (Fig. 6BC). Rifampicin and chloramphenicol (50 μ g/ml) was added one hour after OD₆₀₀ 0.5.

(J and K) Growth curves from decay measurement in stationary phase (Fig. 6D). Arabinose

(0.2 %) was added at OD_{600} 0.5 and rifampicin was added one hour after OD_{600} 0.5.

Fig. S4. Thermodynamic instability of hypomodified tRNA-Tyr and tRNA-Ser1. Melting curves and 1st derivative curves of tRNA-Tyr and tRNA-Ser1. Upper panels are melting curves and lower panels are 1st derivative curves. Melting temperatures were determined by the position of the peak in 1st derivative curves.

Fig. S5 Overexpression of tRNA-Gln1A and tRNA-Ser1 does not rescue the growth defect in double mutant.

Growth of *Para-thiI*/ $\Delta truB$ double mutants with multi-copy plasmids encoding the indicated tRNA (expressed from the same promoter) with or without 0.2 % arabinose on LB plates. Plates were incubated at 37 °C for 24 hr.

Fig. S6. Model of distinct tRNA quality control of tRNA-Tyr and tRNA-Ser1 mediated by RNA degradosomes

WT tRNA form the stable elbow with the base parings of G18-Ψ55 and G19-C56. s⁴U deficient tRNAs are likely to destabilize the elbow, which could trigger targeting by RNA degradosomes. EF-Tu (gray oval) protects well folded tRNA from the degradosome. PNPases degrade tRNAs from 3' end of hypomodified tRNAs. For tRNA-Tyr degradation, RNA helicase RhIB support the degradation but not for tRNA-Ser1.

Fig. S7. Northern blot data.

(A-M) Northern blot data used to generate the decay curves in Fig. 1E (panel A and B), Fig. 1F (panel C and D), Fig. 3F (panel E-J), Fig. 4 (panel C, D, K-M), Fig 6D (panel N).

Supplementary Tables

 Table S1 Strain list (related to Materials and Methods)

 Table S2 Plasmid list (related to Materials and Methods)

Supplementary Datasets

Dataset S1 Results of Con-Artist (related to Fig. 2A)

Dataset S2 Primer list (related to Materials and Methods)

Dataset S3 Vibrio cholerae tRNA sequences with tRNA names (related to Fig. 1B)

Strains	Relevant genotype/description	Reference/source
Vibrio cholerae	C6706, wild-type El Tor clinical	(1)
	isolate (<i>Sm^R</i>)	
<i>V. cholerae</i> Δ <i>thiI</i>	C6706 Δ <i>vc0894</i>	This work
V. cholerae $\Delta miaA$	C6706 Δ <i>vc0346</i>	This work
V. cholerae $\Delta trmA$	C6706 Δ <i>vc0154</i>	This work
V. cholerae $\Delta truB$	C6706 Δ <i>vc0645</i>	This work
V. cholerae Para-thiI	C6706 PthiI::araC-Para	This work
V. cholerae Para-thiI $\Delta trmA$	C6706 Para-thiI ∆trmA	This work
V. cholerae Para-thiI ∆truB	C6706 Para-thiI ∆truB	This work
V. cholerae Para-thiI Δ miaA	C6706 Para-thiI ∆miaA	This work
V. cholerae Para-thil Δ truB suppressor #1	C6706 Para-thil $\Delta truB tRNA-Tyr^{U51C}$	This work
V. cholerae Para-thil Δ truB suppressor #2	C6706 Para-thiI $\Delta truB vc2030^{E664*}$	This work
<i>V. cholerae</i> $\Delta rne::rne^{\Delta(E664-F1052)}$	C6706 $\Delta vc2030::vc2030^{\Delta} (E664-F1052)$	This work
<i>V. cholerae</i> Δ <i>thiI</i> Δ <i>rne::rne</i> $^{\Delta$ (E664-F1052)}	C6706 Δ thiI Δ rne::rne $^{\Delta (E664-F1052)}$	This work
V. cholerae Para-thil $\Delta trmA$	C6706 Para-thiI ∆trmA	This work
$\Delta rne::rne^{\Delta (E664-F1052)}$	$\Delta rne::rne^{\Delta (E664-F1052)}$	
V. cholerae Para-thiI ∆truB	C6706 Para-thiI ∆truB	This work
$\Delta rne::rne^{\Delta (E664-F1052)}$	$\Delta rne::rne^{\Delta (E664-F1052)}$	
V. cholerae Para-thiI ∆miaA	C6706 Para-thiI ∆miaA	This work
$\Delta rne::rne^{\Delta (E664-F1052)}$	$\Delta rne::rne^{\Delta (E664-F1052)}$	
V. cholerae Δ thiI Δ pnp::pnp ^{R399D/R400D}	C6706 Δ thiI Δ pnp::pnp ^{R399D/R400D}	This work
V. cholerae Δ thiI Δ rhlB::rhlB ^{D165N}	C6706 Δ thiI Δ rhlB::rhlB ^{D165N}	This work
V. cholerae $\Delta rne::rne-flag$	C6706 ∆rne::rne-flag	This work
V. cholerae ∆rne::rne-flag	C6706 ∆rne::rne-flag	This work
$\Delta pnp::pnp^{R399D/R400D}$	$\Delta pnp::pnp^{R399D/R400D}$	
Escherichia coli DH5α λpir	Cloning strain	
Escherichia coli SM10 λpir	Conjugation donor	

Table S1 Strain list (related to methods)

Table S2 Plasmid list (related to methods)					
Plasmid	Relevant genotype/descripton	Reference			
pCVD442	Allele exchange vector	(2)			
pCVD442-∆thiI	Allele exchange vector for deletion of V. cholerae vc0894	This work			
pCVD442-∆trmA	Allele exchange vector for deletion of V. cholerae vc0154	This work			
pCVD442-∆truB	Allele exchange vector for deletion of V. cholerae vc0645	This work			
pCVD442-∆miaA	Allele exchange vector for deletion of V. cholerae vc0346	This work			
$pCVD442-rne^{\Delta(E664-F1052)}$	Allele exchange vector for deletion of C-terminal domain (E664-F1052) of RNase E encoded in <i>vc2030</i>	This work			
pCVD442-ParathiI	Allele exchange vector for replacing <i>V. cholerae Pthil</i> with <i>araC::Para</i> from pBAD33 (Thermo)	This work			
pCVD442- pnp ^{R399D/R400D}	Allele exchange vector for mutagenizing pnp	This work			
pCVD442-rhlB ^{D165N}	Allele exchange vector for mutagenizing <i>rhlB</i>	This work			
pCVD442-rne-flag	Allele exchange vector for integrate flag tag to endogenous <i>rne</i>	This work			
pSC189	Himar 1 suicide transposon vector	(3)			
pACYC184	Cloning vector				
ptRNA-Tyr	V. cholerae PtRNATyr::tRNATyr on pACYC184	This work			
ptRNA-Gln1A	V. cholerae PtRNATyr::tRNAGln1A on pACYC184	This work			
ptRNA-Ser1	V. cholerae PtRNATyr::tRNASer1 on pACYC184	This work			
pEF-Tu	<i>V. cholerae vc0362</i> on pBAD33	This work			

Table S2 Plasmid list (related to methods)

References

- 1. Millet YA, *et al.* (2014) Insights into Vibrio cholerae intestinal colonization from monitoring fluorescently labeled bacteria. *PLoS pathogens* 10(10):e1004405.
- 2. Donnenberg MS & Kaper JB (1991) Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. *Infection and immunity* 59(12):4310-4317.
- 3. Chiang SL & Rubin EJ (2002) Construction of a mariner-based transposon for epitopetagging and genomic targeting. *Gene* 296(1-2):179-185.