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Inverse Leidenfrost effect: drops gliding on a bath

Supplementary Materials

The supplementary materials contain:

• Supplementary Figures 1,2 and 3

• Supplementary table 1, with values of the physical parameters used in models and

simulation

• Description of supplementary movies

• Detailed theoretical models: for the thickness of the vapor film in cold Leidenfrost

situation and full calculation (in a simplified geometry) of the propelling and friction

forces.

I. SUPPLEMENTARY FIGURES
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Figure 1: Examples of drop trajectories. All drops are ethanol, with radius R = 1.4 mm. The color

code (on the right) indicates the drop velocity, from V = 0 cm/s (dark blue) to V = 6 cm/s (dark

red). Depending on the initial conditions, the drop trajectory forms stars with different number of

branches.
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Figure 2: Thermal effects on velocity profiles a. Comparison of the velocity profiles V (t) of 5

alcohol drops with similar initial velocities. The drops have similar radius R = 1.4 mm and heat

capacity 4
3πρR

3cp, but different freezing temperatures, from Tf = -126◦C for propanol to Tf =

-79◦C for pentanol. b. Velocity profiles V (t) of silicon oil drops with varying initial temperatures.

Table I: Values of physical parameters used in the model and simulation

Quantity Symbol Value

Liquid nitrogen

surface tension of liquid nitrogen γN 8.85 mN/m

density of liquid nitrogen ρN 808 kg/m3

latent heat of vaporization Lv 2 x 105 J/kg

density of nitrogen vapor ρv 1.7 kg/m3

viscosity of nitrogen vapor ηv 12.9 µPa.s

thermal conductivity of nitrogen vapor λ 18.7 mW/m/K

Silicone oil

density ρ 930 kg/m3

specific heat cp 1600 J/kg/K

Ethanol

density at -115◦ C ρ 900 kg/m3

specific heat cp 2400 J/kg/K
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II. SUPPLEMENTARY MOVIES

Movie S1 Top view of an ethanol drop with radius R = 1.4 mm seeded with dark particles,

just after being deposited on a liquid nitrogen bath. Slowed down 1.5 times.

Movie S2 Top view of a polyethylene particle (with radius R = 1.0 mm and density ρ =

900 kg/m3) sitting on a liquid nitrogen bath. The particle is marked with black dots to

visualize potential rotations. The velocity V of the particle is plotted as a function of time

in the figure below. Similarly to drops, the particle is accelerated and glides in straight lines

across the bath.

Movie S3 Position and velocity V (t) of a silicone oil drop (with radius R = 1.4 mm)

while gliding on a liquid nitrogen bath. The drop crosses the bath in straight lines. Its

dynamics can be decomposed in 3 phases: (1) acceleration, in the first 5 seconds (2) constant

deceleration, that lasts 25 seconds and (3) a constant velocity phase, that lasts for the whole

drop lifetime. The movie is shown in real time.

Movie S4 Top view of a silicone oil drop (with radius R = 1.4 mm) while gliding on a liquid

nitrogen bath. In the end of the movie, the cold drop encounters an ice cristal and sinks.

The amount of vapor generated is small, indicating that the drop temperature is close to

that of the bath. The movie is in real time.

Movie S5 Movie extracted from simulations, showing the dynamic mesh of the ALE-FEM

simulation with the pseudo-elastic node movement and the mesh reconstruction whenever

the deformation of the elements gets to intense.

Movie S6 Simulation of inverse Leidenfrost levitation of a drop with radius R = 1.0 mm

and viscosity η = 16 mPa.s.

Movie S7 Top view of a liquid nitrogen drop (with radius R = 1.8 mm levitating above

a liquid nitrogen bath, more than 10 minutes after being deposited. The drop adopts a

circular trajectory and keeps a constant velocity V ∗ ' 2.2± 0.2 cm/s while rotating. The

movie accelerated two times.

Movie S8 Top view of a liquid nitrogen drop (with initial radius R = 1.1 mm) deposited

on an ethanol bath. Due to the difference of temperature between the drop and the bath,

the nitrogen drop evaporates and remains in levitation above the bath. Similarly to what is

seen in the inverse Leidenfrost situation, it is self-propelled and crosses the bath in straight

lines. Its velocity V is plotted as a function of time t. The movie is in real time.
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III. NUMERICAL METHOD

The numerical simulation is based on a finite element method of the incompressible 2d

Cartesian Navier-Stokes equations with sharp interfaces that are aligned with the mesh,

which is an ideal approach to capture the thin gas layer between the droplet and the bath.

To account for the motion of the droplet and the bath interface, the mesh nodes are co-

moved with the interfaces combined with an arbitrary Lagrangian-Eulerian method. All

nodal positions in the bulk are updated by treating the mesh as a pseudo-elastic solid which

is deformed by the movement of the interfaces. The dynamics of the interfaces is governed

by the conventional kinematic and dynamic boundary conditions. Since the shifting of the

nodes eventually causes large mesh distortions, we reconstruct the mesh whenever the quality

falls below a specific threshold. During this remeshing, the interfaces are captured by splines

to generate a new mesh and the previous nodal data are interpolated to the new mesh (see

Supplementary Movie 5).

It is always ensured that the element size in the thin gas layer is very fine whereas it gets

coarser in the far field. To solve the flow, conventional triangular Taylor-Hood elements are

used. At the interfaces, the Laplace pressure causes a discontinuity of the pressure whereas

evaporation causes a jump in the normal velocity component due to the density ratio. To

that end, nodes on the interface store two pairs of velocity and pressure data, i.e. for both

sides of the interface, which are coupled across the interface via Lagrange multipliers. The

two-dimensional simulation domain has a size of 77 mm in width and 45 mm in height.

The bath-gas interface is placed at a height of 20 mm from the bottom with a contact

angle of 20◦ with respect to the side wall. No-slip boundary conditions are imposed on all

exterior boundaries, except for the upper boundary, where a traction-free outlet is used.

The implementation has been done using the framework oomph-lib.
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IV. THEORETICAL MODELS

A. Thickness of the vapor film in cold Leidenfrost situation

1. Drop-induced evaporation

Here we describe the calculation done to determine the thickness of the vapor film h

sustaining a hot drop deposited on a cryogenic bath (in an inverse Leidenfrost situation), as

is used in the paper. In this calculation, the consequences of phase change (namely freezing

of the drop) is neglected: we consider that it happens instantly, and that the specific heat

of the frozen drop is the same as the specific heat of the liquid drop. A more detailed model

(taking into account thermal effects during the phase change) can be found in the paper of

M. Adda-Bedia et al. (Langmuir, 2016). The results they obtain are very close to the ones

presented here, with a cooling down time a bit longer due to the addition of a freezing time.

We seek here for a expression of h and its dependency with time. This is done by

combining 3 elements: vapor generation, pressure buildup within the confined vapor, and

the cooling dynamics of the drop.

(1) Vapor generation. In this inverse Leidenfrost effect, heat from the (hot) drop diffuses

across the film and locally vaporises the (cryogenic) bath. The vapor flux q generated by the

pool is determined by the rate at which heat diffuses through the film. In scaling laws, this

can be written λ∆T
h
R2 with λ the conductivity of vapor, ∆T/h the gradient of temperature

through the film (with thickness h), and R2 the surface of contact between the drop and

the bath. Energy transfer from the drop generates evaporation of the bath, where the rate

of energy dissipated in the bath is Lv dMdt with M the mass of vapor generated per second

under the drop and Lv the latent heat of vaporisation of liquid nitrogen. Equalizing these

two expressions gives a first equation λ∆T
h
R2 ∼ Lv

dM
dt
, from which the vapor flux q can be

determined. Indeed, we also have ρvq ∼ dM
dt
, denoting ρv the vapor flux, so that:

q ∼ λ

ρvLv

∆T

h
R2 (1)

(2) Pressure buildup within the film. The escaping vapor is confined into the film,

which creates an overpressure that sustains the drop. The overpressure ∆p within the film

is calculated using lubrication theory, which, in scaling laws is written: ∆p
R
∼ ηv

u
h2
. ∆p/R
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is the pressure gradient (along the drop with radius R), u the characteristic velocity of the

vapor within the film, and h the film thickness. Mass conservation within the film also gives

q ∼ Rhu. By combining lubrication, mass conservation and thermodynamics (equation 1),

we finally find h for any given temperature difference ∆T between the drop and the bath:

h ∼
(
ηvλ∆TR

ρgρvLv

)1/4

(2)

By denoting ∆T0 the initial difference of temperature (at a time t = 0), and h0 the corre-

sponding initial film thickness the previous expression can be re-written:

h ∼ h0

(
∆T

∆T0

)1/4

with h0 ∼
(
ηvλ∆T0R

ρgρvLv

)1/4

(3)

(3) Drop cooling. The variation of h with time can be finally deduced from the cooling

dynamics of the drop, which acts as a finite reservoir of (thermal) energy. Then, the rate at

which the internal energy of the drop decreases must equal the rate at which energy diffuses

across the vapor film (which is ∼ λ∆T
h
R2). Denoting cp the specific heat of the drop, the drop

internal energy is ρR3cp∆T ; and energy balance is written ρR3cp
d
dt

∆T ∼ −λ∆T
h
R2. Using the

previous expression for h (eq. 3) the differential equation becomes d∆T
∆T 3/4 = −t/(ρRcph0/λ).

Integration then gives:

∆T = ∆T0(1− t/τ)4, with τ ∼ 4ρRcph0

λ
(4)

τ corresponds to the time it takes for the drop to cool down, from ambient temperature to

the liquid nitrogen temperature: for millimeter-sized drops, this time is of the order of 20 s.

Inserted in equation 3, equation 4 it finally gives:

h ∼ h0 (1− t/τ) (5)

a linear decrease of h that indeed fits nicely the drop dynamics.

2. Film thickness in presence of both residual bath evaporation and drop-induced evaporation

To completely model the film thickness, one needs to take into account the constant bath

evaporation (independent of the drop presence). The total vapor flow below the drop is the

6



sum of two vapor fluxes, namely q1 (drop-induced) and q2 (from the residual evaporation of

the bath, due to radiative heat transfert). From equation 1, we have:

q1 ∼
λ

ρvLv

∆T

h
R2, (6)

and the vapor flux generated by radiative heat transfert can then be written as

q2 ∼
σ (T 4

amb − T 4
N)R2

ρvLv
. (7)

Here, we denote σ the Stefan-Boltzmann constant, Tamb and TN the ambient and liquid

nitrogen temperatures respectively. By noting q = q1 + q2 the total vapor flux under the

drop, the film thickness h(t) is then deduced by combining (as before) mass conservation and

a vertical balance of forces. Mass conservation implies that q = q1 + q2 = Rhu. Lubrication

equations applied to the vapor film impose that ∆p
R
∼ ηv

u
h2
. Finally, the overpressure ∆p

compensates the weight of the drop (enabling levitation) which is written ∆p ∼ ρgR. By

combining these equations, we find that:

h3 ∼ (q1 + q2)
ηv
ρgR

. (8)

using equations 6 and 7, h can be written as:

h(t)4 ∼ ηvλR∆T

ρgρvLv
+
ηvRσ (T 4

amb − T 4
N)

ρgρvLv
h(t) (9)

By introducing the expressions of the initial Leidenfrost film thickness h0 (from

equation 3) and the film thickness generated by the bath residual evaporation hN2 ∼(
ηvσ(T 4

amb−T
4
N )R

ρvρgLv

)1/3

(as obtained in equation 7 in the manuscript), the previous expression

can be simplified:

h(t)4 ∼ h4
0

(
∆T (t)

∆T0

)
+ h3

N2
h(t) (10)

The drop cooling dynamics (see previous paragraph) finally impose a second relation

between h and ∆T :

ρR3cp
d

dt
∆T ∼ −λ∆T

h
R2. (11)
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Solving both equations 10 and 11 finally gives access to the variations of the film thickness

h(t). This system of equations can be simplified by solving them separately: indeed, during

the first ten seconds of the drop lifetime, the relatively hot drop makes the bath evaporate

rapidly. When calculating the two vapor fluxes for a millimeter-sized drop just deposited

on the bath, we obtain from equations 6 and 7 that initially q2 ' q1/100. This implies that

the residual evaporation of the bath can be neglected when considering the drop cooling

dynamics (which happens mostly during the first ten seconds). Concretely, this means that

equation 11 can be simplified by replacing h with h0.

By solving equation 11 with h ' h0 and replacing the solution ∆T (t) in equation 10, we

finally obtain a simple solution for htot, as the unique real and positive root of the following

fourth-order polynomial equation:

h(t)4 ∼ h4
0 (1− t/τ)4 + h3

N2
h(t) (12)

B. Propelling and friction forces in a simplified floating disk model

Here, we propose to model the forces (propulsion and friction) applying on a levitating

drop a simplified geometry. We consider a simple case where the film thickness difference

∆h is imposed. Following Dupeux et al., we model the asymmetric film generated below a

solid cylindrical object, and, similarly to what is done for spherical droplets, we denote ∆h

the asymmetry between the two sides of the film (see figure 3). The radius of the cylinder

is R and its thickness e. The film thickness h varies here between h0 + ∆h in x = - 2R to

h0 in x = 0, where is x chosen as the direction in which the disk is tilted. Finally, V is the

disk velocity in the x direction.

Similarly to Leidenfrost drops, we consider that the disk floats above the surface thanks

to a continuous vapor flow arising from the evaporation of the surface with a characteristic

velocity j. The thermal gradient through the film fixes j, though an energy balance:

ρvLvj =
λ∆T

h
(13)

with ρv the vapor density, Lv the latent heat of vaporization of the substrate and λ the

vapor conductivity.
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Figure 3: Floating disk model. The disk has a radius R and a thickness e. It is levitating above

the surface due to continuous injection of vapor through the surface, with characteristic velocity j.

The disk is inclined so that the vapor film sustaining it has a thickness h on one side and h+ ∆h

on the other side.

1. Lubrication equations

Flow dynamics within the film are calculated using lubrication equations. The velocity

of the vapor under the disk is denoted u, with symmetry imposing ~u = u~ex. Lubrication

equation is then:

∂2~u

∂z2
=

1

ηv
~∇p(x, y) (14)

which, by integration, gives:

~u =
1

2ηv
~∇p(x, y)z2 + ~Az + ~B

The vapor velocity is null on z = 0, and equal to the velocity of the disk in z = h, so that

the two boundaries conditions are ~u(z = 0) = ~0 and ~u(z = h) = ~V = V ~ex. This implies that
~B = ~0 and ~A = ~u

h
− h

2ηv
~∇p, so that finally:

~u(x, y, z) =
1

2ηv
~∇p(x, y)(z2 − zh) +

~V z

h
(15)

Flow conservation.

We denote ~u the mean velocity of the vapor flow in a position (x,y) under the disk, with
~u = 1

h(x,y)

∫ h(x,y)

0
~u(x, y)dz. Using equation 15, we obtain:

~u = − h2

12η
~∇p+

~V

2
(16)
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Flow conservation then implies that ~∇· (h~u) = j. Using equations 13 and 16 this expression

can be rewritten as:

~∇ ·
(
h2~∇p− 6ηv~V h

)
= −12ηvλ∆T

ρvLvh
. (17)

This is made non-dimensional by introducing the following:

Π0 =
12ηvλ∆T

ρvLvR2
and Π1 =

6ηvV

R
, so that

h̃ =
h

R

p̃ =
p

Π0

With the above, equation 17 can be rewritten and becomes:

h̃~∇ ·
(
h̃~∇p̃− Π1

Π0

h̃ ~ex

)
= −1 (18)

We solve this equation by considering small film deformations, with ∆h� h0, and denote

ε = ∆h
h0
� 1, so that h(x, y) = h0(1− ε x

R
) or, in dimensionless form: h̃ = h̃0(1− εx̃). Up to

first order, the pressure p can then be written p̃ = p̃0 + εp̃1 + o(ε). We solve equation 17 at

zero and first order in ε, which gives:

h̃0
44p̃0 = −1 (19)

h̃0
4
(
4p̃1 − 3

∂p̃0

∂x̃
− 4x̃4p̃0

)
+

Π1

Π0

h̃2
0 = 0 (20)

Solving (12) in cylindrical coordinates gives a solution for p̃0(r), with

p̃0(r) =
1− r̃2

4h̃0
4 (21)

The previous expression introduced in equation (13) gives :

4p̃1(r̃, θ) = − Π1

Π0h̃2
0

− 11

2h̃4
0

r̃ cosθ (22)

The pressure outside the disk is constant, so that the boundary condition of equation 22 is

p̃1(r̃ = 1, θ) = 0 , and integration finally gives:

p̃1(r̃, θ) =
Π1

Π0h̃2
0

(
1− r̃2

4

)
+

11

16

r̃

h̃4
0

(1− r̃2)cosθ (23)
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2. Forces applying on the disk

Normal force: pressure force The pressure force is found by integrating the total

pressure p̃ on the surface of the disk.

F̃p =

∫
S

p̃dS =

∫
S

(p̃0 + εp̃1) dS (24)

F̃p =

∫
S

p̃0dS + ε

∫
S

p̃1dS (25)

F̃p =
π

8h̃4
0

(
1 + ε

Π1

Π0

h̃2
0

)
(26)

Or, in dimensional quantities:

Fp =
3π

2

ηvλ∆TR4

ρvLvh4
0

+
∆h

h0

3π

4

ηV R3

h2
0

(27)

Viscous force. The viscous force Fs is calculated by integrating the wall shear stress of

the vapor flow at the bottom of the disk:

Fs = −
∫
S

ηv
∂u

∂z z=h
dS, with

∂u

∂z z=h
derived from equation 15: (28)

∂u

∂z
= (2z − h)

~∇p
2η

+
V

h
so that

∂u

∂z z=h
=
h~∇p
2η

+
V

h
(29)

Once the above is integrated into expression 28, the total horizontal force can then be

deduced:

Fs =
1

2

∫
S

p
∂h

∂x
dS − 1

2

∫
S

∂

∂x
(hp)dS − ηv

∫
S

1

1− ε x
R

dS (30)

= −1

2

∆h

R

∫
S

pdS + 0− ηvV

h0

(πR2 + 0) (31)

= −1

2

∆h

R
Fp − ηv

πR2V

h0

(32)

The previous expression shows that the viscous force is the sum of two terms. The first

one (arising from lubrication pressure) participates to propulsion, where the second term is

a friction term, increasing linearly with the disk velocity.

11



3. Horizontal and vertical balance of forces

The total horizontal force Fx that applies on the disk can now be calculated. It is equal to

the sum of the pressure force (normal to the bottom of the disk) and viscous force (parallel

to the disk) projected on the horizontal axis x. Denoting θ ' ∆h/R the inclination angle

of the disk, Fx = sinθFp + cosθFs. Since θ � 1, Fx can be simplified to:

Fx ' θFp + Fs (33)

introducing equations 27 and 32, an expression for F is found:

Fx =
∆h

R
Fp −

1

2

∆h

R
Fp − η

πR2V

h0

+ o(
∆h

R
) (34)

Fx =
3π

4

ηvλ∆TR3

ρvLvh4
0

∆h− ηv
πR2V

h0

+ o(
∆h

R
) (35)

The last missing parameter, h0 is finally found by considering the vertical balance of forces.

The disk being sustained above the surface by the pressure force, which means that its

weight is compensated by the lubrication pressure generated in the film. Equalizing Fp (at

the first order) with the weight of the disk gives:

Fp = ρsπR
2eg, from which h0 is deduced (36)

h0 =

(
3

2

ηvλ∆TR2

ρvLvρsge

)1/4

(37)

By inserting the expression for h0 in the above equations, the total horizontal force that

applies on the disk is fully determined. It can be written as:

Fx =
1

2
mg

∆h

R
− ηv

πR2V

h0

(38)

Fx is then the sum of 2 forces, a propelling force Fprop = 1
2
mg∆h

R
and a friction force

Ff = ηv
πR2V
h0

opposite to the propelling force. The dependency of these two forces with all

dimensional parameters are the same to what is obtained through scaling laws for levitating

drops (where Fprop ∼ ρgR2∆h and Ff ∼ ηv
R2V
h

). We expect the prefactor obtained for

levitating disks to be different for gliding drops however, because of the spherical geometry.
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