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Fig. S1. Results of a GWAS of neuroticism in 170 911 people. This Manhattan plot shows the significance of association between neuroticism and L = 6 524 432 variants
(dark and light grey points) and overlapping regions of length 10, 100, 1 000 and 10 000 kb (blue, cyan, green and yellow bars), entire chromosomes (orange bars) and the
whole genome (red bar). Significance is defined as the − log10 adjusted harmonic mean p-value, where the HMP for regionR is defined by Equation 8, and adjusted by a
factor w−1

R to enable direct comparison to the threshold α = 0.05 (black dashed line). The HMP is approximately well-calibrated for small values, e.g. below 0.05.
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1. Derivation of the null distributions for the model-averaged mean maximized likelihood ratio
and harmonic mean p-value

A. Generalized central limit theorem approximates the distribution of the mean maximized likelihood ratio. The
motivating idea of the paper was to develop a classical model-averaged mean maximum likelihood (MAMML),
analogous to the model-averaged Bayes factor, by seeking a null distribution for the mean maximized likelihood ratio
defined in Equation 1 as

R̄ =
L∑
i=1

wiRi.

When the assumptions of Wilks’ theorem (1) are met, the null distribution of the maximized likelihood ratio

Ri ∼ LogGamma
(
α = ν

2 , β = 1
)

[9]

where α and β are the shape and rate parameters of the LogGamma distribution and ν is the difference in the number
of parameters between the alternative and nested null hypotheses. The LogGamma distribution has probability
density function

fLogGamma(x |α, β) = βα

Γ(α) log(x)α−1
x−(β+1). [10]

When ν = 2, interpreting the mean maximized likelihood ratio is equivalent to interpreting the harmonic mean
p-value (HMP) because, from Equation 3, R̄ = 1/◦p. This means that the results for R̄ when ν = 2 also apply to 1/◦p,
except that the assumptions of Wilks’ theorem no longer need to hold, only that the individual p-values follow the
uniform distribution under the null hypothesis, and therefore that 1/pi follows a LogGamma(1, 1) distribution. In
what follows, the derivation for 1/◦p is therefore the same as for R̄ with ν = 2.

Central limit theorem cannot be used to approximate the null distribution of R̄ (or 1/◦p) because the mean and
variance of the LogGamma distribution are undefined for β ≤ 1 and β ≤ 2 respectively. However, when the Ris are
independent and identically distributed with regularly varying cumulative distribution function, generalized central
limit theorem (2) states that

R1 + · · ·+RL
d−→ aL + bLRλ [11]

where aL and bL are constants, λ is the heavy-tail index of the Ris and Rλ is a Stable distribution with tail index λ.
The LogGamma distribution can be shown to be regularly varying, and its cumulative distribution function can be
approximated in order to apply generalized central limit theorem. A positive measurable function f(x) is defined to
be regularly varying (3, 4) if

lim
x→∞

f(tx)
f(x) = t−λ for all t > 0, [12]
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and slowly varying if λ = 0. Any regularly varying function f(x) can be written in terms of a slowly varying function
S(x) as

f(x) = S(x)x−λ. [13]

The probability density function of the LogGamma distribution is regularly varying with heavy-tail index λ = β + 1
and slowly varying function

SLogGamma(x) = βα

Γ(α) log(x)α−1
. [14]

The cumulative distribution function of the LogGamma distribution is thus regularly varying with a different heavy-tail
index λ = β because, by Karamata’s theoreom (see e.g. (4)),∫ ∞

x

S(u)u−(λ+1)du ≈ S(x)x−λ
λ

, x→∞, [15]

for λ > 0, so it can be approximated by

FLogGamma(x |α, β) = 1−
∫ ∞
x

fLogGamma(u |α, β)du

≈ 1− βα−1

Γ(α) log(x)α−1
x−β , x→∞. [16]

B. Parameterization of the Stable distribution approximation for ν = 2. To utilize generalized central limit theorem
it is necessary to find the parameters of the Stable distribution Rλ, the location constant aL and the scale constant
bL. This can be achieved (2) by approximating the cumulative distribution function of the Ris as

1− FR(x) ≈ c x−λ, x→∞,
FR(−x) ≈ d x−λ, x→∞. [17]

The Stable distribution Rλ then has tail index parameter λ and skewness parameter (c−d)/(c+d). Since a LogGamma
distributed random variable cannot take a value less than one implies that d = 0, so the skewness parameter takes its
maximum value of one, producing an Extremal Stable distribution. When ν = 2, the LogGamma(ν/2, 1) distribution
for the Ris simplifies to a Pareto distribution with tail distribution function

1− FR(x) = x−λ, [18]

and the representation in Equation 17 becomes exact. So for ν = 2, c = 1. When λ = 1, as here because λ equals the
rate parameter β of the LogGamma distribution, (5) defines the location constant to be (with a less precise form in
(2)):

aL = (c− d)L
(

logL+ 1− Cγ − log 2
π

)
, [19]

where Cγ ≈ 0.5772157 is the Euler-Mascheroni constant, and the scale constant to be (2):

bL = π

2 (c+ d)L. [20]

So R̄ is said to follow an Extremal Stable distribution which, in Nolan’s S0 parameterization (6) of the Stable
distribution, S(α, β, γ, δ; 0), can be written as

R̄ ∼ S
(
λ,
c− d
c+ d

,
bL
L
,
aL
L

; 0
)
∼ S (1, 1, c π/2, c (logL+ 0.874367); 0) . [21]

Therefore the combined p-value for the mean maximized likelihood ratio is

pR̄ = 1− FStable
(
R̄ | 1, 1, c π/2, c (logL+ 0.874367); 0

)
[22]

which can be computed via the pEstable function of the FMStable R package (7) as

1− pEstable(Rbar, setParam(alpha = 1, location = c ∗ (log(L) + 0.874367), logscale = log(c ∗ pi/2), pm = 0))
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An explicit form for the probability density function of R̄ can be obtained by noting the equivalence of the Extremal
Stable distribution with heavy-tail index λ = 1 and the Landau distribution (8, 9), as can be seen from a comparison
of the characteristic functions (10, 11). In Nolan’s notation, the characteristic function of the Stable S(1, 1, γ, δ; 0)
distribution (6) is

E exp
{
iuR̄

}
= exp

{
iuδ − |u γ|

[
1 + 2

π
i log |u γ|sign(u)

]}
[23]

and the characteristic function for a two-parameter Landau(µ, σ) distribution can be written identically but with
location parameter µ = δ and scale parameter σ = γ. (Landau’s original distribution, which describes the random
loss of energy of fast charged particles as they cross a thin layer, is retrieved under this parameterization when
µ = log(π/2) and σ = π/2.) Expressed as a Landau distribution,

R̄ ∼ Landau
(
µ = aL

L
, σ = bL

L

)
∼ Landau

(
µ = c (logL+ 0.874367) , σ = c

π

2

)
. [24]

The advantage of this form is that the probability density function can be written explicitly (12) as

fLandau(x |µ, σ) = 1
πσ

∫ ∞
0

e−t
(x−µ)
σ − 2

π t log t sin(2t)dt [25]

which means that the combined p-value can be computed numerically without the specialist package, if necessary, as

pR̄ =
∫ ∞
R̄

fLandau

(
x | c (logL+ 0.874367) , c π2

)
dx [26]

and likewise for the HMP, substituting R̄ = 1/◦p and c = 1, as per Equation 4.

C. Parameterization of the Stable distribution approximation for ν 6= 2. When ν 6= 2, the LogGamma(ν/2, 1)
distribution no longer simplifies to a Pareto distribution, and the representation of Equation 17 is no longer exact.
This means that

c = xλ (1− FR(x)) , [27]

is no longer constant with respect to x, so the choice will affect the performance of the Stable distribution approximation.
Since the null distribution of the maximized likelihood ratios is heavy tailed, the mean is likely to be dominated by the
largest value, i.e. R(L) ≈ L R̄, where R(i) is the ith largest value. Conversely, if every ratio contributed equally to the
mean, all values would be Ri = R̄. These observations suggest that the relevant value of x at which to evaluate c lies
between R̄ and L R̄, with the upper end of the range of most relevance. For simplicity I investigated the performance
of the Stable distribution approximation at both endpoints of the range, defining with λ = 1,

c1(R̄) = R̄
(
1− FR(R̄)

)
, and [28]

cL(R̄) = (L R̄)
(
1− FR(L R̄)

)
. [29]

The combined p-value for the mean maximized likelihood ratio is approximated as per Equation 22 but with c = c1(R̄)
or c = cL(R̄) for the two approximations. This can be computed for example in the FMStable R package (7) using

c = Rbar ∗ (1− pgamma(log(Rbar), nu/2, 1)) or c = L ∗ Rbar ∗ (1− pgamma(log(L ∗ Rbar), nu/2, 1))

or it can be computed using a general purpose numerical integration tool via the Landau distribution in Equation 26.
The next section shows that c1 should be used when ν < 2 and cL should be used when ν > 2.

2. The null distributions of MAMML and the HMP are robust to the number of tests, unequal
weights, unequal degrees of freedom and dependency between the tests

The derivation above assumes equal prior weights for the alternative hypotheses, equal degrees of freedom and
independence between the tests. However, generalized central limit theorem is robust to departures from these
assumptions. I investigated the performance of the Stable distribution approximation across a range of scenarios.
These simulations demonstrated key properties of the null distribution of R̄ as the mean of a large number of regularly
varying random variables (the Ris):
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Fig. S2. Robustness of the Stable approximation under favourable assumptions. Cumulative distribution functions (top panels) and ‘significance’ (i.e. − log10 tail probabilities,
bottom panels) of the mean maximized likelihood ratio, R̄, are shown across three degrees of freedom (ν = 1, 2, 5) comparing 100,000 simulations (coloured lines) to
analytical approximations based on the Stable distribution (black lines). Two Stable distribution approximations (c1, Equation 28 and cL, Equation 29) were calculated
assuming L = 103 tests, whereas the simulations were performed with a variable number of tests comprising L = 101, 101.5, 102, 102.5, 103. The simulations made
assumptions favourable to the Stable distribution approximation: independence between tests and equal weights. For comparison, a χ2

ν distribution is also shown (grey line).

1. The upper tail of the null distribution of R̄ behaves like that of an individual test Ri
2. The null distribution of R̄ is fairly insensitive to the number of tests, L
3. The null distribution of R̄ is insensitive to the model weights
4. The null distribution of R̄ is insensitive to positive dependency between the Ris
5. When the Ris have differing degrees of freedom, those with the largest dominate the null distribution of R̄

In particular, the simulations demonstrated the superior performance of the approximation when ν = 2. This superior
performance, and the equivalence between the mean maximized likelihood ratio when ν = 2 with the intuitive
representation as a harmonic mean p-value, motivated the focus on the HMP in the rest of the paper.

A. Performance of the approximation under favourable assumptions. Property 1, that the upper tail of R̄ behaves
like the upper tail of the Ris, is an inherent property of generalized central limit theorem (4), and is expressed
by the approximation in Equation 5. Property 2, an insensitivity to the exact number of tests, L, is revealed by
the parameterization of the Stable distribution approximation for the null distribution of R̄ (Equations 21 and 22).
For ν = 2 degrees of freedom, when the scaling of the tail probability c equals one, the location parameter of the
Stable distribution increases in proportion to logL, i.e. more slowly than linearly, and the scale parameter does not
change at all in relation to L. The heavy-tail index and skewness parameters are also unaffected by L regardless of ν.
When ν 6= 2, the scale for the tail probability, c, is only approximately locally constant with respect to R̄, and may
depend on L. This weak dependency on L is represented in the cL approximation of the scale for the tail probability
(Equation 29).

The simulations demonstrated these properties empirically. I performed 100 000 simulations each of L = 101, 101.5,
102, 102.5 and 103 independent maximized likelihood ratio test statistics, {Ri, i = 1 . . . L} and for each simulation
calculated R̄. I repeated the simulations for three degrees of freedom: ν = 1, 2 and 5. The rainbow-coloured lines in
Figure S2 show the empirical cumulative distribution functions (top panels) and empirical ‘significance’ or − log10
tail probabilities (bottom panels) from L = 101 (red) to L = 103 (purple).

The top panels in Figure S2 show that the total number of tests, L, has a substantial effect on the null distribution
of R̄ below the 95th percentile (indicated by the grey horizontal dashed line labelled α = 0.05). In contrast, the

Daniel J. Wilson 5 of 22



Fig. S3. Robustness of the Stable approximation to unequal prior model probabilities, i.e. weights. The simulations were conducted as for Figure S2 except that model
weights were used in the calculation of R̄. These weights were also simulated, independently for every simulation, from a symmetric Dirichlet distribution with parameter
vector 1L. This is equivalent to simulating each individual weight from a Beta(1, L − 1) distribution. So the mean and variance of the weight per test were 1/L and
(L− 1)/L2/(L+ 1).

bottom panels show that the upper tails of the distribution above the 95th percentile are almost identical irrespective
of L, and converge to the distribution of an individual Ri (grey solid lines), demonstrating Properties 1 and 2.
These observations are consistent with much slower convergence of the left tail of the distribution to the Stable
distribution limit. Nevertheless, the utility of the null distribution approximation is to calculate p-values, i.e. upper
tail probabilities, for which the simulations demonstrate the desired insensitivity of the upper tail to L.

As anticipated, the insensitivity to L is superior for ν = 2. Notably, the direction of the effect of L on the relative
magnitude of the significance (− log10 tail probabilities) switches for ν < 2 and ν > 2. For ν = 1, the significance of
R̄ is greater for larger L. For ν = 5, the significance of R̄ is greater for smaller L. This behaviour has an important
effect on whether the Stable distribution approximation is conservative or anti-conservative when ν 6= 2.

The Stable distribution approximations c1 and cL for the null distribution of R̄ (Equations 28 and 29) are shown
by the solid and dashed black lines respectively. Both approximations were calculated only for the maximum value of
L = 103 to give an indication of the robustness of the tests to model misspecification, in particular over-estimation of
the number of independent tests. For ν = 2, the scale parameter of the tail probability is c = 1 for both approximations,
so the two lines are overlaid. The Stable approximation is extremely close to the simulated null distributions of R̄
above the 95th percentile. For ν = 1, the c1 approximation is conservative in the sense of always underestimating the
significance of R̄ and the cL approximation is anti-conservative in the sense of always overestimating the significance
of R̄ in the upper tail. For ν = 5, the pattern is reversed. This behaviour indicates that the c1 and cL approximations
do indeed represent the two endpoints for the choice of the tail scaling constant c, as intended, and that the c1
approximation should be used when ν < 2 and the cL approximation should be used when ν > 2 to ensure the test
errs on the side of being conservative.

B. Robustness of the approximation to unequal prior model weights. The approximation of Equation 5 shows that
the convergence of the upper tail of the null distribution of R̄, the mean of a large number of regularly varying
random variables with heavy-tail index λ = 1, is robust to unequal weights, and this property, Property 3, is shared
with generalized central limit theorem (4). To demonstrate this empirically, I simulated unequal model weights
independently for each simulation from a symmetric Dirichlet distribution with parameter 1L, and used these weights
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Fig. S4. Robustness of the Stable approximation to extreme dependency between tests. The simulations were conducted as for Figure S2 except that I used a resampling
strategy to produce large numbers of identical tests with each simulation, producing an extreme form of dependency, i.e. identity. This involved simulating weights from a
symmetric multinomial distribution, so that on average a proportion∼ e−1 = 0.368 of tests were replaced by others.

to calculate R̄ using Equation 1. Figure S3 shows that the null distributions of R̄ with unequal model weights are
extremely similar to the results with equal model weights (Figure S2), particularly in the upper tails of the distribution
(lower panels) but also in the lower tails (upper panels), and even with a small number of tests L = 101 (red lines).
The Stable distribution approximations performed equally well as for unequal model probabilities, particularly for
ν = 2, with the c1 approximation conservative for ν < 2 and the cL approximation conservative for ν > 2, as before.

C. Robustness of the approximation to extreme dependency between tests. The robustness of the Stable distribu-
tion approximation to unequal weights implies a degree of robustness to positive dependency between tests, Property 4.
This is because upweighting some tests is equivalent to observing identical test statistics multiple times. Convergence
of various specific forms of dependency to Stable distributions have been investigated explicitly (13), suggesting that
the assumption of independence between tests might be relaxed to one of exchangeability. I simulated a form of
extreme dependency between tests by simulating weights from a symmetric multinomial distribution, independently
for each simulation. This is equivalent to duplicating, one or more times, some tests and completely removing others.
Figure S4 shows again that the null distribution of R̄ is very similar in the presence of this positive dependency
between tests to the distribution under independence and equal model weights (Figure S2).

D. Robustness of the approximation to unequal degrees of freedom among tests. When the individual test statis-
tics, the Ris, differ in their degrees of freedom, those with the largest degrees of freedom are expected to dominate
the null distribution of R̄ (Property 5) because their tails are the heaviest. This suggests that when, in practice, the
degrees of freedom are unequal between tests, the Stable distribution approximation should be calculated using the
maximum value of ν. To investigate the performance of this strategy, I simulated test statistics with two different
degrees of freedom, ν = 1 and ν = 5 in varying proportions of 1:9, 1:1 and 9:1. Figure S5 shows that use of the
cL Stable approximation is always conservative in estimating upper tail probabilities when there is variation in the
degrees of freedom, but when the proportion of tests with the maximum degrees of freedom is small, it can be
substantially over-conservative. For example, when mixing tests with ν = 1 and ν = 5 in proportion 9:1, the cL
Stable distribution approximation under-estimated significance by an order of magnitude. As expected, the simulated
distribution of R̄ and the cL approximation were still very similar in the upper tail, indicating that the disparity
is caused by a discrepancy in the lower tail of the distribution. For such practical cases, it would be worthwhile
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Fig. S5. Robustness of the Stable approximation to unequal degrees of freedom among tests. The simulations were conducted as for Figure S2 except in every simulation I
simulated a mixture of tests with ν = 1 or ν = 5 degrees of freedom in three different mixture proportions: 1:9, 1:1 and 9:1.

approximating the lower tail of the null distribution of R̄ by simulation so that

Pr(r̄ > R̄) ≈


1− Fsim(R̄) if R̄ ≤ F−1

sim(pswitch)

pswitch
1− FStable(R̄)

1− FStable(F−1
sim(pswitch))

if R̄ > F−1
sim(pswitch) [30]

where Fsim(x) is the empirical cumulative distribution function of a large number of simulations and the approximation
switches to the Stable distribution at a large percentile such as the 99th, so that pswitch = 0.99.

E. Performance of the harmonic mean p-value. The simulations above show that the Stable distribution approxi-
mation to the null distribution of R̄ is superior for ν = 2, whereas for ν 6= 2, the Stable distribution approximation
is less insensitive to the number of tests L, and therefore conservative tests are required to avoid over-estimating
the significance of the observed R̄. These observations motivate the use of the HMP, ◦p, instead of R̄, particularly
when there may be variability in the degrees of freedom between tests. Interpreting the HMP is equivalent to R̄ when
ν = 2 and the assumptions of Wilks’ theorem are met. When ν 6= 2, interpreting the HMP is not exactly equivalent
to R̄, but it is expected to capture similar information. Partly, this is because the conversion between a maximized
likelihood ratio statistic Ri and a p-value pi is approximately locally linear for large Ri, i.e. small pi. By Karamata’s
theorem, Equation 16 shows that

pi ≈
log(Ri)ν/2−1

Γ(ν/2) R−1
i , Ri →∞. [31]

which is a regularly varying function, meaning that log(Ri)ν/2−1 varies only slowly with respect to Ri and is
approximately locally constant. Therefore the conversion from Ri to pi is approximately linear even for ν 6= 2.
Moreover, the null distribution for the HMP is more robust to departures from the assumptions of Wilks’ theorem,
differences in degrees of freedom among tests, and the total number of tests, these latter two properties demonstrated
by Figure S6. As a type of mean, it has a more intuitive form for combining tests. In section §4 I show how it also
parallels the construction of the test statistic in Fisher’s method for combining p-values. For these reasons, the focus
of the applications of these results is on the HMP.

8 of 22 Daniel J. Wilson



Fig. S6. Robustness of the harmonic mean p-value. The simulations were conducted as for Figure S2 except in every simulation I calculated the harmonic mean p-value
instead of the mean maximized likelihood ratio R̄. For each test I calculated a p-value pi from the maximized likelihood ratio statistic Ri with ν = 1, 2 or 5 degrees of
freedom, and from them I calculated the harmonic mean. The distribution of the HMP is insensitive to the degrees of freedom, requiring only that the individual p-values are
correctly calibrated.

3. Controlling the strong-sense family-wise error rate of the HMP test
Limiting the probability with which a combined test falsely rejects the null hypotheses when it is true is known as
weak-sense control of the family-wide error rate (FWER). Strong-sense control of the FWER additionally entails
limiting the probability with which any of the true null hypotheses is rejected when one or more null hypotheses
are false. A procedure that controls the strong-sense FWER can be constructed from any method that controls
the weak-sense FWER using the closure principle (14). Consider a situation in which a series of not necessarily
independent binary hypothesis tests are conducted, each one between a null hypothesis O and an alternative A and
define

Ui : Oi is preferred to Ai
Ui ∩ Uj : Oi is preferred to Ai and Oj is preferred to Aj

[32]

and by implication
U ′i : Ai is preferred to Oi

(Ui ∩ Uj)′ : Ai is preferred to Oi and Aj is preferred to Oj or
Ai is preferred to Oi and Oj is preferred to Aj or
Oi is preferred to Ai and Aj is preferred to Oj .

[33]

The null hypothesis associated with an individual Ui is called an elementary hypothesis while I will call intersections
of null hypotheses associated with {Ui ∩Uj} compound hypotheses. Each test is associated with a p-value assumed to
follow a Uniform(0, 1) distribution if the elementary or compound hypothesis is true. The closure of the elementary
hypotheses is the set of all possible intersections involving one or more elementary hypotheses. For example, for the
elementary hypotheses {U1, U2, U3}, the closure is

{{U1}, {U2}, {U3}, {U1 ∩ U2}, {U1 ∩ U3}, {U2 ∩ U3}, {U1 ∩ U2 ∩ U3}} .

In a closed testing procedure (14) (CTP), an elementary hypothesis Ui is only rejected if every intersection hypothesis
involving Ui is also rejected. For example, U1 is only rejected if {U1 ∩ U2}, {U1 ∩ U3} and {U1 ∩ U2 ∩ U3} are also
rejected.
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Suppose R ⊆ {1, 2, . . . , L} is a set indexing some or all of the L elementary hypotheses U1 . . . UL, ψR is a test that
controls the weak-sense FWER at level α for the compound hypothesis UR = {∩i∈RUi} and pψR is the corresponding
p-value. Then the following test controls the strong-sense FWER at level α:

φR =
{

1 if max {pψQ : Q ⊇ R} ≤ α meaning UR is rejected
0 otherwise meaning UR is not rejected [34]

A. Derivation of the closed testing procedure. Suppose R0 is the unknown set indexing only the correct elementary
hypotheses: this implies the existence of R′0, a (possibly empty) complementary set indexing the incorrect elementary
hypotheses. Define the following events:

A : One or more of the correct elementary hypotheses Ui, i ∈ R0 is rejected by the CTP
B : The compound hypothesis comprising the intersection of correct elementary hypotheses

⋂
i∈R0

Ui is rejected

Note that

• Since the CTP uses a method that controls the weak-sense FWER at each step, Pr(B) ≤ α
• A ⊆ B because the CTP rejects subset hypotheses only after it has rejected all their superset hypotheses, so

Pr(A) = Pr(A ∩B) = Pr(B) Pr(A | B) ≤ α
• It doesn’t matter that R0 is unknown because these properties are guaranteed for any possible set of true null

hypotheses.

This is the standard definition for the strong-sense FWER, and it is robust to non-independence between tests within
the set of true null hypotheses (R0). However, its first assumption could be violated by correlation between the
p-values of the true null hypotheses and true alternative hypotheses. If this is invalid then control of the weak-sense
FWER, and therefore the strong-sense FWER, cannot be guaranteed. This caveat would seem to apply to any CTP.

B. Bonferroni achieves strong-sense FWER. Suppose that ψR records the result of a single weighted Bonferroni
test controlling the weak-sense FWER for whether the intersection of elementary hypotheses indexed by set R,
UR = {∩i∈RUi}, is rejected:

ψR =

 1 if min
{
pi wR
wi

: i ∈ R
}
≤ α meaning UR is rejected

0 otherwise meaning UR is not rejected
[35]

where wR =
∑L
i∈R wi. A naive implementation of CTP involves (2L − 1) of these tests. But in practically useful

implementations of CTP, shortcuts are found which mean not all tests need performing. In the case of Bonferroni,
the test

φR =

 1 if min
{
pi wR
wi

: i ∈ R
}
≤ αwR meaning UR is rejected

0 otherwise meaning UR is not rejected
[36]

is a shortcut procedure that satisfies the CTP because its rejection implies all intersection hypotheses involving the
elementary hypotheses indexed by R will also be rejected, a property that is easier to see by rewriting the test,
cancelling the wR term on both sides. This means that only the L elementary hypotheses need directly testing to
control the strong-sense FWER at level α using the Bonferroni test.

C. A multilevel CTP for the HMP. By the same argument, testing significance by directly interpreting the HMP as per
Equation 6,

φR =
{

1 if ◦pR ≤ αwR meaning R is rejected
0 otherwise meaning R is not rejected

is a multilevel CTP controlling the strong-sense FWER at level approximately α, as shown by Equation 7. By
this test, any set that contains a significant subset is itself significant and, conversely, if the set of all hypotheses
is not significant, no subset is significant. However, this shortcut procedure is only approximate because the exact
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significance threshold varies by the number of hypotheses combined (Table 1). The full CTP that controls the
strong-sense FWER without sacrificing power is derived from Equation 34 as

φR =

 1 if max
{ ◦
pQ
α|Q|

: Q ⊇ R
}
≤ 1 meaning UR is rejected

0 otherwise meaning UR is not rejected
[37]

The disadvantage of this CTP is that many p-values must be considered for each test. Shortcut procedures can
be defined that improve on a naive implementation of Equation 37 but instead one can apply weighted Bonferroni
correction to make a simple adjustment to Equation 6 by substituting α|R| for α. (Equivalently, one can apply
weighted Bonferroni correction to Equation 4.) This produces a more conservative multilevel CTP than Equation
37 that is nevertheless guaranteed to control the strong-sense FWER, up to the order of the Stable distribution
approximation.

In practice, control of the strong-sense FWER can be achieved by a two-pass procedure in which the more lenient
threshold α is used initially to discover candidate significant hypotheses, which are then confirmed using the exact
threshold α|R|.

4. The relationship between the HMP and other combined tests

A. The HMP is closely related to but more powerful than Simes’ procedure. In this section I show that the HMP is
closely related to Simes’ test (15). This provides a new, intuitive interpretation of the Simes test as an approximation
to the harmonic mean p-value by showing that it provides the smallest upper bound on the HMP based on a single
p-value. Simes’ test, as extended by Hochberg and Liberman (16) to include unequal weights, can be written as

ψR =

 1 if min
{
p∗(i) wR

i
: i = 1 . . . |R|, p∗j = pj

wj
, j ∈ R

}
≤ α meaning UR is rejected

0 otherwise meaning UR is not rejected
[38]

where p∗(i) is the ith smallest value of the p∗j s and wR =
∑
i∈R wi. This test controls the weak-sense FWER at

level α when maxi wi/wR ≤ 1/(α |R|), and is conservative otherwise. The following modified test defines a shortcut
multilevel CTP that controls the strong-sense FWER:

φR =

 1 if min
{
p∗(i) wR

i
: i = 1 . . . |R|, p∗j = pj

wj
, j ∈ R

}
≤ αwR meaning UR is rejected

0 otherwise meaning UR is not rejected
[39]

where
∑L
i=1 wi = 1. Like the Bonferroni and HMP shortcut procedures, a set of alternative hypotheses will be

significant by this modified Simes’ test if any subset of those alternative hypotheses is significant. This is because
when the rank of the p∗j defining the minimum test statistic in set R is i, its rank in any superset must be at least i
as well. However, the converse is not certain.

To facilitate the comparison between Simes’ test statistic and the HMP, it can be rewritten in terms of ‘b-values’
(inverse p-values) as

bSimes = max
{
b∗[i] i

wR
: i = 1 . . . |R|, b∗j = wj bj , j ∈ R

}
[40]

where b∗[i] denotes the ith largest value of the b∗j s. Compare this to the inverse HMP,

b̄R =
∑
i∈R wi bi

wR
. [41]

When bSimes is maximized at the largest, second largest and third largest of the b∗j s respectively, it is clear that

b∗[1]

wR
≤ b̄

b∗[1]

wR
≤

2 b∗[2]

wR
≤

b∗[1] + b∗[2]

wR
≤ b̄

max
{
b∗[1]

wR
,

2 b∗[2]

wR

}
≤

3 b∗[3]

wR
≤

b∗[1] + b∗[2] + b∗[3]

wR
≤ b̄
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By extension, the Simes test statistic pSimes = 1/bSimes approximates the harmonic mean p-value ◦pR = 1/b̄R, providing
the smallest upper bound on the HMP possible using a single p-value. This means the behaviour of the two tests
should be very similar. Indeed, not only has Simes’ procedure been extended to unequal weights (16), it has also
been shown to be robust to positive dependence between tests (17). Like the HMP, it combines tests adaptively,
producing a Bonferroni-like p-value for ‘needle-in-a-haystack’ problems when one test dominates, but capitalizing on
numerous strongly significant or suggestive tests when warranted to produce a smaller combined p-value. However, it
makes less use of the data and does not share the property of the HMP that when the test is not significant, neither
is any subset of the constituent tests, suggesting it may be less statistically efficient, and therefore less powerful. To
investigate this, I conducted power simulations comparing Bonferroni, Simes and HMP tests.
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Fig. S7. Comparison of the power of the Bonferroni, Simes’ and HMP
(p◦
p
, Equation 4) tests across a range of simulated scenarios. In each scenario,

10 000 simulations of L = 1000 tests were performed and the proportion of
times the combined p-value was below the significance threshold of α = 0.05
was recorded. Each simulation comprised a mixture of tests drawn from the
null hypothesis ‘H0’ (pi ∼ Uniform(0, 1)) and the alternative hypothesis ‘HA’
(pi ∼ Beta(1/θ, 1)) in varying proportions indicated. The parameter θ > 1 was
chosen to standardize the power of the Bonferroni test to 50% when tests were sim-
ulated independently with equal weights (setting a). This generated a smaller θ and
subtler distinction between null and alternative hypotheses when a larger proportion
of the tests were drawn from the alternative hypothesis. In setting b, dependency
was simulated by resampling tests uniformly at random. Setting c additionally sim-
ulated poorly chosen weights, which were drawn from a Beta(1/2, 1) distribution
and normalized to sum to one.

Figure S7 shows that except for the ‘Needle-in-a-haystack’ scenario, in which the alternative hypothesis is true for
only a single test, the HMP substantially outperformed both Bonferroni and Simes’ tests. Under a ‘Mixture of signals’
scenario, in which the alternative hypothesis was true for 10% of tests, the HMP outperformed Simes and Bonferroni
by 14% and 29% respectively. Under a ‘Subtle pervasive signal’ scenario, in which the alternative hypothesis was
true for all tests, but differed only subtly from the null hypothesis, the HMP outperformed Simes and Bonferroni by
45% and 75% respectively. Even under the needle-in-a-haystack scenario, where Simes’ and the HMP test performed
similarly, they slightly outperformed Bonferroni correction by 1.2% and 1.4% respectively. The power of all tests was
adversely affected by dependency and poorly-chosen, unequal weights, but the relative performance characteristics of
the tests remained similar.

B. Complementarity to Fisher’s method for combining p-values. Fisher’s method (18, p. 103) provides another
procedure for combining p-values that is often very powerful, but makes a strong assumption of independence between
the tests. As I will show, Fisher’s method and the HMP can be seen as complementary methods for combining tests
when the alternative hypotheses are independent or mutually exclusive respectively. The test statistic for Fisher’s
method can be written as the sum of the ‘significances’, expressed as the − loge p-values, of the individual tests:∑

i∈R
− log pi.

Under the null hypothesis, this quantity follows a Gamma(α = |R|, β = 1) distribution (18). Fisher’s method can be
expressed as

ψR =
{

1 if 1− FGamma
(∑

i∈R− log pi |α = |R|, β = 1
)
≤ α meaning UR is rejected

0 otherwise meaning UR is not rejected [42]

As for the HMP, Fisher’s method can be interpreted in terms of a likelihood ratio test, an interpretation that is exact
when the individual p-values are derived from likelihood ratio tests with ν = 2 degrees of freedom. In this form, it
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becomes apparent that Fisher’s method combines a series of tests by testing the grand alternative hypothesis against
the grand null:

exp
{∑
i∈R
− log pi

}
=

∏
i∈R

Ri =
∏
i∈R

Pr (Xi|Ai)
Pr (Xi|Oi)

= Pr ({Xi : i ∈ R} | ∩i∈R Ai)
Pr ({Xi : i ∈ R} | ∩i∈R Oi)

, [43]

where Oi and Ai represent the nested null and alternative hypothesis associated with likelihood ratio test i.
In contrast, the HMP can be interpreted in the same circumstances as testing a model-averaged alternative

hypothesis against the grand null in which each individual alternative hypothesis is treated as mutually exclusive
from the others:

◦
p
−1
R =

∑
i∈R wi/pi∑
i∈R wi

=
∑
i∈R wiRi∑
i∈R wi

=
∑
i∈R

wi
wR

Pr (Xi|Ai)
Pr (Xi|Oi)

=
∑
i∈R Pr

(
Ai ∩j∈R\i Oj

)
Pr (Xi|Ai)

∏
j∈R\i Pr (Xj |Oj)∏

i∈R Pr (Xi|Oi)

=
Pr
(
{Xi : i ∈ R} | ∪i∈R Ai ∩j∈R\i Oj

)
Pr ({Xi : i ∈ R} | ∩i∈R Oi)

. [44]

Here the model weights, the wis, are interpreted as proportional to prior model probabilities on the mutually exclusive
alternative hypotheses. A more detailed consideration of the role of the weights is provided in section §5C.

Thus, the interpretation of what it means to reject a compound hypothesis (Equation 33) depends on the test. For
example, if Ui represents the acceptance of the null Oi over the alternative Ai, and (Ui ∩Uj)′ represents the rejection
of the compound hypothesis Ui ∩ Uj , then in the case of Fisher’s method this corresponds most closely to

(Ui ∩ Uj)′ : Ai is preferred to Oi and Aj is preferred to Oj
whereas in the case of the HMP it corresponds most closely to

(Ui ∩ Uj)′ : Ai is preferred to Oi and Oj is preferred to Aj or
Oi is preferred to Ai and Aj is preferred to Oj .

While the data must be independent for Fisher’s method to be valid, in the case of the HMP, the data do not need
to be independent. In fact the same data can appear in multiple tests, in which case terms in Equation 44 will cancel,
so that in the case where the same data and same null hypothesis are used for every test, the interpretation simplifies
to

◦
p
−1
R =

∑
i∈R Pr (Ai) Pr (X|Ai)

Pr (X|O) , [45]

as originally intended in Equation 1. This flexibility formalizes the idea that the HMP can be applied not only to
p-values constructed from a series of likelihood ratio tests for the same data, same nested null hypothesis and different
alternative hypotheses, but can be applied more widely as a general-purpose method for combining p-values. Indeed,
there may be cases when imposing the constraint that the alternative hypotheses are mutually exclusive is more
powerful than testing the grand alternative against the grand null, as in Fisher’s method. In this respect, the HMP is
a complementary tool to Fisher’s method.

To investigate the power of the HMP relative to Fisher’s method, and to illustrate situations in which the HMP
is appropriate but Fisher’s method is not, I repeated the simulation study from the previous subsection, including
Fisher’s method for combining p-values. For needle-in-a-haystack problems, Fisher’s method showed considerably less
power than Bonferroni, Simes’ and the HMP tests (Figure S8). This can be understood through the interpretation
of Fisher’s test as comparing the grand alternative to the grand null. When only 0.1% of tests are drawn from the
alternative hypothesis, the distribution of p-values resembles the grand null more closely than the grand alternative,
resulting in a 66% reduction in power compared to the HMP.

In the two other scenarios, where there were a mixture of signals or a subtle pervasive signal, the power of Fisher’s
method was 60% and 40% greater than the HMP respectively. However, in the presence of non-independence between
tests, the superior performance of Fisher’s test was counterbalanced by an extremely high false positive rate of 12%,
around 2.5 times higher than the specified false positive rate of α = 5%. This reveals a trade-off between power
and robustness: the assumption of independence between tests contributes to considerably higher power for Fisher’s
method, but the test is not robust when that assumption is violated, leading to inadmissibly high false positive rates.
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Fig. S8. Comparison of the false positive rate and power of the Bonferroni, Simes’, HMP (p◦
p
, Equation 4) and Fisher’s tests across a range of simulated scenarios.

Simulations were conducted as per Figure S7, for both the false positive rate (left) and power (right). To calculate false positive rates, the parameter θ was set to one
throughout; the three scenarios are therefore equivalent for this purpose. Fisher’s method does not account for weights, so these were ignored.

C. Position within Loughin’s classification of methods for combining p-values. Loughin (19) classified methods for
combining p-values from independent tests into two broad categories. In the first, each p-value is transformed via an
inverse cumulative distribution function into a variable that is then summed to produce the combined test statistic,

YR =
∑
i∈R

F−1(1− pi),

so that ψR =
{

1 if Pr (yR ≥ YR) ≤ α meaning UR is rejected
0 otherwise meaning UR is not rejected [46]

Loughin provided examples including Fisher’s method that utilizes the chi-squared distribution with ν = 2 degrees of
freedom (18), Lancaster’s that allows variable degrees of freedom (20), Lipták’s that utilises the standard normal
distribution (21), Edgington’s that utilizes the uniform distribution (22) and Mudholkar and George’s that utilizes
the logistic function (23). The second broad category of methods define the test statistic in terms of an order statistic
of the observed p-values. Again, this is compared against a null distribution to determine whether it is significantly
extreme. Examples include the minimum and maximum p-values. With respect to this classification, the HMP appears
to represent a novel method belonging to the first broad category, in which the transforming inverse cumulative
distribution function is the Pareto distribution, with F−1(1− pi) = 1/pi.

5. Bayesian connections and comparing competing alternative hypotheses

A. Similarity between Bayesian model-averaged significance testing and the HMP. It is widely recounted that
Bonferroni correction for multiple testing is conservative, especially when the tests are not independent, but comparison
to Bayesian procedures suggests this view may be over-stated in a specific sense. As a means of combining tests,
section §4 shows that the HMP and Simes’ test comfortably outperform Bonferroni, except for ‘needle-in-a-haystack’
problems. However, as a means of testing whether a specific individual alternative hypothesis is significantly better
than the null hypothesis, taking into account the total number of alternative hypotheses, the Bonferroni procedure is
appropriate. The Bonferroni procedure utilizes Boole’s inequality to control the family-wise error rate (FWER) at
level α, or some more stringent level below α:

Pr
(

min
i∈R

{
pi
wR
wi

}
≤ α

)
= Pr

(⋃
i∈R

pi
wR
wi
≤ α

)
≤
∑
i∈R

Pr
(
pi
wR
wi
≤ α

)
=
∑
i∈R

α
wi
wR

= α. [47]
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The FWER is controlled at exactly level α if only one p-value can be significant at once, which is not usually the
case. While this explains why combined tests have been devised that control the FWER at level exactly α, and are
therefore more powerful, a comparison to the Bayesian approach suggests that the Bonferroni procedure is not a
fundamentally conservative approach to assessing the significance of a specific alternative hypothesis, correcting for
the multiple alternative hypotheses.

This issue is relevant to the HMP short-cut procedure (Equation 6) which improves power by simultaneously
performing combined tests at multiple levels, but for which the rejection of the null hypothesis in favour of a specific
alternative hypothesis, or set of alternative hypotheses, R, is subject to the combined p-value, ◦pR, falling below the
Bonferroni threshold αwR.

For the purpose of comparison to the Bayesian approach, suppose that the alternative hypotheses are mutually
exclusive. This assumption is not restrictive because the outcomes of any group of non-mutually exclusive tests can,
in principle, be fully enumerated to form an exhaustive list of mutually exclusive outcomes. Consider L mutually
exclusive alternative hypothesesMi, i = 1 . . . L and a common null hypothesisM0. The HMP employs weights wi,
i = 1 . . . L where

∑L
i=1 wi = 1, while the Bayesian procedure employs prior probabilities for the null hypothesis (µ0)

and each alternative (1− µ0)µi, where
∑L
i=1 µi = 1. Denote the Bayes factor comparingMi toM0 as BFi and, for

the purposes of comparison, define a ‘b-value’ to be an inverse p-value, so that bi = p−1
i .

In the Bayesian model comparison setting, the null hypothesis is rejected when it does not fall within the smallest
100(1 − α)% credible set of models. In the classical setting, the null hypothesis is rejected when the p-value falls
below the relevant significance threshold. Thus, the Bayesian and HMP procedures reject the null hypothesisM0 in
favour of a specific alternative hypothesisMi when

Bayesian HMP

Pr(Mi|X)
Pr(M0|X) = Pr(Mi)

Pr(M0)
Pr(X|Mi)
Pr(X|M0) ≥ 1− α

α
αwi ≥ pi

α (1− µ0)
µ0 (1− α) µi BFi ≥ 1 αwi bi ≥ 1

The two procedures reject the null hypothesisM0 in favour of the model-averaged alternative hypothesisMR when

Bayesian HMP

Pr(MR|X)
Pr(M0|X) =

∑
i∈R Pr(Mi) Pr(X|Mi)
Pr(M0) Pr(X|M0) ≥ 1− α

α
α|R| wR ≥ ◦

pR

α (1− µ0)
µ0 (1− α)

∑
i∈R µi BFi ≥ 1 α|R|

∑
i∈R wi bi ≥ 1

Since, for small α (e.g. α ≤ 0.05), α|R| ≈ α, this shows there exists a combination of probability threshold α, weights
{wi, 1 ≤ i ≤ L}, prior odds µ0, and prior probabilities {µi, 1 ≤ i ≤ L} for which the Bayesian procedure would reject
the null in favour of the same set of alternative hypotheses and model-averaged alternative hypotheses as the HMP.
Note however that the scales of the Bayes factor and the b-value are not identical. Nevertheless, this reiterates the
observation that the inverse p-values interact approximately linearly, like Bayes factors, at least when they are large.
This relationship is formalized in a Bayesian interpretation of the HMP below.

The parallels between the Bayesian approach to model-averaged hypothesis testing and the HMP are instructive,
because they offer an alternative motivation for the underlying Bonferroni multiple-testing correction that does not
view the procedure as fundamentally flawed because it is conservative, but rather as a natural approach to testing
specific hypotheses or groups of hypotheses. For advocates of the false discovery rate (FDR), for whom control of
the FWER is conservative, the Bonferroni procedure is doubly conservative. Yet the Bayesian connection, which
is developed further below, suggests that contrary to this widespread critique, both Bonferroni correction and, by
implication, the FWER are frequentist analogs to natural Bayesian procedures.

B. Parallels between Bayesian model-averaging and Simes’ method. Simes’ procedure also parallels the Bayesian
model-averaging approach, and this demonstrates the close connection between the HMP and Simes’ procedure. The
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two procedures reject the null hypothesisM0 in favour of the alternative set of hypothesesMR when

Bayesian Simes

Pr(MR|X)
Pr(M0|X) ≥

max
1≤i≤|R|

{
i {Pr(Mj) Pr(X|Mj) : j ∈ R}[i]

}
Pr(M0) Pr(X|M0) ≥ 1− α

α
αwR ≥ pSimes

α (1− µ0)
µ0 (1− α) max

1≤i≤|R|

{
i {µj BFj : j ∈ R}[i]

}
≥ 1 α max

1≤i≤|R|

{
i {wj bj : j ∈ R}[i]

}
≥ 1

This reiterates that there exists a combination of significance threshold, weights and prior model probabilities for
which the Bayesian procedure would reject the null in favour of the same set of alternative hypotheses as the classical
procedure, in this case Simes’. It also reiterates the lower statistical efficiency of Simes’ procedure compared to the
HMP because the Bayesian criterion analogous to Simes’ procedure for rejecting the null hypothesis will always be
smaller, and therefore less powerful, than the Bayesian criterion analogous to the HMP for the same data.

In these tests, the ith largest value of the weighted Bayes factor or weighted b-value defines the minimum threshold
α at which the null hypothesis would be rejected. This means that when the test is marginal in significance, all
the top i alternative hypotheses are needed as a group to reject the null, and only groups of alternative hypotheses
including them will be significant.

Simes also proposed the Benjamini-Hochberg (BH) procedure as an exploratory tool for prioritizing alternative
hypotheses for further investigation (15). Benjamini and Hochberg subsequently showed (24) that this procedure
controls the expected false discovery rate (FDR) at level α. In the BH procedure, the null is rejected in favour of all
alternative hypothesesMi for which

α i {wj bj : j ∈ R}[i] ≥ 1.

This seems to define the set of alternative hypotheses that, together with any (i− 1) alternatives with larger weighted
b-values, would reject the null hypothesis in favour of the i alternatives. In this sense, the null is really rejected in
favour of the alternatives as groups or sets of increasing size, rather than individually. That the HMP makes this
interpretation explicit can be seen as another advantage over the BH procedure.

C. Interpretation of the harmonic mean p-value as a Bayesian procedure. The HMP can be interpreted as directly
proportional to a Bayes factor, subject to the following assumptions:

1. The distribution of the p-values under the alternative hypotheses can be approximated by Beta distributions.

2. The power of the tests are good, so that the mean p-values are much less than 1 under the alternative hypotheses.

3. The model weights account for the prior model probabilities and the mean p-values under the alternatives.

The construction of a Bayes factor from the HMP proceeds as follows. Since the p-value can be thought of as a
low-dimensional summary of the full data, a Bayes factor can be defined as

BFi = fAi(pi)
fOi(pi)

, [48]

where fOi(p) and fAi(p) represent the probability density functions of the p-value under the null and alternative
hypotheses respectively. By definition, the p-value follows a Uniform(0, 1) distribution under the null, so fOi(pi) = 1.
Sellke, Bayarri and Berger (25) considered a Beta(ξ, 1) distribution for the p-value under the alternative, with
0 < ξ ≤ 1, so the Bayes factor can be written

BFi = ξi p
ξi−1
i . [49]

This would imply that the power of the hypothesis test has the form

Pr(pi < αwi|Ai) =
∫ αwi

0
fAi(p)dp

= (αwi)ξi [50]
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and the mean p-value under the alternative hypothesis would be

E(pi|Ai) = ξi
1 + ξi

≈ ξi if ξi � 1. [51]

The model-averaged Bayes factor for the set of alternative hypotheses R versus the common null hypothesis would
then be

BFR =
∑
i∈R µi BFi∑
i∈R µi

=
∑
i∈R µi ξi p

ξi−1
i∑

i∈R µi

≈
∑
i∈R µi ξi p

−1
i∑

i∈R µi
if ξi � 1

= ξR
◦
pR

[52]

where

• µi is the prior probability of alternative hypothesis Mi, conditional on rejection of the null M0, so that∑L
i=1 µi = 1.

• wi = µiξi/
∑L
j=1 µjξj is the weight for alternative hypothesisMi in the HMP, so that

∑L
i=1 wi = 1.

• ξR =
∑
i∈R µiξi/

∑
i∈R µi is the mean p-value under the alternative hypotheses in set R.

• ξ̄ =
∑L
i=1 µiξi is the mean p-value averaged across all alternative hypotheses.

An important point to note is that more powerful tests are penalized in the calculation of the Bayes factor because
the model weight wi incorporates ξi, the mean p-value under the alternative, which is smaller for more powerful tests.
The same weighting is obtained by optimizing the weights to maximize the frequentist power of the HMP (see below).

The Bayesian interpretation of the HMP allows posterior model probabilities to be calculated. For example, in the
event that the null hypothesis is rejected, the posterior probability of hypothesisMi can be computed as

Pr (Mi|Data) = µiBFi∑L
j=1 µjBFj

≈ wi
pi

◦
p. [53]

with wi = µiξi/
∑L
j=1 µjξj . In this way, 100(1− α)% credibility intervals can be constructed by taking the smallest

group of alternative hypotheses whose posterior probabilities, conditional on rejection of the null hypothesis, sum
to at least 1− α. The harmonic mean p-value can also be written in the form of a Bayesian Information Criterion
(26, 27) as

−2 logBFR ≈ 2 log ◦pR − 2 log ξR. [54]

As above, this interpretation assumes that the weights are proportional to the product of the prior model probabilities
and the mean p-values under the alternatives: wi ∝ µi ξi. The disadvantage of this BIC is that the prior model
probabilities and mean p-values under the alternatives need specifying. Instead, comparison of the posterior model
probabilities (Equation 53) permits direct specification of only the model weights. Whether comparing BICs or
posterior model probabilities for model selection, the same data and the same null hypothesis must be used in the
calculation of every p-value. (This latter requirement is not restrictive if a sufficiently simple null hypothesis can be
defined so that it is nested in every alternative hypothesis.)

Practical questions concerning the use of the HMP as an approximate Bayes factor or BIC are

1. For what values of ξ, the mean p-value under the alternative, is the approximation reasonable?
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Fig. S9. Accuracy of the interpretation of the HMP as a Bayes
factor in relation to the mean p-value under the alternative hypoth-
esis, ξ. For values of ξ ranging from one to one millionth, 10,000
p-values were simulated under the null hypothesis, i.e. from a
Uniform(0, 1) distribution, and the Bayes factor and approximate
Bayes factor (Equation 52) calculated. Both are shown on a log-
arithmic scale. For points lying on the grey line, the Bayes factor
and approximate Bayes factor are identical. This shows that accu-
racy is reasonable for ξ = 0.1 and very good for smaller values
of ξ.

2. What are the values of ξ?

3. What does use of equal prior weights imply?

Figure S9 addresses the first of these questions, showing that when the mean p-value under the alternative is ξ = 0.1,
the approximation is already reasonably accurate, and for values below this it is very good. For context, when ξ = 0.1,
the power is αξ = 0.74 for the conventional significance threshold of α = 0.05. This reiterates the requirement that
the power needs to be good to interpret the HMP directly as a Bayes factor.

The question of what values the ξis take requires an assumption about the value or distribution of values of
the parameters of the alternative hypothesis. Usually power is specified a priori, so this assumption amounts to a
prior distribution, based on which power can be computed using a standard formula or numerically, for example by
simulation. The prior distribution used for calculating power can be obtained in different ways, for example using
previous data or by specifying a ‘subjective’ prior. Methods that specify an ‘objective’ prior that is improper cannot
be used for Bayesian hypothesis testing nor for interpreting the HMP as a Bayes factor because, in the latter case, ξ
would be undefined.

To take the multiple regression model used in the GWAS as an example, the power of each test can be calculated
as follows. Suppose that only biallelic variants are considered, and numerically encoded in an n× L matrix G as 0
(common allele) or 1 (rare allele). Suppose that the vector y records the phenotypes and X is an n × c matrix of
covariates, the first column of which is a vector of ones, corresponding to the intercept term, and the last column of
which contains the genotypes from G·i. The other columns contain any other relevant covariates. The maximum
likelihood estimate of the effect of genetic variant G·i on the phenotype y is then

β̂i =
{

(X ′X)−1
X ′y

}
c

[55]

and the variance of the estimator is

V
(
β̂i

)
=

{
(X ′X)−1

X ′V (y)X (X ′X)−1
}
c c

= σ2
ε (X ′X)−1

c c [56]
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For large samples the test statistic

Si = β̂i − β0√
V
(
β̂i

) [57]

follows a Normal(0, 1) distribution under the null hypothesisM0, in which βi = β0. If the parameter takes the value
βi = βA under alternative hypothesisMi and a priori it is assumed that βA − β0 ∼ Normal(0, σ2

β), then the test
statistic Si follows a Normal(0, 1 + σ2

β/V (β̂i)) distribution under the alternative hypothesisMi. The power of the
test is

Pr (pi < α|Mi) = Pr
(
S2
i > Qχ2

1
(1− α)|Mi

)
= Pr

(
χ2

1 >
Qχ2

1
(1− α)

1 + σ2
β/V (β̂i)

)
[58]

where Qχ2
1
is the quantile function of a χ2 distribution with one degree of freedom. The mean p-value underMi is

E(pi|Mi) = 1−
∫ 1

0
Pr (pi < α|Mi)dα [59]

which can be computed numerically for any given value of σ2
β/σ

2
ε to provide ξi = E(pi|Mi)/(1− E(pi|Mi)). Thus

power is computable by making a prior assumption about the relative magnitude of the genetic effects on the
phenotype compared to the unexplained variance of the phenotype. If the ratio σ2

β/σ
2
ε is assumed constant over all

genetic variants, then power will be greater when (X ′X)−1
c c is smaller.

The choice of σ2
β/σ

2
ε could be based on prior information or subjective belief. An alternative approach is to find an

‘objective’ way to choose the prior. One objective could be to ensure that the condition ξi � 1 is met for all tests,
and thereby validate the approximation of the Bayes factor from the HMP (Equation 52). Thus, the desired power
could be specified a priori, and the value of σ2

β/σ
2
ε required to achieve that power calculated per test.

If all tests were assumed to attain the same power, that would imply larger effects are expected a priori for tests
with inherently lower power. This is a defensible approach because it effectively penalizes inherently lower-powered
tests by requiring a higher standard of evidence, in terms of effect size, for the rejection of the null hypothesis. The
penalty is imposed through the ξi term in the Bayes factor, which is smaller for tests that are assumed to be more
powerful. In the context of GWAS for human disease, such priors are common and are advocated on the basis that
risk alleles of larger effect would be maintained at lower frequency by natural selection, an assumption that can
be tested in practice (28). Therefore the use of equal weights can be motivated by a uniform prior over the model
probabilities for the alternative hypotheses, in conjunction with a prior that expects larger effect sizes for alternative
hypotheses whose tests are inherently less powerful.

Optimal weights for the most powerful HMP. Interestingly, the weights suggested by the Bayesian interpre-
tation of the HMP can be motivated by an argument based on optimizing the power of the HMP. The power of the
HMP can be approximated roughly as

Pr
(
◦
p < α|MA

)
=

L∑
i=1

Pr(Mi|MA) Pr
(
◦
p < α|Mi

)
≈ α+

L∑
i=1

µi Pr (pi < αwi|Mi)

≈ α+
L∑
i=1

µi (αwi)ξi . [60]

This expression can be maximized subject to the constraint that
∑L
i=1 wi = 1 by writing the Lagrangian function

L (w, λ) = α+
L∑
i=1

µi (αwi)ξi + λ

[
1−

L∑
i=1

wi

]
. [61]
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Solving the derivative with respect to wi gives

w1−ξi
i = 1

λ
µi ξi α

ξi [62]

which for ξi � 1 is solved by

wi ≈
1
λ
µi ξi α

ξi

≈ 1
λ
µi ξi [63]

where the constant λ imposes the constraint that
∑L
i=1 wi = 1. So power appears to be optimized in the frequentist

setting by (i) up-weighting the inverse p-values of alternative hypotheses that are more probable a priori and (ii)
down-weighting the inverse p-values of more powerful tests, recapitulating the weights required for a Bayesian
interpretation of the HMP.

D. Relaxing significance thresholds when multiple alternative hypotheses are true. Some procedures for controlling
the FDR explicitly estimate the proportion of alternative hypotheses that are true, reducing the stringency of the
threshold for calling a test significant when a larger proportion of alternatives are estimated to be true (see e.g. refs
(29–33)). The question arises whether similar reasoning can be used to motivate a relaxation of the significance
threshold in the model-averaging setting.

Consider, for example, a GWAS in bacteria for a trait of interest, such as antimicrobial resistance (34, 35).
Antimicrobial resistance is often influenced by multiple loci, but the tests at different loci cannot be treated as
independent because of strong dependency (i.e. linkage disequilibrium) between loci caused by relatively low rates of
genetic exchange and strong structuring of populations into sub-populations or ‘strains’ (35). To formally test for the
involvement of multiple loci in the trait, it would be necessary to fit all higher-order models involving two or more
loci. However, to test for the involvement of K loci would involve

(
L
K

)
tests, which quickly becomes very large even

for modest K.
Even in human GWAS, tests at different loci can never be truly independent because the same outcomes (the

phenotypes) are shared between analyses. However, it is often considered appropriate to test associations between
multiple loci and a single trait as if they were independent, particularly for loci that are physically distant or on
different chromosomes (i.e. unlinked loci), and it is in this context that FDR arguments are applied to human GWAS
(29). Since the control of the FDR in human GWAS carries an explicit assumption that multiple loci might be
associated with the trait, it therefore carries an implicit assumption that the signal of association at any individual
locus tested alone is in some sense averaged over all the other loci which might also be associated. In other words,
the so-called ‘marginal’ (i.e. single locus) test for the association is implicitly assumed to approximate an equivalent
model-averaged test.

Stating this explicitly, arguments in favour of controlling the FDR in GWAS assume, perhaps optimistically, that
the Bayes factor or p-value for the marginal test approximates a model-averaged Bayes factor or p-value. LetMi •
denote the set of all models involving locus i and (K − 1) other loci, of which there are

(
L−1
K−1

)
combinations. The

criterion for declaring a significant association involving a particular locus i, according to this approximation, is
Bayesian HMP

Pr(Mi •|X)
Pr(M0|X) ≈

Pr(Mi •)
Pr(M0)

Pr(X|Mi)
Pr(X|M0) ≥ 1− α

α
α(L−1

K−1) wi • ≥ ◦
pi • ≈ pi

α (1− µ0)
µ0 (1− α) µi • BFi ≥ 1 α(L−1

K−1) wi • bi ≥ 1

In the case of equal weights among the
(
L
K

)
hypotheses, then wi • =

(
L−1
K−1

)
/
(
L
K

)
= K

L , which is a factor K times bigger
than wi = 1

L . Therefore this approximation motivates the relaxation of the stringency of the significance threshold by
a factor K, where K is the number of loci involved in the trait, so the threshold is now a function of the proportion of
alternative hypotheses expected to be true, rather than simply the number of tests. The obvious problem is that
either a strong assumption regarding the true value of K has to be made or K has to be estimated somehow, e.g. by
explicitly evaluating the higher-order tests over all sets of K loci for different values of K. If this latter procedure
were computationally feasible, the approximation would be unnecessary. Nevertheless, the effective relaxation of the
multiple testing threshold would still be gained because wi • would inevitably increase if more loci were involved in
the trait.
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6. GWAS of neuroticism
I downloaded the p-values for 6 524 432 directly assayed and imputed variants arising from a meta-analysis of
neuroticism in 170 911 individuals (36), one of many human GWAS catalogued by LD Hub (37), and whose summary
statistics are freely publicly available (http://ssgac.org/documents/Neuroticism_Full.txt.gz). These p-values were
calculated from a meta-analysis of numerous cohorts using METAL (38). METAL conducts a z-test which is analogous
to a likelihood ratio test for whether the effect of each variant on the trait is different from zero. The common null
hypothesis is that no variant has an effect. I defined overlapping sliding windows of various sizes: 10kb, 100kb, 1000kb,
10Mb, entire chromosomes and the whole genome. I computed the HMP (Equation 8) and corresponding p-value
(Equation 4) for each window. I computed adjusted values by dividing the HMP and corresponding p-value for the
region R spanned by each window by wR, the sum of the weights across all variants within the window. Since I
assumed equal weights across variants, wR equalled the proportion of all variants within the window. I then compared
the adjusted HMPs and p-values directly to the significance threshold α = 0.05.

7. GWAS of HCV pre-treatment viral load
I applied to the STOP-HCV consortium (http://www.stop-hcv.ox.ac.uk/data-access) for access to the 399 420 human
genotypes and 410 viral polyprotein sequences from a GWAS of pre-treatment viral load in 410 white European
patients with HCV genotype 3a (39). I imputed missing base calls and indels in the aligned HCV nucleotide sequences
using ClonalFrameML (40) having estimated a maximum likelihood phylogeny using PhyML (41). I converted to a
codon alignment and identified 827 variable codons in which the frequency of the consensus codon was less than 95%.
I conducted 330 320 340 tests of association between log10 pre-treatment viral load and the interaction between each
pair of human and virus variant. I fitted a linear model with the following factors and covariates: human variant,
virus variant, an interaction between human variant and virus variant, and, following (39) , the leading three principal
components (PCs) of human genetic variation, the leading ten PCs of virus genetic variation, patient sex and an
indicator of sustained virological response (SVR). I assumed codominance between human alleles. Each p-value was
produced by a likelihood ratio test between the fitted model and the common null hypothesis in which only the three
human PCs, ten virus PCs, sex and SVR were included.

For each human variant, I computed the HMP (Equation 8) by averaging across all LP = 827 interactions involving
that variant. Conversely, I computed the HMP for each virus variant by averaging across all LH = 399 420 interactions
involving that variant. I computed a p-value (Equation 4) for every HMP. I compared the p-value for each subset of
hypotheses R against a threshold αwR, where wR was the sum of weights of all alternative hypotheses in subset
R. Since I assumed equal weights across all pairs of variants, the thresholds for the 330 320 340 tests of association,
the 399 420 model-averaged p-values per human variant and the 827 model-averaged p-values per virus variant were
α/(LHLP ) = 1.5× 10−10, α/LH = 1.3× 10−7 and α/LP = 6.0× 10−5 respectively.

To quantify the relative strength of evidence among the alternative hypotheses, having rejected the common null
hypothesis, I calculated the approximate ‘post-data’ or ‘posterior’ probability of each alternative particular hypothesis
Mi. This was possible because I treated the model formally as a random effect in which the model weights take into
account a ‘pre-data’ or ‘prior’ probability distribution and the power of each test, and is analogous to, e.g., posterior
decoding in a hidden Markov model:

Pr(M =Mi|X,M 6=M0) ≈ wi/pi∑L
j=1 wj/pj

. [64]

This approximation is justified in section §5. I took L = (LH LP ), the pis from each of the L likelihood ratio tests
and equal weights wi = 1/(LHLP ).
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