SUPPORTING INFORMATION - Potent metabolic sialylation inhibitors based on C-5 modified fluorinated sialic acids

Torben Heise^{1,‡}, Johan F.A. Pijnenborg^{1,‡}, Christian Büll², Niek van Hilten³, Esther D. Kers-Rebel², Natasja Balneger², Hidde Elferink¹, Gosse J. Adema^{2,*}, Thomas J. Boltje^{1,*}

¹Dr. Thomas J. Boltje, Cluster of Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands. E-mail: t.boltje@science.ru.nl ²Prof. Dr. Gosse J. Adema, Radiotherapy & Oncolmmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, The Netherlands. E-mail: gosse.adema@radboudumc.nl ³Computational Discovery and Design Group, Centre for Molecular and Biomolecular Informatics,

Radboud University Nijmegen, The Netherlands.

[‡]These authors contributed equally. ^{*}Lead contacts.

Supplementary Methods	S2-3
Supporting figure 1 Effect of 1, 2, 4-12 on cell metabolic activity/viability.	S4
Supporting figure 2 Effect of 1, 2, 4-12 on total cell surface glycosylation.	S5
Supporting figure 3 Recovery of sialylation after treatment with 25.6 μM fluorinated sialic acid mimetics	S6
Supporting table 1 EC ₅₀ values in μ M for inhibition of α 2,6-linked sialic acid.	S7
General synthetic procedures and abbreviations	S8
Synthetic experimental	S9-21
References and notes	S22
NMR-spectra	S23-43

Supplementary Methods

Cell culture

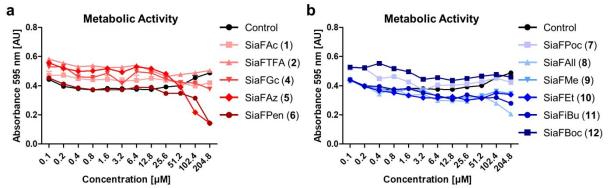
B16-F10 mouse melanoma cells (ATCC, CRL-6475) were cultured in MEM medium (Gibco) containing 5 % FBS (GE Healthcare), 1 % MEM non-essential amino acids (Gibco), 0.15 % sodium bicarbonate (Gibco), 1 mM sodium pyruvate (Gibco), 1.5 % MEM vitamins (Gibco) and 1x antibiotic-antimycotic solution (Gibco). 9464D mouse neuroblastoma cells (kindly provided by Dr. Orentas, NIH, Bethesda) were cultured in DMEM Glutamax (Gibco) with 10 % FBS, 1 % nonessential amino acids, 50 µM 2-mercaptoethanol (Sigma-Aldrich) and 1x antibiotic-antimycotic solution. EL4 mouse T lymphocytes (ATCC, TIB-39) were cultured in IMDM medium (Gibco) containing 5 % FBS, 50 µM 2-mercaptoethanol and 1x antibiotic-antimycotic solution. Human THP-1 monocytic cells (ATCC, TIB-202) were cultured in RPMI 1640 medium (Gibco) supplemented with 10% FBS, 2 mM glutamine (Lonza) and 1x antibiotic-antimycotic solution. HEK293 human embryonic kidney cells (ATCC, CRL-1573) and HeLa human epithelial cells (ATCC, CRM-CCL-2) were cultured in DMEM Glutamax supplemented with 10 % FBS, 1 % nonessential amino acids and 1x antibiotic-antimycotic solution. The cell lines were initially grown and multiple aliquots were cryopreserved. The cells were used within 3 months after resuscitation and regularly tested for mycoplasma using a mycoplasma detection kit (Lonza). All cells were cultured in a humidified CO₂ incubator at 37°C. To determine the effective concentration of the sialic acid mimetics, the different cell lines were incubated for 3 days with increasing concentrations of the mimetics or equivalent concentrations of DMSO followed by lectin staining. Additionally, glycosylation of B16-F10 cells incubated for 3 days with 102.4 µM C-5-modified fluorinated sialic acids or DMSO control was assessed with different lectins. To determine the recovery speed of cell surface sialylation after inhibitor treatment, B16-F10 cells were treated for 3 days with 25.6 µM or 51.2 µM mimetics or DMSO control, washed, reseeded and analyzed daily by lectin staining for a period of 6 days.

Lectin staining and flow cytometry

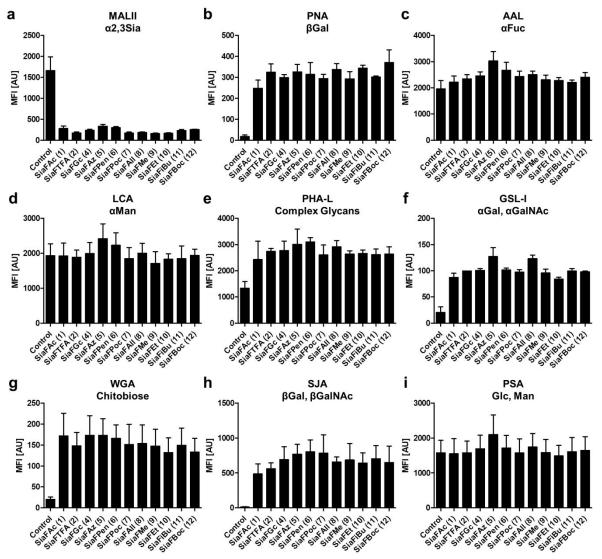
Cells were harvested and stained with biotinylated lectins in 1x carbo-free blocking buffer (Vector Laboratories Inc.) containing 1 mM CaCl and 1 mM MgCl for 45-60 minutes at 4 °C. The lectins were obtained from Vector Laboratories Inc. and used at the following concentration; MALII (5 μ g/ml), SNA-I (1 μ g/ml), WGA (1 μ g/ml), SJA (1 μ g/ml), LCA (1 μ g/ml), GSL-I (1 μ g/ml), PHA-L (1 μ g/ml), PSA (1 μ g/ml), AAL (5 μ g/ml) and PNA (5 μ g/ml). Next cells were washed with PBA (1x PBS, 1 % BSA, and 0.02 % sodium azide) and stained with streptavidin-PE (eBioscience) for 20 minutes at 4 °C. Cells were washed, collected in PBA and analyzed using a CyAn flow cytometer (Beckman Coulter). Percentage lectin binding was calculated by normalizing the mean fluorescence intensity to control cells

MTT assay

B16-F10 cells were cultured for 3 days in the presence of 0-204.8 μ M **1**, **2**, **4-12** or DMSO control and subjected to an MTT assay. Cells were washed and incubated in medium containing 0.5 mg/ml thiazolyl blue tetrazolium bromide (MTT, Sigma-Aldrich) for 30 minutes at 37 °C. Next, the cells were washed with 1x PBS and lysed in solubilizing solution (90 % isopropanol, 0.25 % SDS, 0.04 M HCL). Reduction of tetrazolium dye to purple formazan by the cells was quantified at 595 nm wavelength using a microplate absorbance reader (BioRad).


In silico modeling

Crystal structures of human ST6Gall (4JS2¹), human ST8SialII (5BO9²) and murine CMAS (1QWJ³) were retrieved from the Protein Data Bank (PDB). Sialyltransferase crystal structures were superposed using the protein align function in MOE 2013.08⁴ at default settings. In the CMAS structure, the binding pocket of domain D was used for modeling; water molecules were retained. The A-B dimer was neglected. The highest ranked alternative rotamer (suggested by MOE) for Ser120(D) was used to better accommodate the molecular environment and ligand interactions. Hydrogens were added using MOE's protonate 3D function at default settings and OH-groups were optimally oriented prior to energy minimizations. All energy minimizations were conducted using the AMBER12:EHT force field⁵ in MOE, leaving the ligand atoms and all receptor and solvent atoms within 8Å free to move. Images were generated with UCSF Chimera 1.13⁶.


CMP-sialic acid quantification

B16-F10 cells were incubated for 1, 2, 4, 8 or 24 hrs with 51.2 µM fluorinated sialic acid analogues or DMSO control. The cells were washed thoroughly with ammonium carbonate buffer (pH 7.4) and subsequently snap frozen in liquid nitrogen. For extraction, the wells were incubated two times for 3 minutes with cold extraction buffer (40% acetonitrile, 40% methanol, 20% water). The samples were centrifuged for 3 minutes at 13.000 rpm and vacuum dried. Next, the cell extracts were reconstituted in 10 mM triethylammonium acetate followed by analysis using reverse-phase ion pairing chromatography (Agilent Technologies 1290 Infinity) coupled to a triple quadrupole mass spectrometer operating in negative ion mode (Agilent Technologies 6490 Triple Quad LC/MS) by GlycoMScan B.V., Oss, The Netherlands (collaboration Dr. M. Van Scherpenzeel). For analysis of synthetic modified sugars, the MRM transitions were adapted based on fragmentation knowledge of the non-modified, endogenous compound.

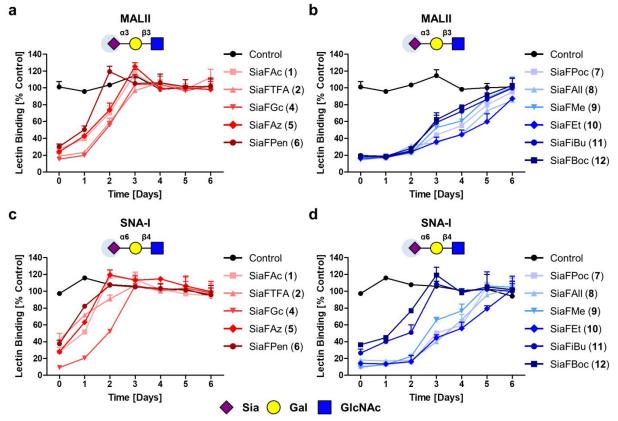

Supporting figures and tables

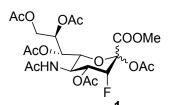
Figure S1: Effect of **1**, **2**, **4-12** on cell metabolic activity/viability. B16-F10 cells were cultured for three days with increasing concentrations of fluorine sialic acids or DMSO and subjected to an MTT assay. Representative graphs show absorbance at 595 nm for cells treated with amide (**a**) or carbamate (**b**) fluorine sialic acids.

Figure S2: Effect of **1**, **2**, **4-12** on total cell surface glycosylation. B16-F10 cells treated for three days with 102.4 μ M fluorine sialic acids or DMSO control were stained with a panel of biotinylated lectins and streptavidin-PE. Lectin binding was determined in two independent experiments by flow cytometry and is presented as mean fluorescence intensity (MFI) ± SEM. Bar diagrams show binding of MALII (a), PNA (b), AAL (c), LCA (d), PHA-L (e), GSL-I (f), WGA (g), SJA (h) and PSA (i).

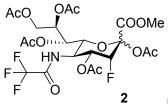
Figure S3: Recovery of sialylation after treatment with 25.6 μ M fluorinated sialic acid mimetics. **a**-**d**) B16-F10 cells were treated with 25.6 μ M fluorine sialic acids for three days, thoroughly washed and recovery of sialylation was followed in time by flow cytometry using MALII and SNA-I staining. Data of three independent experiments are presented as mean percentage lectin binding ± SEM normalized to control and show MALII and SNA-I binding after treatment with amide (**a**, **c**) and carbamate (**b**, **d**) fluorine sialic acids.

Group	Sia <mark>FR</mark>	B16-F10	rIP	THP-1	HEK293	HeLa	9464D	EL4
Amides	Ac (1)	32.80 ± 3.08		10.87 ± 2.47	36.69 ± 3.59	34.50 ± 2.18	> 102.4	> 102.4
	TFA (2)	33.33 ± 2.63	1	7.19 ± 3.60	41.36 ± 10.44	33.38 ± 4.38	> 102.4	> 102.4
	CIAc (3)	ND		ND	ND	ND	ND	ND
	Gc (4)	11.78 ± 2.27	3	5.94 ± 2.18	54.06 ± 15.34	12.50 ± 2.52	> 102.4	> 102.4
	Az (5)	32.82 ± 3.55	1	13.23 ± 3.02	47.21 ± 2.89	42.19 ± 8.42	> 102.4	> 102.4
	Pen (6)	52.49 ± 4.31	1	12.58 ± 3.51	44.71 ± 4.33	51.23 ± 6.06	> 102.4	> 102.4
Carbamates	Poc (7)	2.59 ± 0.07	13	0.44 ± 1.59	5.42 ± 1.40	1.37 ± 0.81	40.19 ± 6.56	51.65 ± 2.62
	All (8)	2.87 ± 0.80	11	0.38 ± 1.67	1.68 ± 3.20	2.04 ± 1.40	9.64 ± 3.93	50.9 ± 6.44
	Me (9)	7.54 ± 1.34	4	2.65 ± 1.60	4.77 ± 2.80	5.23 ± 1.88	29.60 ± 4.67	52.68 ± 5.45
	Et (10)	3.87 ± 1.14	8	0.37 ± 1.76	1.57 ± 4.23	1.67 ± 1.31	28.13 ± 5.51	50.58 ± 8.84
	iBu (11)	15.07 ± 3.70	2	0.62 ± 1.77	9.61 ± 4.83	4.32 ± 1.82	36.15 ± 6.40	51.07 ± 8.97
	Boc (12)	8.21 ± 0.67	4	1.72 ± 2.30	28.03 ± 2.57	20.55 ± 1.95	> 102.4	50.31 ± 3.99
	Cbz (13)	ND						EC₅₀ <5 µM
	PBn (14)	ND		OAc		OAc 	040	EC ₅₀ <20 μΜ
	nBu (15)	7.91 ± 1.95	4	\sim	OAc QAc	$\boldsymbol{\gamma}$	OAc QAc	EC ₅₀ <50 μΜ
	Mox (16)	32.38 ± 1.38	1				OMe	
	Tro (17)	7.85 ± 2.07	4			O_{-}	cO	
	FEt (18)	2.05 ± 1.29	16		F Amide	0	rbamate	

Table S1: EC₅₀ values in μ M for inhibition of α 2,6-linked sialic acid. B16-F10 cells were treated with 0.1-205.8 μ M, and THP-1, HEK293, HeLa, 9464D and EL4 cells with 0.1-102.4 μ M amide or carbamate fluorinated sialic acids or DMSO vehicle control. After three days the cells were stained with biotinylated lectins that recognize α 2,6-linked (SNA-I) sialic acids, and streptavidin-PE. Binding of the lectins was determined by flow cytometry, as mean percentage lectin binding ± SEM normalized to the control (n=3). The relative inhibitory potency (rIP) was calculated for the B16-F10 cell line by dividing the EC₅₀ of SiaFAc (**1**) by the EC₅₀ of the compound of interest.

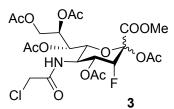

General synthetic procedures and abbreviations

General synthetic procedures¹H and ¹³C NMR spectra were recorded on a Varian linova 400 MHz or Bruker Avance III 500 MHz spectrometer. Chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane (TMS) as the internal standard. NMR data is presented as follows: Chemical shift, multiplicity (s = singlet, bs = broad singlet, d = doublet, t = triplet, dd = doublet of doublet, dt = doublet of triplet, m = multiplet and/or multiple resonances), integration, coupling constant in Hertz (Hz). All NMR signals were assigned on the basis of ¹H, ¹³C, ¹⁹F NMR, COSY and HSQC experiments. Mass spectra were recorded on a JEOL JMS-T100CS AccuTOF mass spectrOCH₃ter. Automatic column chromatography was performed on Biotage Isolera Spektra One, using SNAP cartridges 10-50g filled with normal silica (Biotage, 30-100 µm, 60 Å) or water resistant iatro beads. Microwave reactions were perfOCH₃d on a Biotage Initiator 4.1.3. TLC analysis was conducted on TLC Silicagel, 60, F254, Merck, with detection by UV absorption (254 nm) where applicable, and by spraying with 20% sulfuric acid in methanol followed by charring at ~150 °C or by spraying with a solution of (NH-4)₆Mo₇O₂₄·H₂O (25 g l-1) in 10% sulfuric acid in methanol followed by charring at ~300°C. DCM, ACN and Tol were freshly distilled. All reactions were carried out under an argon atmosphere.

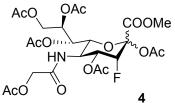

Commonly used abbreviations

Ac ₂ O	Acetic anhydride	n-Bu	n-Butyl
Acet	Acetone	Poc	Propargylcarboxycarbonyl
ACN	Acetonitrile	Pyr	Pyridine
AcOH	Acetic acid	ROSu	Hydroxysuccinimide ester
Alloc	Allyloxycarbonyl	SAda	Adamantyl-thiol
Az	Azidoacetic acid	STol	4-methylthiophenol
BF ₃ •Et ₂ O	Boron trifluoride etherate	TBTA	Tris(benzyltriazolyl
BoC-2O	Di-tert-butyl dicarbonate		methyl)amine
Br ₂	Bromine	tBu	Tert-butyl
Cbz	Carboxybenzyl	TEA	Triethylamine
CD ₃ OD	Deuterated methanol	TFA	Trifluoroacetic acid
CDCl ₃	Deuterated chloroform	TFAA	Trifluoroacetic acid anhydride
D_2O	Deuterium oxide	TfOH	TrifluorOCH ₃ thanesulfonic
DCM	DichlorOCH₃thane	acid	
DMAP	Dimethylaminopyridine	TMSOTf	Trimethylsilyl
DMF	N,N-Dimethylformamide		trifluorOCH₃thanesulfonate
EtOAc	Ethyl acetate	Tol	Toluene
Hept	Heptane	Troc	2,2,2 trichloroethoxycarbon
iBu	lso-butyl		

Synthetic experimental

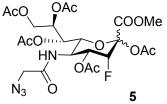


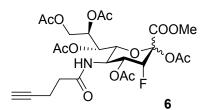
Methyl 5-(acetamido)-2,4,7,8,9-penta-O-acetyl-3,5-dideoxy-3-fluoro-**D-glycero-β-galacto-non-2-ulopyranosonate (1)**. Synthesis was performed as described previously the data is identical to the data previously reported.⁷ TLC: (Acet:DCM, 30:70 v/v) R_f = 0.40. HRMS (m/z): [M+Na]+ calcd for C-20H28FNO13, 532.1443; found, 532.1442. The crude fluorinated alcohol was dissolved in Pyr (14.5 ml) and Ac₂O (7.3 ml), stirred for 16 hours at r.t. and was evaporated in vacuo. The resulting solid dissolved in EtOAc and sat. aq. NaHCO₃. The organic phase was separated and the solvent evaporated in vacuo and purified on silica flashcolumn chromatography (0 \rightarrow 30% ACE in DCM) affording 1 (1.46 g, 2.54 mmol, 80% yield two steps) as a slightly yellow foam. TLC: (Acet:DCM, 30:70 v/v) $R_f = 0.55$. ¹H-NMR (500 MHz, CD_3OD , major anOCH₃r) δ 5.58 (d, J = 8.9 Hz, 1H, NH), 5.46 (dd, J = 27.9, 10.7 Hz, 1H, H-4), 5.29 (dd, J = 5.0, 1.8 Hz, 1H, H-7), 5.05 (ddd, J = 6.7, 5.2, 2.5 Hz, 1H, H-8), 4.87 (dd, J = 49.1, 2.5 Hz, 1H, H-3), 4.51 (dd, J = 12.5, 2.5 Hz, 1H, H-9_a), 4.21 – 4.10 (m, 3H, H-9_b; H-5; H-6), 3.77 (s, 3H, OCH₃), 2.12 – 2.09 (m, 6H, 2xCH₃,OAc), 2.04 (s, 3H, CH₃,OAc), 1.98 (s, 3H, CH₃,OAc), 1.97 (s, 3H, CH₃,OAc), 1.85 (s, 3H, CH₃,NHAc).; ¹³C-NMR (126 MHz, CD₃OD) δ 170.58 (CO, Ac), 170.56 (CO, Ac), 170.50 (CO, Ac), 170.34 (CO, Ac), 167.11 (C-1), 95.16 (d, J = 28.8 Hz, C-2), 86.95 (d, J = 185.3 Hz, C-3), 71.91 (C-6), 71.37 (C-8), 68.40 (d, J = 17.2 Hz, C-4), 67.93 (C-7), 62.09 (C-9), 53.49 (OCH₃), 45.53 (C-5), 29.27 (CH₃,Ac), 20.88 (CH₃,Ac), 20.79 (CH₃,Ac), 20.74 (CH₃,Ac), 20.65 (CH₃,Ac), 20.51 (CH₃,Ac); HRMS (m/z): [M+Na]+ calcd for C₂₂H₃₀FNO₁₄, 574.1548; found, 574.1548.



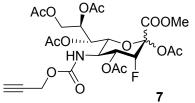
5-(trifluoroacetamido)-2,4,7,8,9-penta-O-acetyl-3,5-Methyl dideoxy-3-fluoro-D-glycero- β -galacto-non-2-ulopyranosonate (2). TFA protected Sialic acid 2 was a common side product after TFA deprotection. Further investigation discovered that TFA, if not removed carefully, forms a mixed anhydride with chloroformates resulting in a quantitative coupling of TFA to the relatively unreactive amine. Later deprotection reactions were therefore done with TfOH which avoided this problem. Boc inhibitor 12 (50 mg; 82 µmol) was dissolved in a 1:2 mixture of TFA and DCM (1.6 ml; 0.05 M). The mixture was stirred for 2 h at r.t. (TLC: (EtOAc:Hept, 60:40 v/v) $R_f = 0.09$). The mixture was then concentrated in vacuo. The residue was dissolved in DCM (0.83 ml; 0.1 M) and additional TFA (188 µl, 2.5 mmol, 30 eq) and TEA (690 µl; 4.95 mmol; 60 eq.) were added. Isobutyl chloroformate (also possible with other chloroformates) (76 µl; 589 µmol; 20 eq.) was added and the reaction was stirred for 16 h. The mixture was diluted with DCM and washed successively with 0.1M HCl and sat. NaHCO₃. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. Silicagel flash column chromatography ($0\% \rightarrow 50\%$ EtOAc in Hept) afforded **2** (44 mg; 74 µmol; 90%) as a white solid. **TLC**: (EtOAc:Hept, 60:40 v/v) R_f = 0.50 ¹**H NMR** (500 MHz, CDCl₃) δ 7.02 (d, J = 9.1 Hz, 1H,

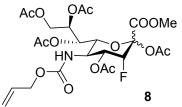
NH), 5.61 (ddd, J = 27.4, 11.0, 2.5 Hz, 1H, H-4), 5.29 (dd, J = 5.3, 2.0 Hz, 1H, H-7), 5.13 (ddd, J = 6.1, 5.2, 2.4 Hz, 1H, H-8), 4.97 (dd, J = 48.9, 2.5 Hz, 1H, H-3), 4.57 (dd, J = 12.5, 2.5 Hz, 1H, H-9_a), 4.38 (ddd, J = 10.7, 2.0, 0.8 Hz, 1H, H-6), 4.26 – 4.17 (m, 2H, H-5; H-9_b), 3.85 (s, 3H, OCH₃), 2.19 (s, 3H, CH₃,OAc), 2.18 (s, 3H, CH₃,OAc), 2.11 (s, 3H, CH₃,OAc), 2.05 (s, 3H, CH₃,OAc), 2.04 (s, 3H, CH₃,OAc), 2.18 (s, 3H, CH₂,OAc), 2.11 (s, 3H, CH₃,OAc), 2.05 (s, 3H, CH₃,OAc), 2.04 (s, 3H, CH₃,OAc). ¹³**C** NMR (126 MHz, CDCl₃) δ 171.70 (CO, Ac), 170.78 (CO, Ac), 170.76 (CO, Ac), 170.51 (CO, Ac), 167.22 (C-1), 164.94 (CO, Ac), 157.68 (q, J = 37.8 Hz, CO, TFA), 115.50 (q, J = 288.4 Hz, CF₃), 95.16 (d, J = 29.0 Hz, C-2), 86.90 (d, J = 186.1 Hz, C-3), 71.27 (C-8), 71.00 (C-6), 68.00 (d, J = 16.9 Hz, C-4), 67.91 (C-7), 62.06 (C-9), 53.75 (OCH₃), 46.43 (d, J = 2.4 Hz, C-5), 20.99 (CH₃,OAc), 20.82 (CH₃,OAc), 20.80 (CH₃,OAc), 20.60 (CH₃,OAc), 20.56 (CH₃,OAc). HR-ESI-TOF/MS (m/z): [M+Na]⁺ calcd. for C₂₂H₂₇F₄NNaO₁₄, 628.12654; found, 628.12591.

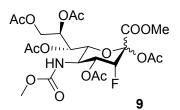

5-(chloroacetamido)-2,4,7,8,9-penta-O-acetyl-3,5-Methyl dideoxy-3-fluoro-D-glycero-β-galacto-non-2-ulopyranosonate (3). Boc inhibitor 12 (200 mg; 329 µmol) was dissolved in a 1:1:2 mixture of DCM, H₂O and TFA (3.3 mL; 0.1 M). The mixture was stirred for 2 h at r.t. (**TLC**: (EtOAc:Hept, 60:40 v/v) $R_f = 0.09$). The mixture was then diluted with H₂O and concentrated in vacuo. The residue was dissolved in DCM (3.3 mL; 0.1 M) and successively CIAcCI (39 µL; 492 µmol; 1.5 eq.) and TEA (273 µL; 1.97 mmol; 6 eq.) were added. After stirring at r.t. 16 h the mixture was concentrated in vacuo. The residue was dissolved in EtOAc and washed with sat. aq. NaHCO₃. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. Silicagel flash column chromatography ($0\% \rightarrow 50\%$ EtOAc in Hept) afforded **3** (116 mg; 198 μ mol; 60 %) as a white solid. **TLC**: (EtOAc:Hept, 80:20 v/v) R_f = 0.48) ¹H **NMR** (500 MHz, CDCl₃) δ 6.63 (d, J = 8.6 Hz, 1H, NH), 5.58 (ddd, J = 27.5, 10.6, 2.5 Hz, 1H, H-4), 5.34 (dd, J = 5.2, 1.8 Hz, 1H, H-7), 5.12 (ddd, J = 6.4, 5.1, 2.4 Hz, 1H, H-8), 4.95 (dd, J = 49.0, 2.5 Hz, 1H, H-3), 4.59 (dd, J = 12.5, 2.5 Hz, 1H, H-9_a), 4.33 – 4.23 (m, 2H, H-6; H-5), 4.21 (dd, J = 12.5, 6.5 Hz, 1H, H-9_b), 4.02 – 3.93 (m, 2H, CH₂, CIAc), 3.85 (s, 3H, OCH₃), 2.19 (s, 3H, CH₃,OAc), 2.16 (s, 3H, CH₃,OAc), 2.12 (s, 3H, CH₃,OAc), 2.06 (s, 3H, CH₃,OAc), 2.04 (s, 3H, CH₃,OAc). ¹³C NMR (126 MHz, CDCl₃) δ 170.77 (CO, Ac), 170.66 (CO, Ac), 170.61 (CO, Ac), 170.47 (CO, Ac), 167.23 (C-1), 166.73 (CO, Ac), 165.08 (CO, CIAc), 95.28 (d, J = 29.0 Hz, C-2). 87.01 (d, J = 185.7 Hz, C-3), 71.79 (C-6), 71.50 (C-8), 68.14 (d, J = 17.2 Hz, C-4), 67.88 (C-7), 62.15 (C-9), 53.68 (OCH₃), 45.91 (d, J = 2.6 Hz, C-5), 42.56 (CH₂, CIAc), 21.03 (CH₃,Ac), 20.91 (CH₃,Ac), 20.86 (CH₃,Ac), 20.76 (CH₃,Ac), 20.66 (CH₃,Ac). HR-ESI-TOF/MS (m/z): [M+Na]⁺ calcd. for C₂₂H₂₉CIFNNaO₁₄, 608.11583; found, 608.11438.

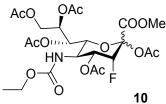

⁴ Methyl 5-(acetoxyamido)-2,4,7,8,9-penta-O-acetyl-3,5-dideoxy-3fluoro-D-glycero-β-galacto-non-2-ulopyranosonate (4). Boc inhibitor 12 (40 mg; 66 µmol) was dissolved in a 1:1:2 mixture of DCM, H_2O and TFA (0.7 ml; 0.1 M). The mixture was stirred for 2 h

S10

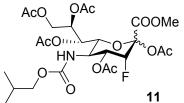

at r.t. (**TLC**: (EtOAc:Hept, 60:40 v/v) $R_f = 0.09$). The mixture was then diluted with H₂O and concentrated in vacuo. The residue was dissolved in DCM (0.7 ml; 0.1 M) and successively acetoxyacetyl chloride (11 µl; 97 µmol; 1.5 eq.) and TEA (45 µl; 324 µmol; 5 eq.) were added. After stirring at r.t. 16 h the mixture was diluted with DCM and washed successively with 0.1M HCl and sat. NaHCO₃. The organic layer was dried over MgSO₄, filtered and concentrated in *vacuo*. Silicagel flash column chromatography ($0\% \rightarrow 60\%$ EtOAc in Hept) afforded (17 mg; 28 μ mol; 43%) as a white solid. **TLC**: (EtOAc:Hept, 80:20 v/v) R_f = 0.19. ¹H NMR (500 MHz, CDCl₃) δ 6.18 (d, J = 9.0 Hz, 1H, NH), 5.64 (ddd, J = 27.9, 11.0, 2.5 Hz, 1H, H-4), 5.28 (dd, J = 5.3, 2.0 Hz, 1H, H-7), 5.13 (ddd, J = 6.3, 5.2, 2.4 Hz, 1H, H-8), 4.95 (dd, J = 49.1, 2.5 Hz, 1H, H-3), 4.61 (d, J = 15.3 Hz, 1H, CHH Glc), 4.56 (dd, J = 12.5, 2.4 Hz, 1H, H-9_a), 4.32 (d, J = 15.3 Hz, 1H, CH**H** Gc), 4.30 – 4.26 (m, 1H, H-6), 4.22 – 4.15 (m, 2H, H-9_b; H-5), 3.84 (s, 3H, OCH₃), 2.20 (s, 3H, CH₃,OAc), 2.19 (s, 3H, CH₃,OAc), 2.17 (s, 3H, CH₃,OAc), 2.11 (s, 3H, CH₃,OAc), 2.05 (s, 3H, CH₃,OAc), 2.05 (s, 3H, CH₃,OAc). ¹³C NMR (126 MHz, CDCl₃) δ 171.05 (CO, Ac), 170.88 (CO, Ac), 170.83 (CO, Ac), 170.53 (CO, Ac), 169.98 (CO, Ac), 168.03 (CO, Ac), 167.35 (CO, C-1), 165.23 (CO, NHGc), 95.38 (d, J = 29.0 Hz, C-2), 87.28 (d, J = 185.5 Hz, C-3), 71.91 (C-6), 71.41 (C-8), 68.27 (C-7), 67.98 (d, J = 17.1 Hz, C-4), 63.01 (CH₂, Gc), 62.20 (C-9), 53.76 (OCH₃), 45.88 (d, J = 2.6 Hz, C-5), 21.11 (CH₃,OAc), 21.07 (CH₃,OAc), 20.95 (CH₃,OAc), 20.85 (2xCH₃,OAc), 20.80 (CH₃,OAc). HR-ESI-TOF/MS (m/z): [M+Na]⁺ calcd. for C₂₄H₃₂FNNaO₁₆, 632.16028; found, 632.15804.


Methyl 5-(azidoacetamido)-2,4,7,8,9-penta-O-acetyl-3,5-dideoxy-3fluoro-D-glycero-β-galacto-non-2-ulopyranosonate (5). Boc inhibitor 12 (20 mg; 33 μmol) was dissolved in a 1:1:2 mixture of respectively DCM, H₂O and TFA (0.65 ml; 0.05 M). The mixture was stirred for 2 h at r.t. (**TLC**: (EtOAc:Hept, 60:40 v/v) $R_f = 0.09$). The mixture was then diluted with water and concentrated in vacuo. The residue was dissolved in DCM (0.33 ml; 0.1 M) and successively AzOSu (42 mg; 167 µmol; 5 eq.), Pyr (27 µl; 334 µmol; 10 eq.) and DMAP (2 mg, 17 µmol; 0.5 eq.) were added. After stirring at r.t. for 23 h the mixture was diluted with DCM and washed successively with 0.1 M HCl and sat. NaHCO₃. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. Silicagel flash column chromatography ($0\% \rightarrow 50\%$ EtOAc in Hept) afforded 5 (3.1 mg; 5.2 µmol; 16%). TLC: (EtOAc:Hept, 60:40 v/v) R_f = 0.20. ¹H NMR (500 MHz, CDCl₃) δ 6.31 (d, J = 8.6 Hz, 1H, NH), 5.54 (ddd, J = 27.5, 10.6, 2.5 Hz, 1H, H-4), 5.34 (dd, J = 5.3, 1.8 Hz, 1H, H-7), 5.13 (td, J = 5.7, 2.4 Hz, 1H, H-8), 4.95 (dd, J = 49.0, 2.5 Hz, 1H, H-3), 4.55 (dd, J = 12.5, 2.4 Hz, 1H, H-9_a), 4.30 – 4.22 (m, 2H, H-5; H-6), 4.19 (dd, J = 12.6, 6.3 Hz, 1H, H-9_b), 3.94 – 3.83 (m, 5H, CH₂ NAz; OCH₃), 2.20 (s, 3H, CH₃,OAc), 2.16 (s, 3H, CH₃,OAc), 2.11 (s, 3H, CH₃,OAc), 2.05 (s, 3H, CH₃,OAc), 2.04 (s, 3H, CH₃,OAc). ¹³C NMR (126 MHz, CDCl₃) δ 170.94 (CO, Ac), 170.84 (CO, Ac), 170.66 (CO, Ac), 170.47 (CO, Ac), 167.52 (CO, Ac), 167.31 (C-1), 165.20 (CO, Az), 95.64 (d, J = 185.7 Hz, C-2), 87.16 (d, J = 185.7 Hz, C-3), 71.95 (C-6), 71.43 (C-8), 68.49 (d, J = 17.2 Hz, C-4), 68.02 (C-7), 62.16 (C-9), 53.82 (OCH₃), 52.89 (CH₂, Az), 49.50 (C-5), 21.13 (CH₃,OAc), 21.06 (CH₃,OAc), 21.00 (CH₃,OAc), 20.91 (CH₃,OAc), 20.81 (CH₃,OAc). HR-ESI-TOF/MS (m/z): [M+Na]⁺ calcd. for C₂₂H₂₉FN₄NaO₁₄, 615.15620; found, 615.15758.

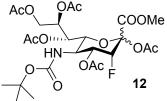

Methyl 5-(4-pentynacetamido)-2,4,7,8,9-penta-O-acetyl-3,5dideoxy-3-fluoro-D-glycero-β-galacto-non-2-ulopyranosonate (6). Boc inhibitor 12 (50 mg; 82 µmol) was dissolved in a 1:1:2 mixture of respectively TFA, H₂O and DCM (1.6 ml; 0.05 M). The mixture was stirred for 2 h at r.t. (TLC: (EtOAc:Hept, 60:40 v/v) $R_f = 0.09$). The mixture was then diluted with water and concentrated in vacuo. The residue was dissolved in DCM (0.83 ml; 0.1 M) and successively 4-Pentynoic acid-OSu (226 mg; 1.158 mmol; 14 eq.) and TEA (69 µl; 495 µmol; 6 eq.) were added. After stirring at r.t. 16 h the mixture was diluted with DCM and washed successively with 0.1M HCl and sat. aq. NaHCO₃. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. Silicagel flash column chromatography ($0\% \rightarrow 55\%$ EtOAc in Hept) afforded 6 (3.3 mg; 5.60 μ mol; 7%) as a white solid. TLC: (EtOAc:Hept, 60:40 v/v) R_f = 0.09. ¹H NMR (500 MHz, CDCl₃) δ 5.60 (ddd, *J* = 27.9, 11.0, 2.6 Hz, 1H, H-4), 5.54 (d, *J* = 9.0 Hz, 1H, NH), 5.37 (dd, J = 5.5, 2.0 Hz, 1H, H-7), 5.15 (ddd, J = 6.3, 5.4, 2.5 Hz, 1H, H-8), 4.95 (dd, J = 49.1, 2.5 Hz, 1H, H-3), 4.53 (dd, J = 12.5, 2.4 Hz, 1H, H-9_a), 4.30 – 4.26 (m, 1H, H-6), 4.21 (dd, J = 12.5, 6.3 Hz, 1H, H-9_b), 4.13 (q, J = 10.3 Hz, 1H, H-5), 3.84 (s, 3H, OCH₃), 2.56 -2.44 (m, 2H, CH₂C=CH), 2.40 - 2.27 (m, 2H, CH₂-CONH), 2.19 (s, 3H, CH₃,OAc), 2.16 (s, 3H, CH₃,OAc), 2.11 (s, 3H, CH₃,OAc), 2.04 (s, 3H, CH₃,OAc), 2.04 (s, 3H, CH₃,OAc), 2.02 (t, J = 2.6 Hz, 1H, HC≡C). ¹³C NMR (126 MHz, CDCl₃) δ 171.38 (CO, Ac), 170.85 (CO, Ac), 170.69 (CO, AC), 170.53 (CO, Ac), 170.31 (CO, Ac), 167.28 (C-1), 165.21 (CONH), 95.29 (d, J = 29.0 Hz, C-2), 87.12 (d, J = 185.1 Hz, C-3), 82.88 (HC=C), 71.75 (C-6), 71.21 (C-8), 69.79 (HC=C), 68.33 -68.14 (m, C-4; C-7), 62.22 (C-9), 53.65 (OCH₃), 46.01 (C-5), 35.67 (CH₂CONH), 21.02 (CH₃,OAc), 20.98 (CH₃,OAc), 20.93 (CH₃,OAc), 20.92 (CH₃,OAc), 20.74 (CH₃,OAc), 14.80 (CH₂C≡CH). HR-ESI-TOF/MS (*m*/*z*): [M+Na]⁺ calcd. for C₂₅H₃₂FNNaO₁₄, 612.17045; found, 612.16924.


Methyl 5-(propargylcarbamado)-2,4,7,8,9-penta-O-acetyl-3,5dideoxy-3-fluoro-D-glycero-β-galacto-non-2-ulopyranosonate (7). Boc inhibitor 12 (50 mg; 82 μmol) was dissolved in a 1:1:2 mixture of respectively DCM, H₂O and TFA (1.6 ml; 0.05 M). The mixture was stirred for 2 h at r.t. (TLC: (EtOAc:Hept, 60:40 v/v) R_f = 0.09). The mixture was then diluted with H₂O and concentrated *in vacuo*. The residue was dissolved in DCM (0.83 ml; 0.1 M) and successively PocOSu (98 mg; 497 μmol; 6 eq.) and TEA (35 μl; 248 μmol; 3 eq.) were added. After stirring at r.t. for 15 h the mixture was diluted with DCM and washed successively with 0.1 M HCl and sat. aq. NaHCO₃. The organic layer was dried over MgSO₄, filtered and concentrated *in vacuo*. Silicagel flash column chromatography (0% → 60% EtOAc in Hept) afforded 7 (20 mg; 83 μmol; 40%) as a white solid. TLC: (EtOAc:Hept, 60:40 v/v) R_f = 0.36. ¹H NMR (500 MHz, CDCl₃) δ 5.53 (dd, *J* = 26.9, 10.8 Hz, 1H, H-4), 5.39 – 5.36 (m, 1H, H-7), 5.18 (td, *J* = 5.9, 2.5 Hz, 1H, H-8), 4.95 (dd, *J* = 49.1, 2.5 Hz, 1H, H-3), 4.87 (d, *J* = 9.5 Hz, 1H, NH), 4.73 (ddd, *J* = 15.5, 5.4, 2.5 Hz, 1H, C*H*H, Poc), 4.57 – 4.49 (m, 2H, C*H*H, Poc; H-9_a), 4.23 – 4.17 (m, 2H, H-9_b; H-6), 3.95 - 3.86 (m, 1H, H-5), 3.84 (s, 3H, OCH₃), 2.47 (t, J = 2.4 Hz, 1H, C≡CH, Poc), 2.18 (s, 3H, CH₃,OAc), 2.17 (s, 3H, CH₃,OAc), 2.13 (s, 3H, CH₃,OAc), 2.05 (s, 3H, CH₃,OAc), 2.04 (s, 3H, CH₃,OAc). ¹³**C** NMR (126 MHz, CDCl₃) δ 170.75 (CO, Ac), 170.69 (CO, Ac), 170.46 (CO, Ac), 170.24 (CO, Ac), 167.27 (C-1), 165.17 (CO, Ac), 154.75 (CO, Poc), 95.20 (d, J = 28.8 Hz, C-2), 87.18 (d, J = 185.1 Hz, C-3), 77.95 (*C*≡CH, Poc), 75.00 (C≡*C*H, Poc), 71.89 (C-6), 71.00 (C-8), 68.32 – 67.98 (m, C-4; C-7), 62.20 (C-9), 53.66 (OCH₃), 53.16 (CH₂, Poc), 47.37 (C-5), 21.00 (CH₃,OAc), 20.94 (CH₃,OAc), 20.92 (CH₃,OAc), 20.82 (CH₃,OAc), 20.72 (CH₃,OAc). HR-ESI-TOF/MS (*m*/*z*): [M+Na]⁺ calcd. for C₂₄H₃₀FNNaO₁₅, 614.14972; found, 614.15007.

5-(alloxycarbamado)-2,4,7,8,9-penta-O-acetyl-3,5-dideoxy-3fluoro-D-glycero-β-galacto-non-2-ulopyranosonate (8). Boc inhibitor 12 (50 mg; 82 μmol) was dissolved in a 1:1:2 mixture of respectively TFA, H₂O and DCM (1.6 ml; 0.05 M). The mixture was stirred for 2 h at r.t. (**TLC**: (EtOAc:Hept, 60:40 v/v) $R_f = 0.09$). The mixture was then diluted with water and concentrated in vacuo. The residue was dissolved in DCM (0.83 ml; 0.1 M) and Alloc-Cl (11 μ l; 99 μ mol; 1.2 eq.) and TEA (69 μ l; 495 μ mol; 6 eq.) were added. After stirring at r.t. for 1 hr additional Alloc-Cl (18 µl; 165 µmol; 2 eq.) was added. The reaction was stirred for 15 h after which the reaction was still not finished, so additional Alloc-CI (90 µl; 844 µmol; 10.2 eq.) and TEA (35 µl; 252 µmol; 3 eq.) were added. After stirring at r.t. for 5.5 h the mixture was diluted with DCM and washed successively with 0.1M HCl and sat. NaHCO3. The organic layer was dried over MgSO₄, filtered and concentrated *in vacuo*. Silicagel flash column chromatography (0% \rightarrow 50% EtOAc in Hept) afforded 8 (7.7 mg; 13 µmol; 16%) as a white solid. TLC: (EtOAc:Hept, 60:40 v/v) R_f = 0.32. ¹H NMR (500 MHz, CDCl₃) δ 5.89 (tdd, J = 16.1, 8.3, 3.3 Hz, 1H, CHH=CH, Alloc), 5.54 (dd, J = 27.7, 10.9 Hz, 1H, H-4), 5.39 (dd, J = 5.5, 2.0 Hz, 1H, H-7), 5.28 (dd, J = 16.1, 2.4 Hz, 1H, CHH=CH, Alloc), 5.21 (d, J = 11.2 Hz, 1H, CHH=CH, Alloc), 5.18 (td, J = 6.0, 2.5 Hz, 1H, H-8), 4.95 (dd, J = 49.1, 2.5 Hz, 1H, H-3), 4.79 (d, J = 9.3 Hz, 1H, NH), 4.60 - 4.45 (m, 3H, H-9_a; OCH₂ Alloc), 4.24 – 4.17 (m, 2H, H-6; H-9_b), 3.94 – 3.87 (m, 1H, H-5), 3.84 (s, 3H, OCH₃), 2.18 (s, 3H, CH₃,OAc), 2.17 (s, 3H, CH₃,OAc), 2.11 (s, 3H, CH₃,OAc), 2.05 (s, 3H, CH₃,OAc), 2.04 (s, 3H, CH₃,OAc). ¹³C NMR (126 MHz, CDCl₃) δ 170.75 (CO, Ac), 170.66 (CO, Ac), 170.45 (CO, Ac), 170.27 (CO, Ac), 167.30 (C-1), 165.22 (CO, Ac), 155.41 (CO, Alloc), 132.65 (CH₂=CH, Alloc), 117.84 (CH₂=CH, Alloc), 95.21 (d, J = 28.8 Hz, C-2), 87.20 (d, J = 184.9 Hz, C-3), 71.98 (C-6), 71.07 (C-8), 68.17 – 67.92 (C-4; C-7), 66.09 (OCH₂, Alloc), 62.24 (C-9), 53.64 (OCH₃), 47.22 (C-5), 20.99 (CH₃,OAc), 20.93 (CH₃,OAc), 20.91 (CH₃,OAc), 20.80 (CH₃,OAc), 20.71 (CH₃,OAc). **HR-ESI-TOF/MS** (*m/z*): [M+Na]⁺ calcd. for C₂₄H₃₂FNNaO₁₅, 616.16537; found, 616.16544.

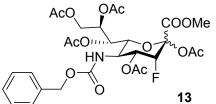


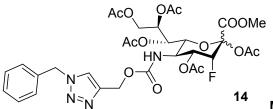
5-(methylcarbamado)-2,4,7,8,9-penta-O-acetyl-3,5-Methyl dideoxy-3-fluoro-D-glycero-β-galacto-non-2-ulopyranosonate (9). Boc inhibitor 12 (50 mg; 82 µmol) was dissolved in a 1:1:3 mixture of respectively TFA, water and DCM (1.6 ml; 0.05 M). The mixture was stirred for 2 h at r.t. (TLC: (EtOAc:Hept, 60:40 v/v) $R_f = 0.09$). The mixture was then diluted with H₂O and concentrated in vacuo. The residue was dissolved in DCM (0.8 ml; 0.1 M) and Me-chloroformate (183 µl; 1.649 mmol; 20 eq.) and TEA (229 µl; 1.649 mmol; 20 eq.) were added. The reaction was stirred at r.t. 16 h after which the mixture was diluted with DCM and washed successively with 0.1M HCl and sat. NaHCO₃. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. Silicagel flash column chromatography ($0\% \rightarrow 50\%$ EtOAc in Hept) afforded 9 (16 mg; 27 µmol; 33%). TLC: (EtOAc:Hept:MeOH, 45:45:10 v/v) R_f = 0.27. ¹H **NMR** (400 MHz, CDCl₃) δ 5.59 – 5.47 (m, 1H, H-4), 5.41 – 5.38 (m, 1H, H-7), 5.17 (ddd, J = 6.3, 5.3, 2.5 Hz, 1H, H-8), 4.95 (dd, J = 49.1, 2.6 Hz, 1H, H-3), 4.77 (d, J = 9.2 Hz, 1H, NH), 4.54 (dd, J = 12.5, 2.6 Hz, 1H, H-9_a), 4.25 - 4.17 (m, 2H, H-9_b; H-6), 3.88 - 3.85 (m, 1H, H-5), 3.84 (s, 3H, CH₃O-C-1), 3.64 (s, 3H, CH₃O-CONH), 2.18 (s, 3H, CH₃,OAc), 2.17 (s, 3H, CH₃,OAc), 2.12 (s, 3H, CH₃,OAc), 2.05 (s, 3H, CH₃,OAc), 2.04 (s, 3H, CH₃,OAc). ¹³C NMR (101 MHz, CDCl₃) δ 170.73 (2xCO, Ac), 170.45 (CO, Ac), 170.30 (CO, Ac), 167.30 (C-1), 165.21 (CO, Ac), 156.17 (NHCO), 95.20 (d, J = 28.7 Hz, C-2), 87.18 (d, J = 184.8 Hz, C-3), 72.04 (C-6), 71.20 (C-8), 68.42 - 68.16 (m, C-4; C-7), 62.26 (C-9), 53.62 (CH₃O-C-1), 52.76 (CH₃O-CONH), 47.26 (C-5), 20.99 (CH₃,OAc), 20.91 (CH₃,OAc), 20.90 (CH₃,OAc), 20.78 (CH₃,OAc), 20.68 (CH₃,OAc). HR-ESI-**TOF/MS** (*m*/*z*): [M+Na]⁺ calcd. for C₂₂H₃₀FNNaO₁₅, 590.14972; found, 590.14874.



Methyl 5-(ethylcarbamado)-2,4,7,8,9-penta-O-acetyl-3,5-dideoxy-**3-fluoro-D-glycero-β-galacto-non-2-ulopyranosonate (10)**. Boc inhibitor **12** (50 mg; 82 μmol) was dissolved in a 1:1:3 mixture of respectively TFA, water and DCM (1.6 ml; 0.05 M). The mixture was stirred for 2 h at r.t. (**TLC**: (EtOAc:Hept, 60:40 v/v) $R_f = 0.09$). The mixture was then diluted with water and concentrated in vacuo. The residue was dissolved in DCM (0.8 ml; 0.1 M) and Et-chloroformate (197 µl; 1.649 mmol; 20 eq.) and TEA (229 µl; 1.649 mmol; 20 eq.) were added. The reaction was stirred at r.t. 16 h after which the mixture was diluted with DCM and washed successively with 0.1M HCl and sat. NaHCO₃. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. Silicagel flash column chromatography ($0\% \rightarrow 50\%$ EtOAc in Hept) afforded **10** (8 mg; 13 μmol; 16%). **TLC**: (EtOAc:Hept:MeOH, 45:45:10 v/v) R_f = 0.28. ¹H **NMR** (400 MHz, CDCl₃) δ 5.58 – 5.46 (m, 1H, H-4), 5.40 (dt, J = 5.0, 2.4 Hz, 1H, H-7), 5.18 (td, J = 5.8, 2.7 Hz, 1H, H-8), 4.95 (dd, J = 49.2, 2.5 Hz, 1H, H-3), 4.65 (d, J = 9.3 Hz, 1H, NH), 4.57 -4.51 (m, 1H, H-9_a), 4.24 – 4.16 (m, 2H, H-9_b; H-6), 4.11 – 4.03 (m, 2H, CH₂, Et), 3.90 (d, J = 10.3 Hz, 1H, H-5), 3.84 (s, 3H, OCH₃), 2.18 (s, 3H, CH₃,OAc), 2.17 (s, 3H, CH₃,OAc), 2.12 (s, 3H, CH₃,OAc), 2.05 (s, 3H, CH₃,OAc), 2.04 (s, 3H, CH₃,OAc), 1.25 – 1.20 (m, 3H, CH₃,Et). ¹³C NMR (101 MHz, CDCl₃) δ 170.73 (CO, Ac), 170.66 (CO, Ac), 170.42 (CO, Ac), 170.29 (CO, Ac),

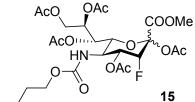
167.27 (C-1), 165.42 (CO, Ac), 155.74 (CONH), 95.24 (d, J = 28.6 Hz, C-2), 87.23 (d, J = 184.8 Hz, C-3), 72.15 (C-6), 71.16 (C-8), 68.20 (C-4), 67.89 (C-7), 62.27 (C-9), 61.63 (CH₂, Et), 53.62 (OCH₃), 47.13 (C-5), 20.99 (CH₃,OAc), 20.93 (CH₃,OAc), 20.91 (CH₃,OAc), 20.78 (CH₃,OAc), 20.71 (CH₃,OAc), 14.62 (CH₃,Et). HR-ESI-TOF/MS (m/z): [M+Na]⁺ calcd. for C₂₃H₃₂FNNaO₁₅, 604.16537; found, 604.16438.

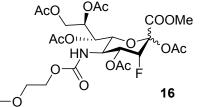

Methyl 5-(isobutylcarbamado)-2,4,7,8,9-penta-O-acetyl-3,5dideoxy-3-fluoro-D-glycero-β-galacto-non-2-ulopyranosonate (11). Boc inhibitor 12 (18 mg; 30 µmol) was dissolved in a 1:1:3 mixture of respectively TFA, H₂O and DCM (0.6 ml; 0.05 M). The mixture was stirred for 2 h at r.t. (**TLC**: (EtOAc:Hept, 60:40 v/v) $R_f = 0.09$). The mixture was then diluted with H₂O and concentrated in vacuo. The mixture was redissolved in Tol and concentrated in vacuo three times. The residue was then dissolved in DCM (0.3 ml; 0.1 M) and ⁱBu chloroformate (76 µl; 589 µmol; 20 eq.) and TEA (82 µl; 589 µmol; 20 eq.) were added. The reaction was stirred at r.t. 16 h after which the mixture was diluted with DCM and washed successively with 0.1M HCl and sat. NaHCO₃. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. Silicagel flash column chromatography ($0\% \rightarrow 50\%$ EtOAc in Hept) afforded **11** (6 mg; 9.8 µmol; 33%). **TLC**: (EtOAc:Hept:MeOH, 45:45:10 v/v) R_f = 0.40. ¹**H NMR** (400 MHz, CDCl₃) δ 5.64 – 5.49 (m, 1H, H-4), 5.42 – 5.37 (m, 1H, H-7), 5.18 (td, J = 6.0, 2.5 Hz, 1H, H-8), 4.95 (dd, J = 49.2, 2.5 Hz, 1H, H-3), 4.73 (d, J = 9.1 Hz, 1H, NH), 4.53 (dd, J = 12.5, 2.5 Hz, 1H, H-9_a), 4.25 – 4.17 (m, 2H, H-9_b; H-6), 3.92 – 3.75 (m, 6H, H-5; OCH₃; CH₂, ⁱBu), 2.18 (s, 3H, CH₃,OAc), 2.17 (s, 3H, CH₃,OAc), 2.11 (s, 3H, CH₃,OAc), 2.04 (s, 3H, CH₃,OAc), 2.04 (s, 3H, CH₃,OAc), 1.95 – 1.84 (m, 1H, CH, ⁱBu), 0.90 (d, *J* = 6.8 Hz, 6H, 2xCH₃,ⁱBu). ¹³C NMR (101 MHz, CDCl₃) δ 170.72 (CO, Ac), 170.39 (CO, Ac), 170.21 (CO, Ac), 170.00 (CO, Ac), 167.28 (C-1), 165.24 (CO, Ac), 155.87 (CONH), 95.25 (d, J = 29.0 Hz, C-2), 87.24 (d, J = 184.8 Hz, C-3), 72.00 (C-6), 71.56 (CH₂, ⁱBu), 71.06 (C-8), 68.16 – 68.01 (m, C-7; C-4), 62.21 (C-9), 53.62 (OCH₃), 47.18 (C-5), 28.05 (CH₂, ⁱBu), 20.98 (CH₃,OAc), 20.92 (CH₃,OAc), 20.89 (CH₃,OAc), 20.75 (CH₃,OAc), 20.70 (CH₃,OAc), 19.02 (2xCH₃,ⁱBu) HR-ESI-TOF/MS (m/z): [M+Na]⁺ calcd. for C₂₅H₃₆FNNaO₁₅, 632.19667; found, 632.19698.


Methyl 5-(tert-butoxycarbamado)-2,4,7,8,9-penta-O-acetyl-3,5dideoxy-3-fluoro-D-glycero-β-galacto-non-2-ulopyranosonate (12). To a solution of 21 (789 mg; 1.39 mmol) in Pyr (12 ml; 148 mmol; 107 eq.), Ac₂O (6 ml; 63.6 mmol; 45.7 eq.) was slowly added. After stirring at r.t. for 24 h, the mixture was concentrated in vacuo using Tol for coevaporation. The residue was dissolved in EtOAc and washed successively with HCI (0.1M) and sat. aq. NaHCO₃. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. Silicagel flash column chromatography ($0\% \rightarrow 50\%$ EtOAc in Hept) afforded **12** (717 mg; 1.176 mmol; 95%) as a white foam. **TLC**: (EtOAc:Hept, 50:50 v/v) $R_f = 0.42$ ¹H NMR (500 MHz, CDCl₃)

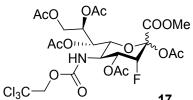
S15

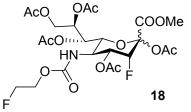
δ 5.46 – 5.34 (m, 2H, H-7; H-4), 5.18 – 5.11 (m, 1H, H-8), 4.92 (dd, J = 49.1, 2.5 Hz, 1H, H-3), 4.60 – 4.54 (m, 1H, H-9_a), 4.48 (d, J = 9.5 Hz, 1H, NH), 4.19 (dd, J = 12.4, 6.6 Hz, 1H, H-9_b), 4.12 – 3.97 (m, 2H, H-6; H-5), 3.84 (s, 3H, OCH₃), 2.17 (s, 3H, CH₃,OAc), 2.16 (s, 3H, CH₃,OAc), 2.12 (s, 3H, CH₃,OAc), 2.05 (s, 3H, CH₃,OAc), 2.04 (s, 3H, CH₃,OAc), 1.40 (s, 9H, [†]Bu, Boc). ¹³**C NMR** (126 MHz, CDCl₃) δ 170.73 (CO, Ac), 170.48 (CO, Ac), 170.36 (CO, Ac), 170.25 (CO, Ac), 167.24 (CO, Ac), 165.28 (C-1), 154.88 (CO, Boc), 95.33 (d, J = 29.0 Hz, C-2), 87.21 (d, J = 185.1 Hz, C-3), 80.51 (**C**(CH₃)₃, Boc), 72.67 (C-6), 71.39 (C-8), 68.97 (d, J = 17.2 Hz, C-4), 68.09 (C-7), 62.32 (C-9), 53.60 (OCH₃), 46.32 (C-5), 28.27 ([†]Bu, Boc), 21.00 (CH₃,OAc), 20.90 (CH₃,OAc), 20.86 (CH₃,OAc), 20.82 (CH₃,OAc), 20.74 (CH₃,OAc). **HR-ESI-TOF/MS** (*m*/*z*): [M+Na]⁺ calcd. for C₂₅H₃₆FNNaO₁₅, 632.19667; found, 632.19540.

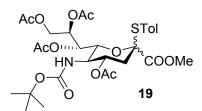

Methyl 5-(benzylcarbamado)-2,4,7,8,9-penta-O-acetyl-3,5dideoxy-3-fluoro-D-glycero-β-galacto-non-2-ulopyranosonate (13). Boc inhibitor 12 (50 mg; 82 µmol) was dissolved in a 1:1:2 mixture of respectively TFA, H₂O and DCM (1.6 mL; 0.05 M). The mixture was stirred for 2 h at r.t. (**TLC**: (EtOAc:Hept, 60:40 v/v) $R_f = 0.09$). The mixture was then diluted with H_2O and concentrated *in vacuo*. The residue was dissolved in DCM (0.83 mL; 0.1 M) and Cbz-Cl (14 µl; 99 µmol; 1.2 eq.) and TEA (69 µl; 495 µmol; 6 eq.) were added. After stirring at r.t. for 1 hr additional Cbz-Cl (24 µl; 165 µmol; 2 eq.) was added. The reaction was stirred for 15 h after which the reaction was still not finished, so additional Cbz-Cl (125 µl; 874 µmol; 10.5 eq.) and TEA (35 µl; 252 µmol; 3 eq.) were added. After stirring at r.t. for 5.5 h the mixture was diluted with DCM and washed successively with 0.1M HCl and sat. NaHCO₃. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. Silicagel flash column chromatography ($0\% \rightarrow 50\%$ EtOAc in Hept) afforded **13** (3.3 mg; 5.1 µmol; 6%) as a white solid. **TLC**: (EtOAc:Hept, 60:40 v/v) R_f = 0.43. ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.30 (m, 5H, 5xCH, Cbz), 5.52 (dd, J = 27.7, 11.0 Hz, 1H, H-4), 5.41 (dd, J = 5.8, 2.0 Hz, 1H, H-7), 5.18 (td, J = 5.9, 2.6 Hz, 1H, H-8), 5.15 (d, J = 12.4 Hz, 1H, CHH, Cbz), 5.02 – 4.88 (m, 2H, CHH, Cbz; H-3), 4.78 (d, J = 9.5 Hz, 1H, NH), 4.56 - 4.49 (m, 1H, H-9_a), 4.24 - 4.17 (m, 2H, H-9_b; H-6), 3.91 (q, J = 10010.5 Hz, 1H, H-5), 3.83 (s, 3H, OCH₃), 2.16 (s, 3H, CH₃,OAc), 2.17 (s, 3H, CH₃,OAc), 2.03 (s, 3H, CH₃,OAc), 2.02 (s, 3H, CH₃,OAc), 1.97 (s, 3H, CH₃,OAc). ¹³C NMR (126 MHz, CDCl₃) δ 170.74 (CO, Ac), 170.64 (CO, Ac), 170.43 (CO, Ac), 170.20 (CO, Ac), 167.26 (C-1), 165.21 (CO, Ac), 155.54 (CO, Cbz), 136.39 (C, Cbz), 128.68 (2xCH, ortho Cbz), 128.36 (CH, para Cbz), 128.15 (2xCH, meta Cbz), 95.22 (d, J = 29.0 Hz, C-2), 87.21 (d, J = 184.9 Hz, C-3), 71.99 (C-6), 70.98 (C-8), 68.11 - 67.91 (m, C-4; C-7), 67.18 (CH₂, Cbz), 62.21 (C-9), 53.64 (OCH₃), 47.27 (C-5), 20.97 (CH₃,OAc), 20.94 (CH₃,OAc), 20.92 (CH₃,OAc), 20.72 (CH₃,OAc), 20.62 (CH₃,OAc). HR-**ESI-TOF/MS** (*m*/*z*): [M+Na]⁺ calcd. for C₂₈H₃₄FNNaO₁₅, 666.18102; found, 666.18010.

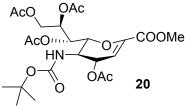

Methyl

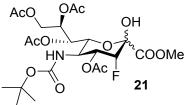
5-[(1-benzyl-1*H*-1,2,3-triazol-4-


yl)methylcarbamado]-2,4,7,8,9-penta-O-acetyl-3,5-dideoxy-3-fluoro-D-glycero-β-galacto**non-2-ulopyranosonate (14)**. To a mixture of **7** (10 mg; 17 μ mol) in a 1:9 mixture of H₂O and ^tBuOH (0.19 ml; 0.09 M), Bn-N₃ (4.5 mg; 34 µmol; 2 eq.) was added. A premixture of TBTA (29 mg), DMF (750 µL) and Cul (5.1 mg) was agitated until a homogenous solution was obtained. The TBTA mixture (95 μ I) was added to the H₂O/^tBuOH mixture and 10 mg of copper flakes were added. The reaction was stirred at r.t. 16 h, filtered and concentrated in vacuo. Silicagel flash column chromatography ($0\% \rightarrow 80\%$ EtOAc in Hept) afforded **14** (5.7 mg; 17 µmol; 46%) as a white solid. **TLC**: (EtOAc:Hept, 80:20 v/v) $R_f = 0.37$. ¹**H NMR** (500 MHz, CDCl₃) δ 7.64 (s, 1H, CH, triazole), 7.37 (d, J = 2.2 Hz, 2H, 2xCH, ortho Bn), 7.32 – 7.29 (m, 2H, 2xCH, meta Bn), 6.91 (dd, J = 10.3, 6.8 Hz, 1H, CH, para Bn), 5.58 - 5.41 (m, 2H, CH₂, Bn), 5.34 - 5.28 (m, 1H, H-7),5.23 – 5.05 (m, 2H, CH₂, Poc), 5.00 (d, J = 8.9 Hz, 1H, NH), 4.93 (dd, J = 49.1, 2.5 Hz, 1H, H-3), 4.50 (dd, J = 12.6, 2.6 Hz, 1H, H-9a), 4.20 – 4.14 (m, 2H, H-9b; H-6), 3.92 (q, J = 10.4 Hz, 1H, H-5), 3.83 (s, 3H, OCH₃), 2.16 (s, 3H, CH₃,OAc), 2.14 (s, 3H, CH₃,OAc), 2.02 (s, 3H, CH₃,OAc), 2.02 (s, 3H, CH₃,OAc), 1.97 (s, 3H, CH₃,OAc). ¹³C NMR (126 MHz, CDCl₃) δ 170.88 (CO, Ac), 170.72 (CO, Ac), 170.52 (CO, Ac), 170.34 (CO, Ac), 167.39 (C-1), 165.27 (CO, Ac), 155.63 (CO, Poc), 134.64 (C, Bn), 129.38 (2xCH, meta Bn), 129.09 (CH, para Bn), 128.44 (2xCH, ortho Bn), 125.00 (CH, triazole), 95.25 (d, J = 28.9 Hz, C-2), 87.21 (d, J = 185.0 Hz, C-3), 72.15 (C-6), 71.15 (C-8), 68.47 (d, J = 17.0 Hz, C-4), 68.30 (C-7), 62.30 (C-9), 58.65 (CH₂, Poc), 54.52 (CH₂, Bn), 53.74 (OCH₃), 47.22 (C-5), 21.07 (CH₃,OAc), 21.05 (CH₃,OAc), 21.01 (CH₃,OAc), 20.78 (CH₃,OAc), 20.74 (CH₃,OAc). HR-ESI-TOF/MS (m/z): [M+Na]⁺ calcd. for C₃₁H₃₇FN₄NaO₁₅, 747.21371; found, 747.21371.


 -1^{15} Methyl 5-(butylcarbamado)-2,4,7,8,9-penta-O-acetyl-3,5dideoxy-3-fluoro-D-glycero-β-galacto-non-2-ulopyranosonate (15). Boc inhibitor 12 (25 mg; 41 μmol) was dissolved in DCM (1 ml; 0.041 M) and TfOH (14 μl; 164 μm; 4 eq.)) was added and stirred for 5 min at r.t. (TLC: (EtOAc:Hept, 60:40 v/v) R_f = 0.09) then n-Bu chloroformate (27 μl; 205 μm; 5 eq.) and TEA (57 μl; 410 μm; 10 eq.) were added. The reaction was left stirring for 16 h at r.t., diluted with an excess of DCM washed successively with 0.1M HCl and sat. NaHCO₃. The organic layer was dried over MgSO₄, filtered and concentrated *in vacuo*. Silicagel flash column chromatography (0% → 50% EtOAc in Hept) afforded 15 (8 mg; 41 μmol; 32%) as a white solid. TLC: (EtOAc) R_f = 0.90. ¹H NMR (500 MHz, CDCl₃) δ 5.54 (dd, *J* = 27.9, 11.3 Hz, 1H, H-4), 5.39 (d, *J* = 5.9 Hz, 1H, H-7), 5.18 (td, *J* = 6.0, 2.5 Hz, 1H, H-8), 4.95 (dd, *J* = 49.2, 2.5 Hz, 1H, H-3), 4.73 – 4.66 (m, 1H, NH), 4.53 (dd, *J* = 12.4, 2.6 Hz, 1H, H-9_a), 4.24 – 4.17 (m, 2H, H-9_b; H-6), 4.08 – 3.96 (m, 2H, (CO)CH₂, n-Bu), 3.93 – 3.84 (m, 1H, H-5), 3.84 (s, 3H, OCH₃), 2.18 (s, 3H, CH₃,OAc), 2.17 (s, 3H, CH₃,OAc), 2.11 (s, 3H, CH₃, OAc), 2.05 (s, 3H, CH₃,OAc), 2.04 (s, 3H, CH₃,OAc), 1.61 – 1.54 (m, 2H, CH₂CH₂CH₂, n- Bu), 1.39 – 1.32 (m, 2H, CH₂CH₃, n-Bu), 0.93 (t, J = 7.4 Hz, 3H, CH₂CH₃, n-Bu). ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.59 (CO, Ac), 170.45 (CO, Ac), 170.25 (CO, Ac), 170.09 (CO, Ac), 167.14 (C-1), 165.10 (CO, Ac), 155.70 (CONH), 95.09 (d, J = 28.8 Hz, C-2), 87.08 (d, J = 184.7 Hz, C-3),71.92 (C-6), 70.96 (C-8), 69.30 (d, J = 13.5 Hz, C-4), 68.00 (C-7), 65.31 (C(O)CH₂, n-Bu), 62.09 (C-9), 53.48 (OCH₃), 46.99 (C-5), 30.85 (CH₂CH₂CH₂, n-Bu), 20.84 (CH₃,OAc), 20.78 (CH₃,OAc), 20.75 (CH₃,OAc), 20.62 (CH₃,OAc), 20.56 (CH₃,OAc), 18.93 (CH₂CH₃, n-Bu), 13.68 (CH₂CH₃, n-Bu). ¹⁹F NMR (470 MHz, CDCl₃) δ - 209.10 (dd, J = 49.1, 27.9 Hz). HR-ESI-TOF/MS (*m*/*z*): [M+Na]⁺ calcd. for C₂₅H₃₆FN₄NaO₁₅, 632.19667; found, 632.19640.


5-(2-methoxy-ethylcarbamado)-2,4,7,8,9-penta-O-Methyl acetyl-3,5-dideoxy-3-fluoro-D-glycero-β-galacto-non-2-ulopyranosonate (16). Boc inhibitor 12 (40 mg; 66 µmol) was dissolved in DCM (1 ml; 0.066 M) and TfOH (23 µl; 262 µm; 4 eq.)) was added and stirred for 5 min at r.t. (**TLC**: (EtOAc:Hept, 60:40 v/v) $R_f = 0.09$) then 2-methoxyethyl chloroformate (38 µl; 328 µm; 5 eq.) and TEA (91 µl; 656 µm; 10 eq.) were added. The reaction was left stirring for 16 h at r.t., diluted with an excess of DCM washed successively with 0.1M HCI and sat. NaHCO₃. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. Silicagel flash column chromatography ($0\% \rightarrow 50\%$ EtOAc in Hept) afforded **16** (36 mg; 66 µmol; 90%) as a white solid. **TLC**: (EtOAc) $R_f = 0.80.^{1}H$ NMR (500 MHz, CDCl₃) δ 5.51 (ddd, J = 27.9, 11.1, 3.1 Hz, 1H, H-4), 5.39 (dd, J = 5.7, 1.9 Hz, 1H, H-7), 5.21 – 5.14 (m, 1H, H-8), 4.95 (dd, J = 49.1, 2.5 Hz, 1H, H3), 4.86 (d, J = 9.1 Hz, 1H, NH), 4.52 (dd, J = 12.5, 2.6 Hz, 1H, H-9a), 4.23 -4.15 (m, 4H, H-9b, H-6, CH₂CH₂C(O)), 3.92 - 3.86 (m, 1H, H-5), 3.83 (s, 3H, COOCH₃), 3.55 (ddd, J = 6.6, 5.2, 2.7 Hz, 2H, CH₃OCH₂CH₂), 3.37 (s, 3H, OCH₃), 2.17 (s, 3H, CH₃, OAc), 2.15 (s, 3H, CH₃, OAc), 2.11 (s, 3H, CH₃, OAc), 2.04 (s, 3H, CH₃, OAc), 2.03 (s, 3H, CH₃, OAc). ¹³C NMR (126 MHz, CDCl₃) δ 170.61 (CO), 170.44 (CO), 170.26 (CO), 170.04 (CO), 167.17 (CO), 165.07 (CO), 155.43 (CONH), 95.05 (d, J = 28.9 Hz, C-2), 87.01 (d, J = 184.8 Hz, C-3), 71.82 (C-6), 70.66 (C-8), 70.61 $CH_2C(O)$, 68.16 (d, J = 17.1 Hz, C-4), 67.98 (C-7), 64.46 (CH₃OCH₂CH₂), 62.06 (C-9), 58.87 (OCH₃), 53.47 (COOCH₃), 46.99 (C-5), 20.83 (CH₃, OAc), 20.78 (CH₃, OAc), 20.76 (CH₃, OAc), 20.63 (CH₃, OAc), 20.56 (CH₃, OAc). ¹⁹F NMR (470 MHz, CDCl₃) δ -209.21 (dd, J = 49.2, 27.9 Hz). HR-ESI-TOF/MS (m/z): [M+Na]⁺ calcd. for C₂₄H₃₄FNNaO₁₆, 634.17593; found, 634.17656.


¹⁷ Methyl 5-(2,2,2-trichloroethylcarbamado)-2,4,7,8,9-penta-Oacetyl-3,5-dideoxy-3-fluoro-D-glycero-β-galacto-non-2-ulopyranosonate (17). Boc inhibitor 12 (27 mg; 44 µmol) was dissolved in DCM (1 ml; 0.044 M) and TfOH (16 µl; 262 µm; 4 eq.)) was added and stirred for 5 min at r.t. (TLC: (EtOAc:Hept, 60:40 v/v) R_f = 0.09) TrocCl (31 µl; 221 µm; 5 eq.) and TEA (62 µl; 443 µm; 10 eq.) were added. The reaction was left stirring for 16 h at r.t., diluted with an excess of DCM washed successively with 0.1M HCl and sat. NaHCO₃. The organic layer was dried over MgSO₄, filtered and concentrated *in vacuo*. Silicagel flash column chromatography (0% → 50% EtOAc in Hept) afforded **17** (5.2 mg; 66 μmol; 17%) as a white solid. **TLC**: (EtOAc) R_f = 0.85. ¹**H NMR** (500 MHz, CDCl₃) δ 5.67 (ddd, *J* = 27.9, 11.1, 2.5 Hz, 1H, H-4), 5.37 (dd, *J* = 6.3, 1.7 Hz, 1H, H-7), 5.26 – 5.16 (m, 2H, NH, H-8), 4.97 (dd, *J* = 49.1, 2.5 Hz, 1H, H3), 4.91 (d, 1H, C*H*H Troc), 4.53 (d, *J* = 12.1 Hz, 1H, CH*H* Troc), 4.49 (dd, *J* = 12.6, 2.5 Hz, 1H, H-9a), 4.29 (d, *J* = 10.4 Hz, 1H, H-6), 4.23 (dd, *J* = 12.6, 5.6 Hz, 1H, H-9b), 3.84 (s, 3H, OCH₃), 3.83 – 3.78 (m, 1H, H-5), 2.18 – 2.17 (m, 6H, 2xCH₃, OAc), 2.17 (s, 3H, CH₃, OAc), 2.04 (s, 3H, CH₃, OAc), 2.04 (s, 3H, CH₃, OAc), 167.04 (CO), 164.93 (CO), 153.75 (CONH), 95.05 (d, *J* = 28.9 Hz, C-2), 86.97 (d, *J* = 184.9 Hz, C-3), 95.11 (CCl₃ Troc), 74.33 (CH₂ Troc), 70.99 (C-6), 70.50 (C-8), 67.85 (C-7), 67.62 (d, *J* = 17.5 Hz, C-4), 61.84 (C-9), 53.50 (OCH₃), 47.43 (C-5), 30.93 (CH₃, OAc), 20.79 (CH₃, OAc), 20.73 (CH₃, OAc), 20.65 (CH₃, OAc), 20.52 (CH₃, OAc). ¹⁹**F NMR** (470 MHz, CDCl₃) δ -209.54 (dd, *J* = 49.1, 27.7 Hz). **HR-ESI-TOF/MS** (*m/z*): [M+Na]⁺ calcd. for C₂₃H₂₉Cl₃FNNaO₁₅, 706.04845; found, 706.04999.


Methyl 5-(2-fluoroethylcarbamado)-2,4,7,8,9-penta-O-acetyl-**3,5-dideoxy-3-fluoro-D-glycero-β-galacto-non-2-ulopyranosonate (18)**. Boc inhibitor **12** (27 mg; 44 µmol) was dissolved in DCM (1 ml; 0.044 M) and TfOH (16 µl; 262 µm; 4 eq.)) was added and stirred for 5 min at r.t. (**TLC**: (EtOAc:Hept, 60:40 v/v) $R_f = 0.09$) 2-fluoroethyl chloroformate (21 µl; 221 µm; 5 eq.) and TEA (62 µl; 443 µm; 10 eq.) were added. The reaction was left stirring for 16 h at r.t., diluted with an excess of DCM washed successively with 0.1M HCl and sat. NaHCO₃. The organic layer was dried over MgSO₄, filtered and concentrated *in vacuo*. Silicagel flash column chromatography ($0\% \rightarrow 50\%$ EtOAc in Hept) afforded **18** (16 mg; 66 µmol; 60%) as a white solid. TLC: (EtOAc) R_f = 0.85. ¹H NMR (500 MHz, CDCl₃) δ 5.51 (ddd, J = 27.9, 11.0, 2.5 Hz, 1H, H-4), 5.40 (dd, J = 5.4, 2.0 Hz, 1H, H-7), 5.17 (td, J = 5.9, 2.5 Hz, 1H, H-8), 4.95 (dd, J = 49.1, 2.5 Hz, 1H, H3), 4.94 (d, J = 9.4 Hz, 1H, NH), 4.67 – 4.46 (m, 3H, FCH₂CH₂, H-9a), 4.41 – 4.24 (m, 2H FCH₂CH₂), 4.25 – 4.16 (m, 2H, H-9b, H-6), 4.00 – 3.89 (m, 1H, H-5), 3.84 (s, 3H, OCH₃), 2.18 (s, 3H, CH₃, OAc), 2.16 (s, 3H, CH₃, OAc), 2.12 (s, 3H, CH₃, OAc), 2.05 (s, 3H, CH₃, OAc), 2.04 (s, 3H, CH₃, OAc). ¹³C NMR (126 MHz, CDCl₃) δ 170.63 (CO), 170.48 (CO), 170.37 (CO), 170.12 (CO), 167.13 (CO), 165.04 (CO), 155.24 (CONH), 95.07 (d, J = 28.7 Hz, C-2), 87.03 (d, J = 185.2 Hz, C-3), 81.60 (d, J = 170.2 Hz, FCH₂CH₂), 71.91 (C-6), 71.00 (C-8), 68.21 (d, J = 17.3 Hz, C-4), 67.96 (C-7) 64.29 (d, J = 19.9 Hz, FCH₂CH₂), 62.02 (C-9), 53.50 (OCH₃), 47.05 (C-5), 20.83 (CH₃, OAc), 20.77 (CH₃, OAc), 20.75 (CH₃, OAc), 20.57 (CH₃, OAc), 20.54 (CH₃, OAc). ¹⁹F NMR (470 MHz, CDCl₃) δ -209.07 (dd, J = 49.1, 27.9 Hz). HR-ESI-TOF/MS (m/z): $[M+Na]^+$ calcd. for C₂₃H₃₁F₂NNaO₁₅, 622.15594; found, 622.15531.

Methyl 5-(tert-butoxycarbamado)-4,7,8,9-penta-O-acetyl-2,3,5dideoxy-2-para-methylthiophenol-D-glycero-β-galacto-non-2-ulopyranosonate (19). As described previously⁸, thiocresol protected NBoc methyl ester sialic acid (8.39 g; 17.2 mmol) was dissolved in pyr (62 ml; 764 mmol; 44.4 eq.). Ac₂O (36 ml; 382 mmol; 22.2 eq.) was slowly added. After stirring at r.t. for 7 h, the mixture was concentrated *in vacuo* using Tol for co-evaporation. The residue was dissolved in EtOAc and washed successively with HCI (0.1 M) and sat. aq. NaHCO₃. The organic layer was dried over MgSO₄ and filtered and concentrated in vacuo. Silicagel flash column chromatography ($0\% \rightarrow 50\%$ EtOAc in Hept) afforded **19** (10.26 g; 15.6 mmol; 91%) as a white foam. **TLC**: (EtOAc:Hept, 50:50 v/v) R_f = 0.47 ¹H NMR (500 MHz, CDCl₃) δ 7.32 (d, J = 7.7 Hz, 2H, 2xCH, meta STol), 7.14 (d, J = 7.7 Hz, 2H, 2xCH, ortho STol), 5.55 (t, J = 2.6 Hz, 1H, H-7), 5.33 (td, J = 11.1, 4.8 Hz, 1H, H-4), 5.01 (dt, J = 8.5, 2.5 Hz, 1H, H-8), 4.55 $(dd, J = 10.5, 2.6 Hz, 1H, H-6), 4.51 (dd, J = 12.2, 2.3 Hz, 1H, H-9_a), 4.45 (d, J = 10.7 Hz, 1H, 1H)$ NH), 4.04 (dd, J = 12.2, 8.5 Hz, 1H, H-9_b), 3.79 (q, J = 10.6 Hz, 1H, H-5), 3.61 (s, 3H, OCH₃), 2.67 (dd, J = 13.8, 4.8 Hz, 1H, H-3_{ea}), 2.34 (s, 3H, CH₃,STol), 2.10 (s, 3H, CH₃,OAc), 2.08 (s, 3H, CH₃,OAc), 2.04 (s, 4H, H-3_{ax}; CH₃,OAc), 1.97 (s, 3H, CH₃,OAc), 1.40 (s, 9H, ^tBu, Boc). ¹³C NMR (126 MHz, CDCl₃) δ 170.98 (CO, OAc), 170.61 (CO, OAc), 170.43 (CO, OAc), 169.93 (CO, OAc), 168.48 (C-1), 155.35 (CO, Boc), 140.22 (C-CH₃,STol) 136.38 (2xCH, meta STol), 129.99 (2xCH ortho STol), 125.41 (C-S, STol), 88.87 (C-2), 80.29 (C(CH₃)₃, Boc), 73.34 (C-6), 72.90 (C-8), 69.51 (C-4), 69.12 (C-7), 62.92 (C-9), 52.68 (OCH₃), 50.96 (C-5), 37.59 (C-3), 28.28 (^tBu, Boc), 21.44 (CH₃,STol), 21.21 (CH₃,OAc), 20.94 (CH₃,OAc), 20.83 (CH₃,OAc), 20.82 (CH₃,OAc). HR-**ESI-TOF/MS** (*m*/*z*): [M+Na]⁺ calcd. for C₃₀H₄₁NNaO₁₃S, 678.21963; found, 678.21799.

methyl 5-(tert-butoxycarbamado]-4,7,8,9-tetra-O-acetyl-2,6anhydro-3,5-dideoxy-D-glycero-D-galacto-non-2-enonate (20). To a solution of 19 (2.757 g; 4.22 mmol) in DCM (42.2 ml; 0.1 M), slowly Br₂ (0.239 ml; 4.64 mmol; 1.1 eq.) was added. After 2.5 h stirring at r.t., the reaction was diluted with DCM and washed with 10% Na₂S₂O₃. The milky organic layer was dried over MgSO₄, filtered and the clear filtrate was extracted once more with 10% Na₂S₂O₃ aq. before drying over MgSO₄, filtering. The filtrate was concentrated *in vacuo*, redissolved in DCM (42.0 ml; 0.1 M) and TEA (1.699 g; 16.79 mmol; 4 eq.) was added. The reaction was stirred 16 h at r.t. and concentrated *in vacuo*. The residue was dissolved in EtOAc and washed successively with HCI (0.1 M) and sat. aq. NaHCO₃. The organic layer was dried over MgSO₄, filtered and again concentrated *in vacuo*. Silicagel flash column chromatography (0% \rightarrow 45% EtOAc in Hept) afforded **20** (1.734 g; 3.26 mmol; 78% *two steps*) as a white solid. **TLC**: (EtOAc:Hept, 60:40 v/v) R_f = 0.62 ¹H NMR (500 MHz, CDCl₃) δ 5.99 (d, *J* = 3.1 Hz, 1H, H-3), 5.55 (t, *J* = 4.3 Hz, 1H, H-7), 5.47 (dd, *J* = 7.5, 3.1 Hz, 1H, H-4), 5.37 (ddd, *J* = 6.8, 4.9, 3.4 Hz, 1H, H-8), 4.65 (d, *J* = 9.9 Hz, 1H, NH), 4.60 (dd, *J* = 12.3, 3.4 Hz, 1H, H-9_a), 4.33 (dd, *J* = 9.0, 3.8 Hz, 1H, H-6), 4.19 (dd, *J* = 12.2, 6.8 Hz, 1H, H-9_b), 4.09 (q, *J* = 8.9 Hz, 1H, H-5), 3.80 (s, 3H, OCH₃), 2.13 (s, 3H, CH₃,OAc), 2.08 (s, 3H, CH₃,OAc), 2.06 (s, 3H, CH₃,OAc), 1.41 (s, 9H, [†]Bu, Boc). ¹³**C NMR** (126 MHz, CDCl₃) $\bar{0}$ 170.73 (CO, Ac), 170.68 (CO, Ac), 170.05 (CO, Ac), 169.91 (CO, Ac), 161.78 (C-1), 154.98 (CO, Boc), 145.15 (C-2), 108.11 (C-3), 80.57 (*C*(CH₃)₃, Boc), 76.94 (C-6), 70.58 (C-8), 68.60 (C-4), 67.92 (C-7), 62.10 (C-9), 52.66 (OCH₃), 48.01 (C-5), 28.27 ([†]Bu, Boc), 20.96 (CH₃,OAc), 20.91 (CH₃,OAc), 20.85 (CH₃,OAc), 20.80 (CH₃,OAc). **HR-ESI-TOF/MS** (*m*/*z*): [M+Na]⁺ calcd. for C₂₃H₃₃NNaO₁₃, 554.18496; found, 554.18611.

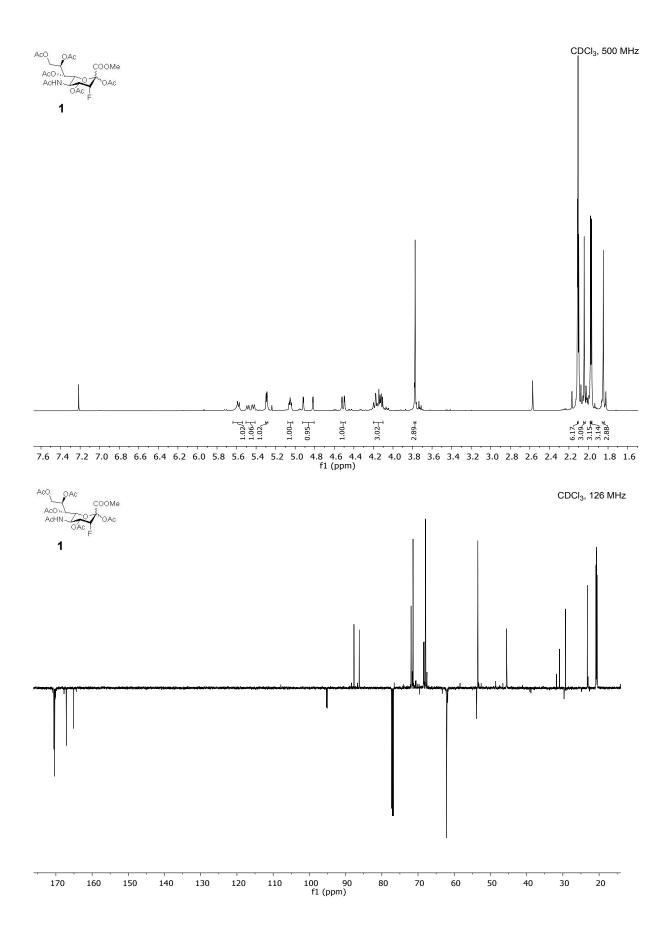
Methyl 5-(tert-butoxycarbamado)-4,7,8,9-penta-O-acetyl-3,5dideoxy-3-fluoro-D-glycero-β-galacto-non-2-ulopyranosonate (21). To a solution of 20 (1.724 g; 3.24 mmol) in a 1:3 mixture of H_2O and DMF (32 ml; 0.1 M), Selectfluor (3.45 g; 9.73 mmol; 3 eq.) was added. The reaction was stirred at 60 °C for 3 h. The mixture was quenched with sat. aq. NaHCO₃ and concentrated *in vacuo*- even though conversion was incomplete. The residue was dissolved in EtOAc and washed successively with HCI (0.1M) and sat. aq. NaHCO₃. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. Silicagel flash column chromatography ($0\% \rightarrow 50\%$ EtOAc in Hept) afforded **21** (789 mg; 1.39 mmol; 72% based on recovery of starting material) as a white foam. **TLC**: (EtOAc:Hept, 60:40 v/v) $R_f = 0.47$ ¹H NMR (500 MHz, CDCl₃) δ 5.52 (s, 1H, OH), 5.47 (dd, J = 4.4, 2.3 Hz, 1H, H-7), 5.37 – 5.23 (m, 2H, H-8; H-4), 4.94 (d, J = 10.3 Hz, 1H, NH), 4.92 (dd, J = 49.8, 2.1 Hz, 1H, H-3), 4.81 (dd, J = 12.3, 2.5 Hz, 1H, H-9_a), 4.26 (dd, J = 10.6, 2.3 Hz, 1H, H-6), 4.18 – 4.08 (m, 2H, H-5; H-9_b), 3.85 (s, 3H, OCH₃), 2.16 (s, 3H, CH₃,OAc), 2.09 (s, 3H, CH₃,OAc), 2.09 (s, 3H, CH₃,OAc), 2.04 (s, 3H, CH₃,OAc), 1.40 (s, 9H, ^tBu, Boc). ¹³C NMR (126 MHz, CDCl₃) δ 171.68 (CO, Ac), 171.48 (CO, Ac), 170.60 (CO, Ac), 170.19 (CO, Ac), 167.70 (C-1), 155.22 (CO, Boc), 94.45 (d, J = 25.5 Hz, C-2), 87.06 (d, J = 185.1 Hz, C-3), 80.09 (**C**(CH₃)₃, Boc), 71.91 (C-8), 71.46 (C-6), 69.96 (d, J =17.3 Hz, C-4), 68.63 (C-7), 63.01 (C-9), 53.50 (OCH₃), 46.36 (C-5), 28.31 (^tBu, Boc), 21.13 (CH₃,OAc), 20.99 (CH₃,OAc), 20.85 (CH₃,OAc), 20.78 (CH₃,OAc). HR-ESI-TOF/MS (*m*/*z*): [M+Na]⁺ calcd. for C₂₃H₃₄FNNaO₁₄, 590.18610; found, 590.18498.

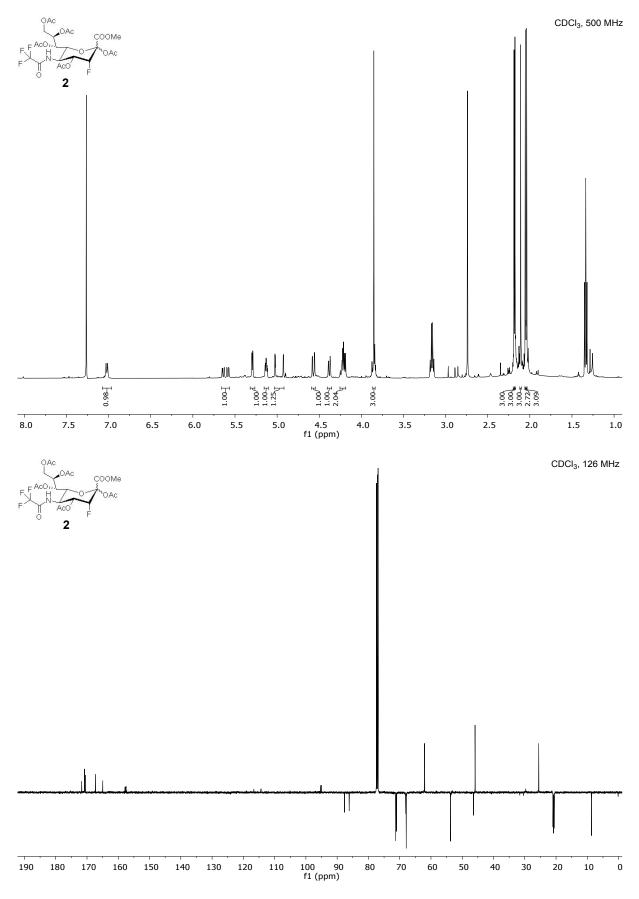
References and Notes

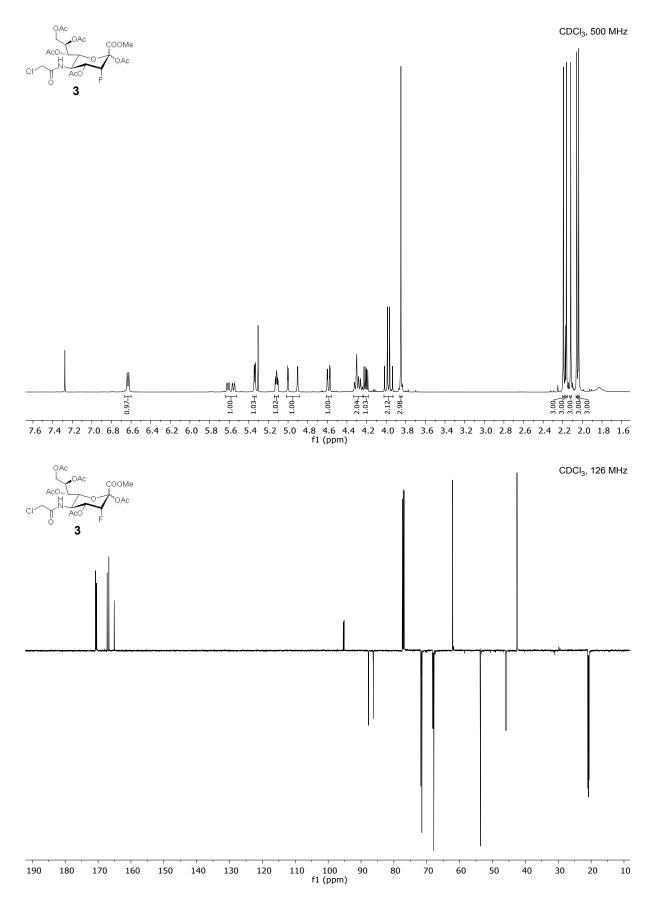
1. Kuhn, B.; Benz, J.; Greif, M.; Engel, A. M.; Sobek, H.; Rudolph, M. G., The structure of human alpha-2,6-sialyltransferase reveals the binding mode of complex glycans. *Acta crystallographica*. *Section D, Biological crystallography* **2013**, *69* (Pt 9), 1826-38.

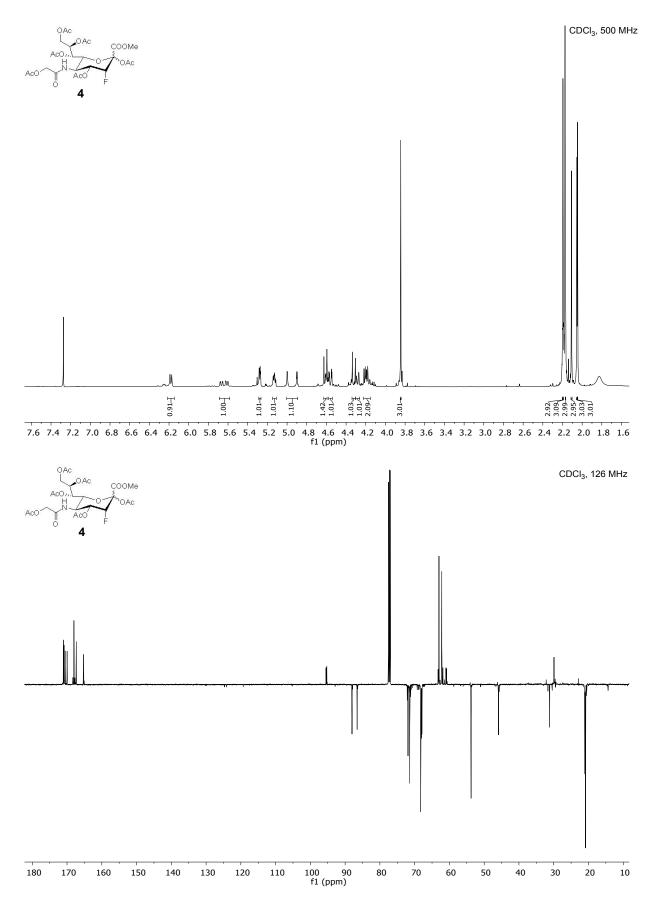
2. Volkers, G.; Worrall, L. J.; Kwan, D. H.; Yu, C. C.; Baumann, L.; Lameignere, E.; Wasney, G. A.; Scott, N. E.; Wakarchuk, W.; Foster, L. J.; Withers, S. G.; Strynadka, N. C., Structure of human ST8SiaIII sialyltransferase provides insight into cell-surface polysialylation. *Nat Struct Mol Biol* **2015**, *22* (8), 627-35.

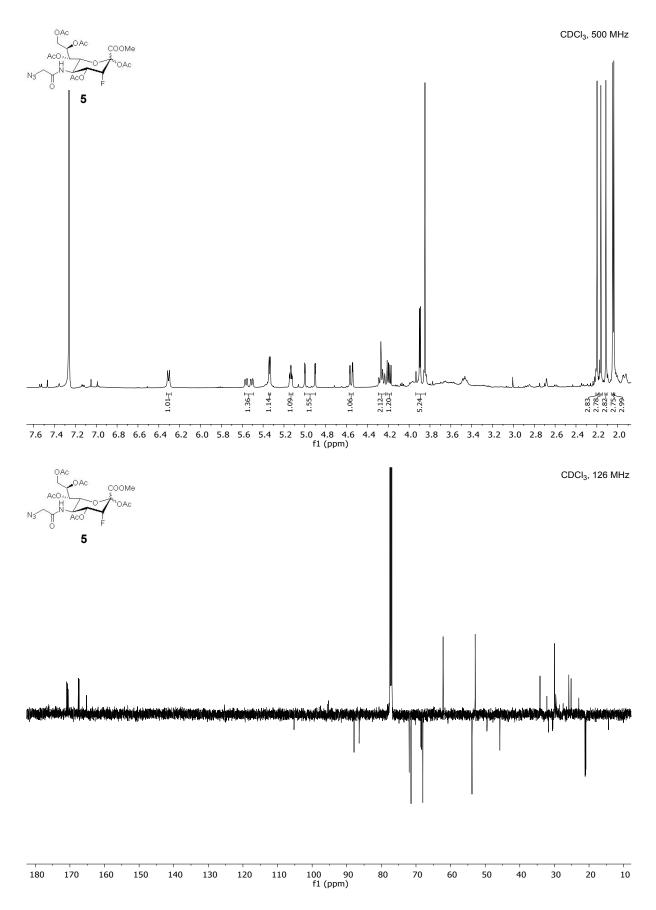
3. Krapp, S.; Munster-Kuhnel, A. K.; Kaiser, J. T.; Huber, R.; Tiralongo, J.; Gerardy-Schahn, R.; Jacob, U., The crystal structure of murine CMP-5-N-acetylneuraminic acid synthetase. *Journal of molecular biology* **2003**, *334* (4), 625-37.

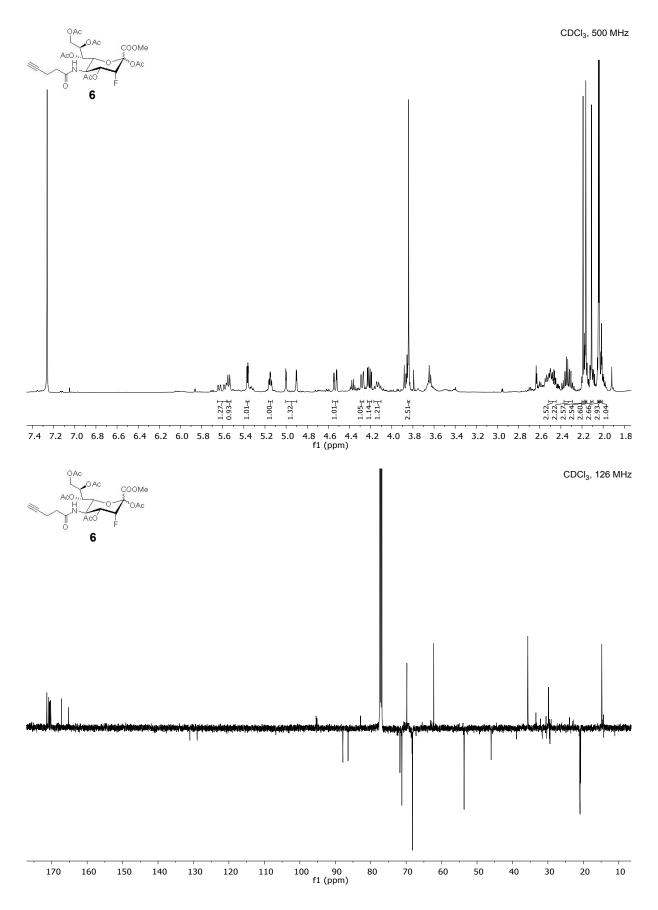

4. ULC, C. C. G. *Molecular Operating Environment (MOE). 2013.08 ed.*, Chemical Computing Group Inc.: 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2013.

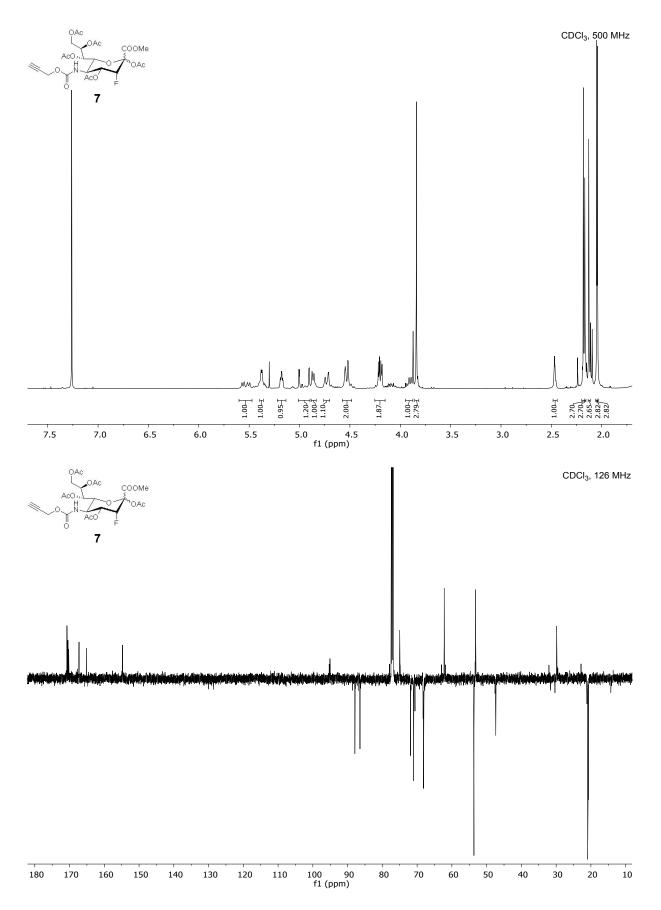

5. Case, D. A.; Darden, T. A.; Cheatham, T. E.; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Walker, R. C.; Zhang, W.; Merz, K. M.; Roberts, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Swails, J.; Götz, A. W.; Kolossváry, I.; Wong, K. F.; Paesani, F.; Vanicek, J.; Wolf, R. M.; Liu, J.; Wu, X.; Brozell, S. R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.; Ye, X.; Wang, J.; Hsieh, M.-J.; Cui, G.; Roe, D. R.; Mathews, D. H.; Seetin, M. G.; Salomon-Ferrer, R.; Sagui, C.; Babin, V.; Luchko, T.; Gusarov, S.; Kovalenko, A.; Kollman, P. A., AMBER 12. **2012**.

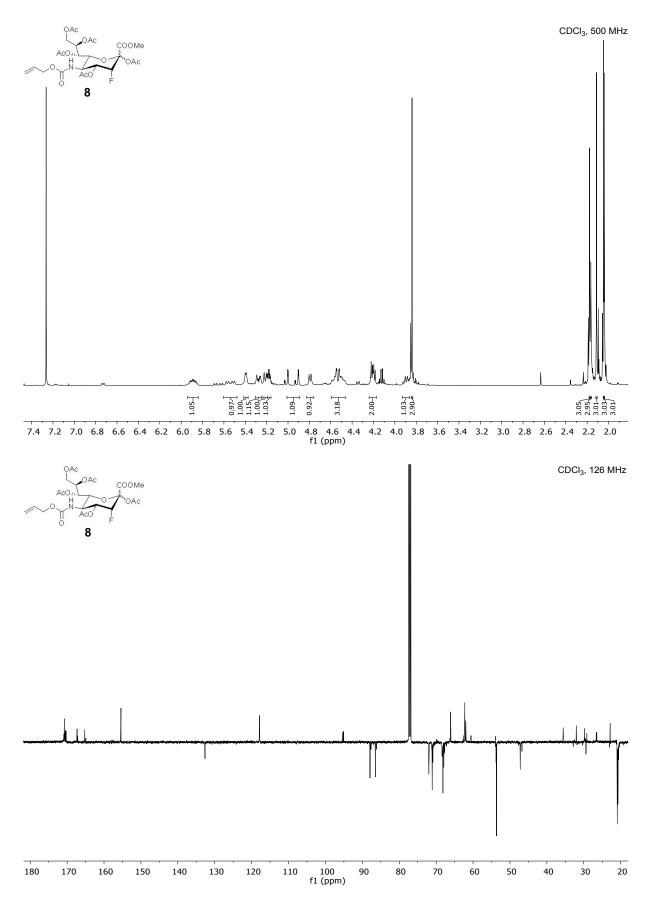

6. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E., UCSF Chimera--a visualization system for exploratory research and analysis. *Journal of computational chemistry* **2004**, *25* (13), 1605-12.


7. Rillahan, C. D.; Antonopoulos, A.; Lefort, C. T.; Sonon, R.; Azadi, P.; Ley, K.; Dell, A.; Haslam, S. M.; Paulson, J. C., Global metabolic inhibitors of sialyl-and fucosyltransferases remodel the glycome. *Nature chemical biology* **2012**, *8* (7), 661-668.

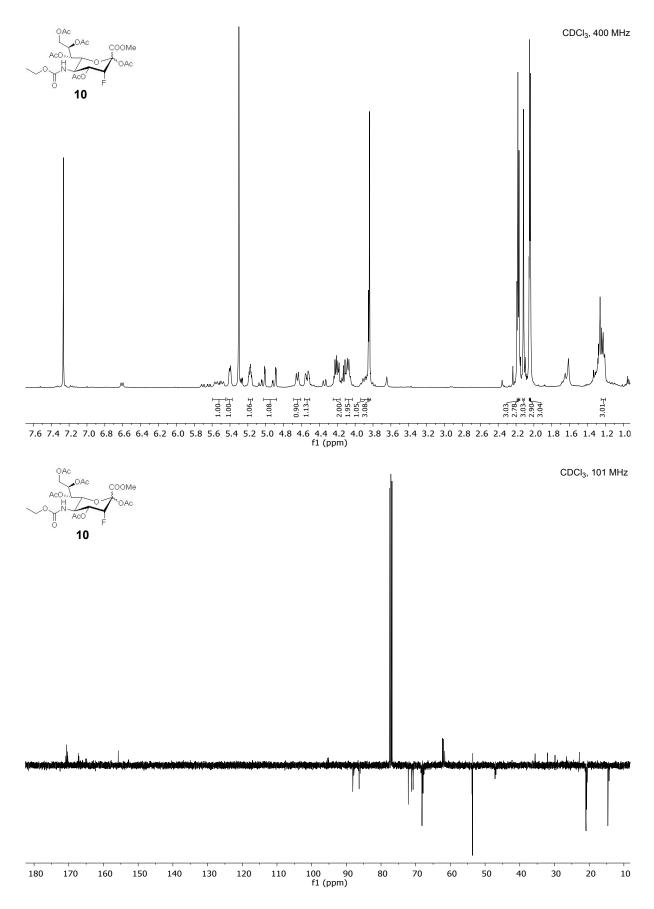

8. Büll, C.; Heise, T.; Beurskens, D. M. H.; Riemersma, M.; Ashikov, A.; Rutjes, F. P. J. T.; van Kuppevelt, T. H.; Lefeber, D. J.; den Brok, M. H.; Adema, G. J.; Boltje, T. J., Sialic Acid Glycoengineering Using an Unnatural Sialic Acid for the Detection of Sialoglycan Biosynthesis Defects and On-Cell Synthesis of Siglec Ligands. *ACS Chemical Biology* **2015**, *10* (10), 2353-2363.

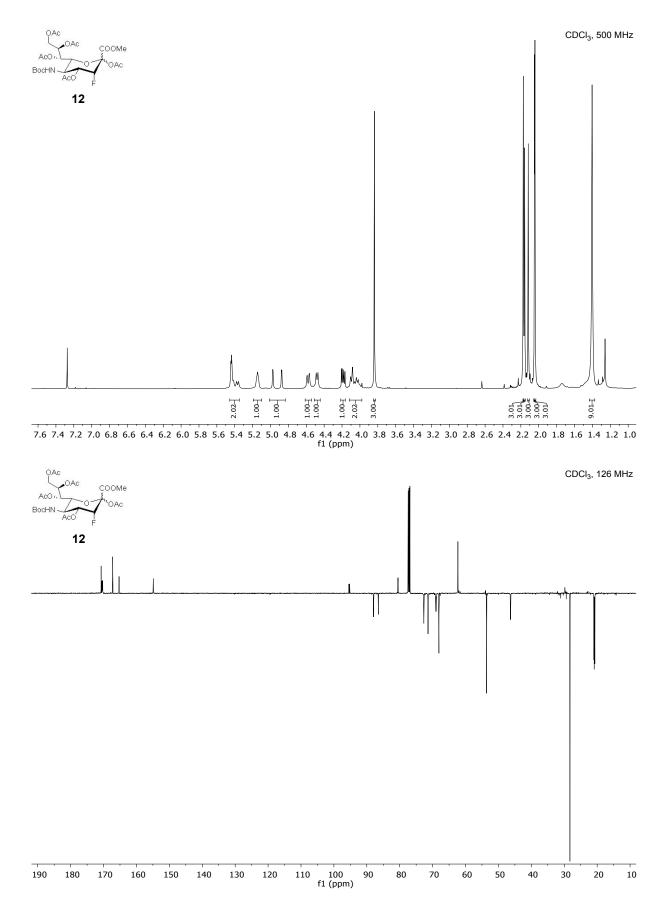


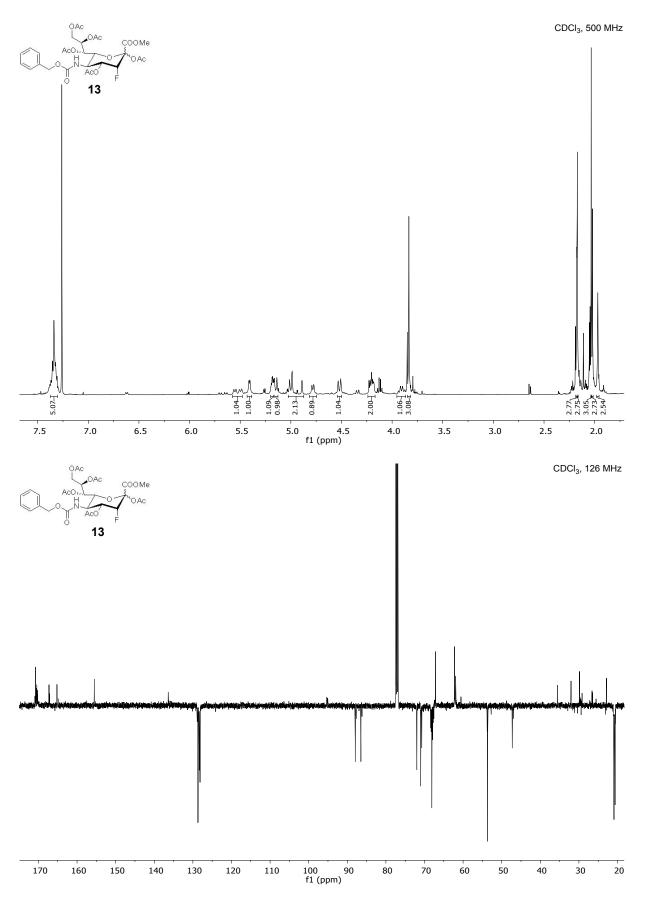


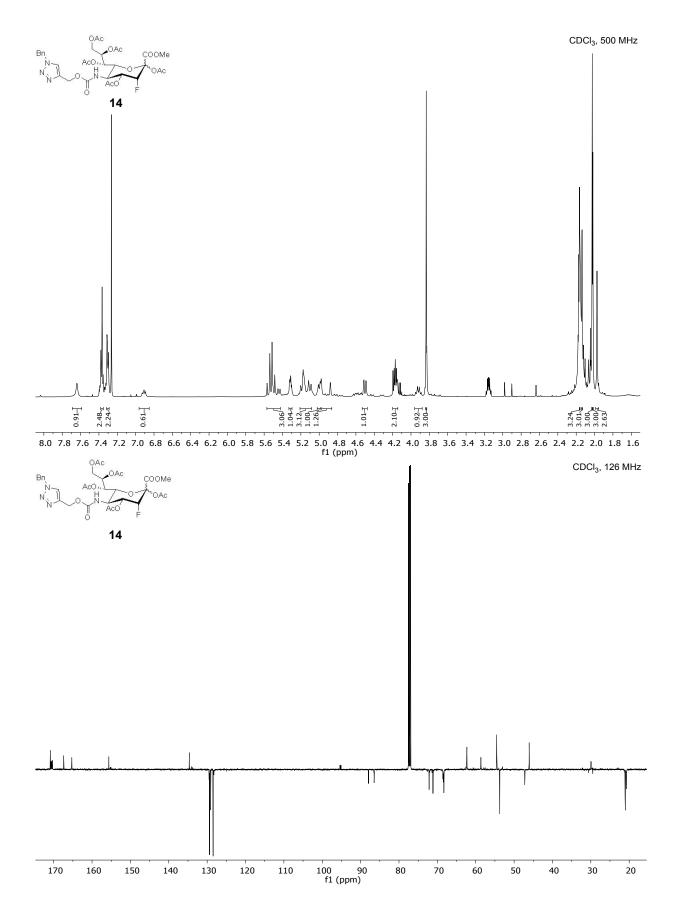


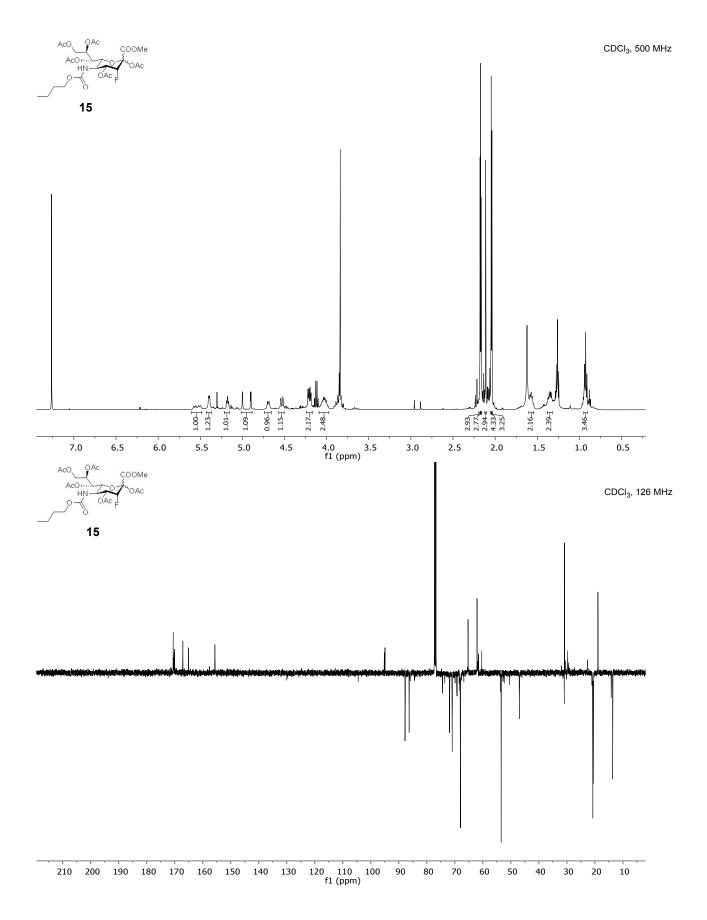


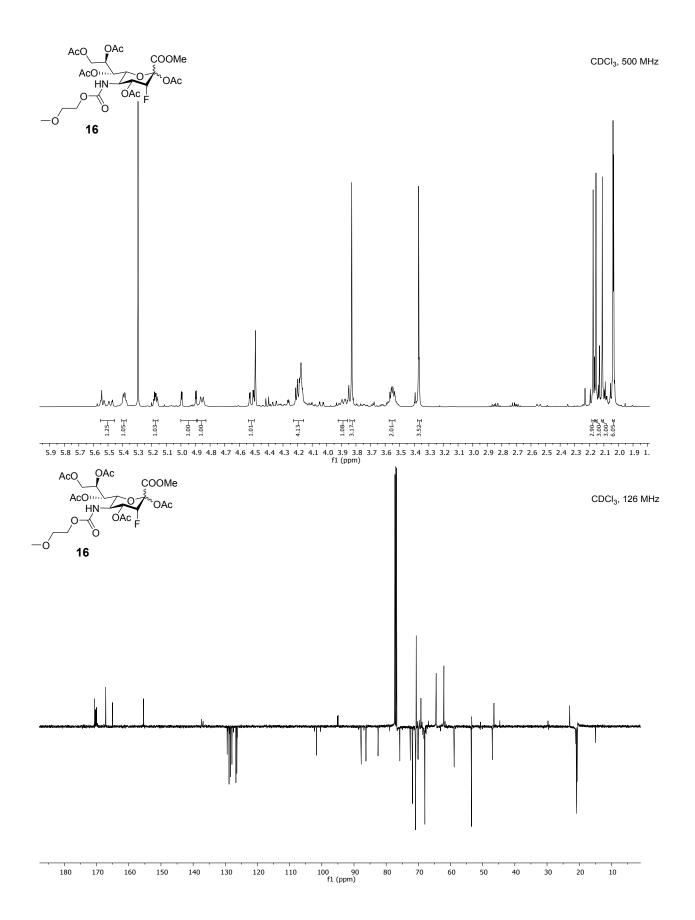


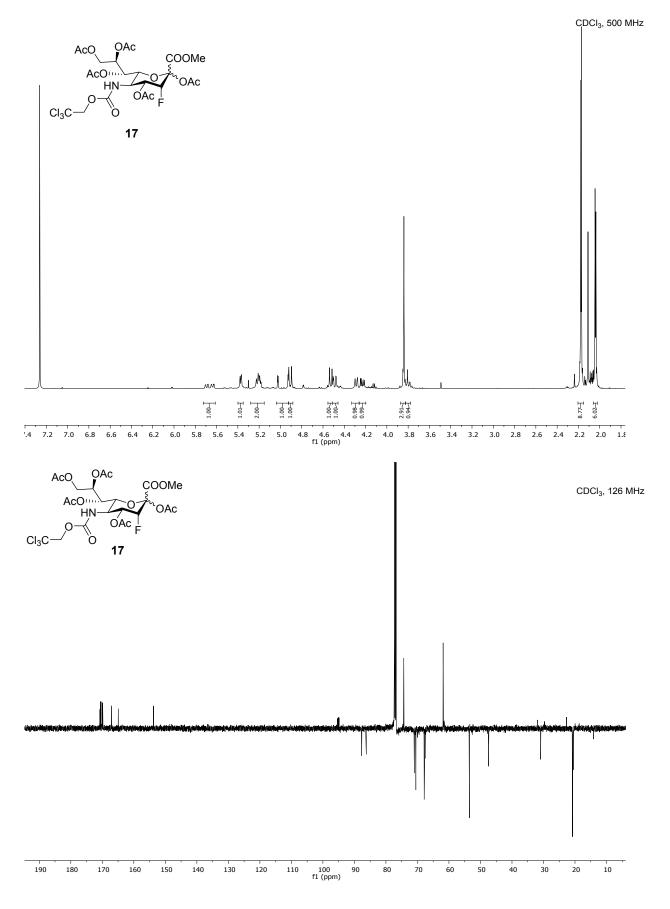


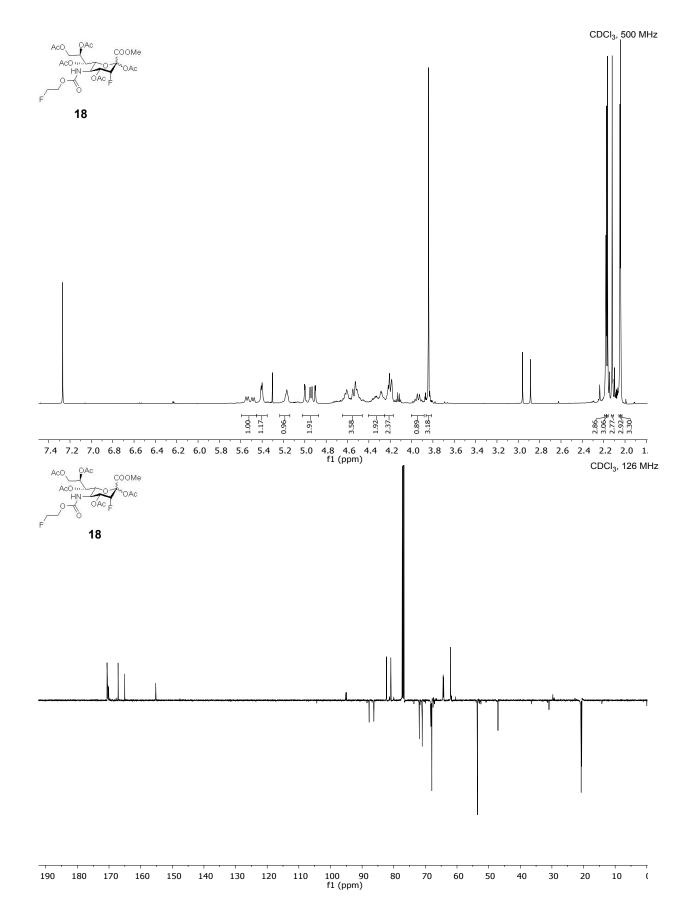


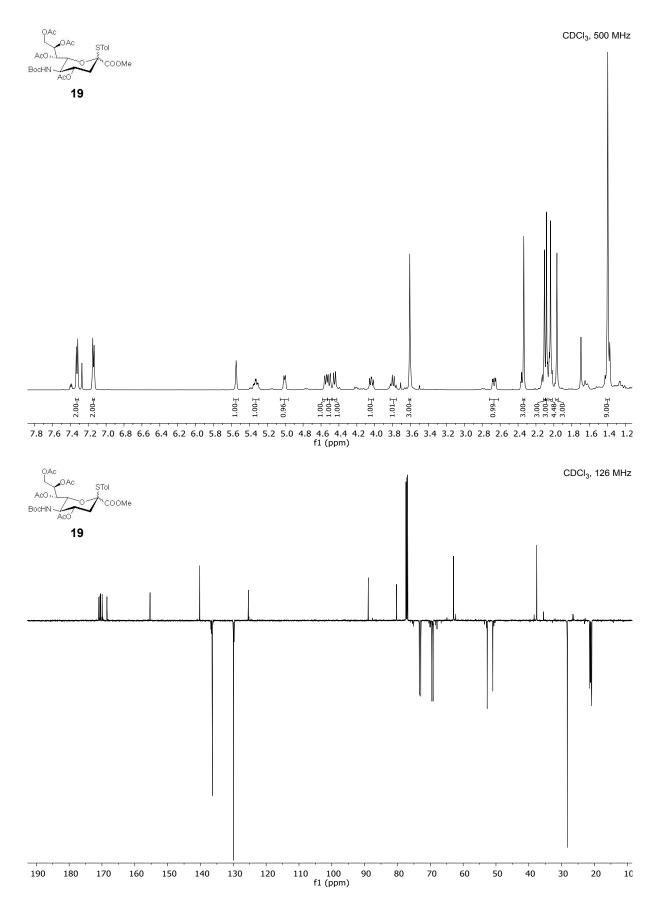











S36

