OMTN, Volume 14

Supplemental Information

Efficient Knockdown and Lack of Passenger

Strand Activity by Dicer-Independent shRNAs

Expressed from Pol II-Driven MicroRNA Scaffolds

Erik Kaadt, Sidsel Alsing, Claudia R. Cecchi, Christian Kroun Damgaard, Thomas J. Corydon, and Lars Aagaard

С

D

Knockdown activity for H1-driven agoshRNAs with 5 or 3 nt loop size

miR451 stem-loop structure

A GA A UUGGG AUGGCAAG AACCGUUACCAUUACUG G GACCC UAUCGUUC UUGGUAAUGGUAAUGAU U A UC U

miR451-12.3 stem-loop structure

A GA C UUGGG AUGGCAAG GUAGGAAGCUCAUCUCU C GACCC UAUCGUUC CAUCCUUCGAGUAGAGA U A UC A

miR324 stem-loop structure

GC C U C A U U AAAG GACUAU CUCCC GCA C CCU GGGCA UGG GU C CUGAUG GGGGG CGU G GGA CCCGU ACC CA U UU U C U C C - GAGG

miR324-12.3 stem-loop structure

GC A C GACUAU CUCCC GUAGGAAGCUCAUCUCU C CUGAUG GGGGG CAUCCUUCGAGUAGAGA U UU C A

miR215 stem-loop structure

 A
 ---- A
 A
 -U
 U
 UAUAG

 GAA
 UGGUAU
 ACAGGA
 A
 UG
 CCUA
 GAA
 UGACAGACAA
 C

 CUU
 AUCGUG
 UGUCUU
 U
 AC
 GGAU
 CUU
 ACUGUCUGUU
 U

 C
 UCAGUA
 A
 A
 C
 UU
 UGAG

miR215-12.3 stem-loop structure

A ----- AAA C GAA UGGUAU ACAGGA GUAGGAAGCUCAUCUCU C CUU AUCGUG UGUCUU CAUCCUUCGAGUAGAGA U C UCAGUA AUC A

D

Ε

miR409 stem-loop structure

U GG A AC - - AUC GGUAC CG GAG GGUU CCGAGCAAC UUUG C U CUAUG GC UUC CCAA GGCUCGUUG AAGC G G - UU C GU U A CAG

miR409-12.3 stem-loop structure

U GG A C GGUAC CG GAG GUAGGAAGCUCAUCUCU C CUAUG GC UUC CAUCCUUCGAGUAGAGA U - UU C A

miR30a stem-loop structure

A UC ----- A GCG CUGUAAACAUCC GACUGGAAGCU GUG A CGU GACGUUUGUAGG CUGACUUUCGG CAC G C --- GUAGA C

miR30a-v1-12.3 stem-loop structure

A C GCG CAGUAGGAAGCUCAUCUCU C CGU GUCAUCCUUCGAGUAGAGA U C A

miR30a-v2-12.3 stem-loop structure

ACA C GCG GUAGGAAGCUCAUCUCU C CGU CAUCCUUCGAGUAGAGA U CGC A

F

miR106b stem-loop structure

C -UA G A A -- UC CCUGC GGGGC AAGUGCU ACAGUGC G UAGU GG C GGACG CCUCG UUCAUGG UGUCACG C AUCG CC U A UCG G C - UG UC

miR106b-v1-12.3 stem-loop structure

C AG C CCUGC GGGGC UAGGAAGCUCAUCUCU C GGACG CCUCG AUCCUUCGAGUAGAGA U A AGA A

miR106b-v2-12.3 stem-loop structure

C A C CCUGC GGGGC GUAGGAAGCUCAUCUCU C GGACG CCUCG CAUCCUUCGAGUAGAGA U A AC A

miR106b-v3-12.3 stem-loop structure

(C CZ	<i>Y</i>	С
CCUGC	GGGG	GUAGGAAGCUCAUCUCU	JC
GGACG	CCUU	CAUCCUUCGAGUAGAGA	U A
I	A UC	2	А

Α

U6 control

Knockdown activity for the U6-driven shRNA targeting HIV-1 'site 1' (S1)

Supplemental Figure 1: Comparison of conventional and Dicer-independent shRNA designs and two agoshRNA designs with varying loop size. A) Schematic diagram of the dedicated T9sense and T9-antisense psiCHECK2-based luciferase reporters used for comparing guide and passenger strand activity, respectively, for the various shRNA designs shown in Figure 1A. The illustration at the bottom shows the 100 nt long cDNA region of mVEGF (dubbed T9) encompassing 'site 9' which was cloned into the psiCHECK2-based reporter shown above in sense or antisense orientation (numbers indicate cDNA position). **B)** Knockdown activity of the shRNA designs depicted in Figure 1A when expressed by the human U6 promoter (pFTR-U6),²⁹ estimated by cotransfection a psiCHECK2-based Renilla luciferase reporter fused to a 100 nt stretch of the VEGF gene (T9-sense) or a corresponding antisense reporter (T9-antisense) as illustrated in panel A. Renilla luciferase (Rluc) and Firefly luciferase (Fluc) activity was measured in relative units of light (RLU). The Rluc/Fluc ratio was normalized to the empty control and plotted as the mean of three replicates plus standard deviations. **C)** Predicted secondary structure of the conventionally designed shRNAs targeting 'site 9' in the VEGF gene²⁶ (sh9, left side), or two loop variants of the Ago2-dependent agoshRNA structure, either a '19/5' (agosh9, middle part) or a '19/3' (agosh9/3, right side) design as reported by the Berkhout lab.⁶⁴ The guide and passenger strands are depicted in green and red, respectively. The 'Brummelkamp' loop is shown in blue. The diagrams above show the constructs used in co-transfection assays. Upper part the psiCHECK2-based reporter fused to the full-length mVEGF cDNA, lower part the pSUPERretro-based H1-driven shRNA expression plasmid.²⁶ **D**) Knockdown activity of the shRNA designs shown in panel C when expressed by the human H1 promoter. The Rluc/Fluc ratio was normalized to the empty control and plotted as the mean of three replicates plus standard deviations. Abbreviations: Fluc, Firefly luciferase; HSV-tk, Herpes simplex virus thymidine kinase promoter; mVEGF, murine Vascular endothelial growth factor; pA, polyadenylation signal; R-luc, Renilla luciferase; shRNA, short hairpin RNA; SV40, simian virus 40 promoter; T6, T-rich pol-III termination signal; U6, human U6 snRNA promoter.

Supplemental Figure 2: Predicted secondary structure of the stem loop region of native primiRs and VEGF 12.3 targeting derivatives. A) Upper diagram depicts the stem loop structure of miR-451. The mature miR-451 is highlighted in pink. Lower diagram shows the structure of the miR-451 scaffold re-targeted towards VEGF (site 12.3). The VEGF targeting guide strand (21 nt) is shown in green. B) Upper diagram shows central part of pri-miR-324 and the location of the mature species (miR-324-5p and -3p, both highlighted in pink). Bottom diagram shows how the agsh12.3 stem loops structure was embedded in the pri-miR-324 scaffold at the predicted Drosha cleave site (VEGF targeting guide strand shown in green). C) Structure of the stem loop part of pri-miR-215 (top) and the corresponding miR215-agsh12.3 chimera (bottom). Mature miR strands and the 12.3 guide strand is shown in pink and green, respectively. D) Structure of the stem loop part of pri-miR-409 (top) and the corresponding miR409-agsh12.3 chimera (bottom). Colors as described above. E) Upper diagram shows the stem loop structure of pri-miR-30a. Diagrams below shows how the agsh12.3 stem loops structure was embedded in the pri-miR-30a scaffold at the predicted Drosha cleave site. The first version (v1) mimics the miR-30a structure at the Drosha cleavage site and does not include the basal A-C 'fork' from the agsh12.3 'pre-miR structure', while the second version (v2) includes the A-C 'fork'. **F**) Upper diagram shows the stem loop structure of pri-miR-106b. The diagrams below show three different strategies to embed agsh12.3. The first version (v1) mimics the miR-106b large bulge at the Drosha cleavage site and does not include the basal A-C 'fork' from the agsh12.3 hairpin. The second (v2) includes the A-C 'fork', while the third version (v3) includes an A-CUU 'fork' reminiscent of pol-III termination (T₆ box). All stem loop structures and prominent Drosha/Dicer cleavage sites shown in this figure, are based on data from miRBase⁶⁷ and the RNA secondary structure predictions algorithms MFOLD.⁶⁸

Supplemental Figure 3: Knockdown of VEGF in luciferase-based reporters using DicerindependentshRNAs expressed as CMV-driven pri-miR-324 or -451 transcripts. A) Knockdown activity of VEGF-targeting CMV-expressed agshRNA embedded in various miR scaffolds, estimated by co-transfection with psiCHECK-mVEGF-T12-sense. The Rluc/Fluc ratio was normalized to the empty control (black bar) and plotted as the mean of three replicates plus standard deviations. Endogenous miR-451 was included as a non-targeting control (grey bar). B) Passenger strand activity for CMV-driven miR324- and miR451-agshRNAs as measured using the psiCHECK-mVEGF-T12antisense reporter and plotted as described in panel A. C) Knockdown levels of CMV-expressed miRagsh12.3 constructs in Dicer knockout cells³⁵ (purple bars) and the parental 293T control cells (grey bars) as based on psiCHECK-mVEGF-T12-sense reporter and plotted as described in panel A, including miR-30 as a non-targeting control. **Supplemental Figure 4: Processing of miR-324- and miR-451-agshRNAs transcripts is Dicerindependent:** Northern blot analysis of small RNA from transfected 293T cells and DcrKO 293T cells (NoDice 2-20) using probes detecting guide strand RNA (antisense probe, autoradiogram on left side) or passenger strand RNA (sense probe, autoradiogram on right side). The autoradiograms are short time exposures of the cropped images seen in Figure 2D (293T cells) and Figure 3C (Dcr KO cells). Size of 10, 20, 30, 40, and 50 nt band of the RNA decade marker is indicated, and agsh12.3-specific bands are marked by arrows and labeled a-c. A cropped image with detection of the native U6 snRNA band (loading control) is shown below.

Supplemental Figure 5: Knockdown activity of the U6-driven shS1: Knockdown activity of the conventionally designed (pBluescriptIISK-based) shS1 construct targeting the HIV-1 tat/rev transcript (site 1)³⁴, using experimental conditions similar to the data presented in Figure 4 for the pol-II driven miR-agshS1 constructs. The Rluc/Fluc ratio as measured by the psiCHECK-HIV-S1 reporter was normalized to the empty control (pBluescriptIISK-based) and plotted as the mean of three replicates plus standard deviations. An irrelevant HIV-1 'site 2' targeting shRNA (shIRR) was included as a non-targeting control.

Supplemental table 1

Oligo	Name	Sequence (5'-3')
ID		
Sequencing primers		
350	CMV-F	GCAAATGGGCGGTAGGCGTGTAC
351	BGH-R	AGGGGCAAACAACAGATGGC
352	BGH-R2	GAAGGCACAGTCGAGGCTGATCA
353	5AMP-R	AAGGGAATAAGGGCGACACG

354	3hLuc-F	GAGGACGCTCCAGATGAAATG
355	5TK-R	CGTCAGACAAACCCTAACCAC
350	CMV-F	GCAAATGGGCGGTAGGCGTGTAC
489	pcDNA3-5prom-F	TAAGCTACAACAAGGCAAGGCT
Clonin	g of psiCHECK2.2 ba	sed reporters
487	mVEGF-R3-NotI-F	GAGAGCGGCCGCCATCACCATGCAGATCATGC
488	mVEGF-R3-NotI-R	GAGAGCGGCCGCTCTGTCTTTCTTTGGTCTGC
361	mVEGF-R4-NotI-F	GAGAGCGGCCGCGAGAAAGCATTTGTTTGTCCAAG
362	mVEGF-R4-NotI-R	GAGAGCGGCCGCTCACCGCCTTGGCTTGTCAC
481	RRM2-887-A	TCGAAGGCTACCTATGGTGAACGTGTTGTAGC
482	RRM2-887-B	GGCCGCTACAACACGTTCACCATAGGTAGCCT
483	RRM2-1354-A	TCGAGTGATGTCAAGTCCAACAGAGAATTCTT
484	RRM2-1354-B	GGCCAAGAATTCTCTGTTGGACTTGACATCAC
	HIV-S1-A	TCGAAAGCGGAGACAGCGACGAAGAGCT
	HIV-S1-B	GGCCAGCTCTTCGTCGCTGTCTCCGCTT
Clonin	g of pcDNA3-based pr	i-miR contructs
465	miR106b-F	ATATACTCGAGTGGTAAGTGCCCAAATTGCTG
466	miR106b-R	TGTGTACCGGTGGATCTAGGACACATGGAGTG
467	miR451-F	ATATACTCGAGCCAGCTCTGGAGCCTGACAAG
468	miR451-R	TGTGTACCGGTACCCCTGCCTTGTTTGAGCTG
469	miR30a-F	ATATACTCGAGCAGAATCGTTGCCTGCACATC
470	miR30a-R	TGTGTACCGGTATGTATCAAAGAGATAGCAAGGT
Clonin	g of pcDNA3-based p	comoter and MCS variants
207	MCS-A	CTAGCCTCGAGGGATCCGAATTCTCCGGATTTTTACC
207	WIC5-74	GGTGGGCC
208	MCS-B	CACCGGTAAAAAATCCGGAGAATTCGGATCCCTCGAG G
209	U1prom-MluI-F	CAACAAACGCGTCTAAGGACCAGCTTCTTTGGGAGA
210	Ulton Anol D	CAACAAGGGCCCGTCTACTTTTGAAACTCCAGAAAGT
210	Ulterm-Apal-R	GGATCACCGGTCTGCAGGAATTCGATATCAAGC
Clonin	g of pSUPERretro-ba	sed H1 constructs
451	agosh9-A	GATC CCCATTTACACGTCTGCGGATCCAAGAGATCCGC AGACGTGTAAATTTTTTC
452	agosh9-B	TCGA GAAAAAATTTACACGTCTGCGGATCTCTTGGATC CGCAGACGTGTAAATGGG
447	agosh9/3-A	GATC CCCATTTACACGTCTGCGGATCAGAGATCCGCAG ACCTGTAAATTTTTTC
448	agosh9/3-B	TCGA GAAAAAATTTACACGTCTGCGGATCTCTGATCCG CAGACGTGTAAATGGG
Cloning of pFRT-U6-based constructs		
429	sh9-A	GATC GATCCGCAGACGTGTAAATGTTTCAAGAGAACAT TTACACGTCTGCGGATCTTTTT
430	sh9-B	TCGA AAAAACATCCGCAGACGTGTAAATGTTCTCTTGA AACATTTACACGTCTGCGGATC
425	agosh9-A	GATC ATTTACACGTCTGCGGATCCAAGAGATCCGCAGA CGTGTAAATTTTTT

426	agosh9-B	TCGAAAAAAATTTACACGTCTGCGGATCTCTTGGATCC GCAGACGTGTAAAT
475	agsh9-A	GATC AATTTACACGTCTGCGGATCTTTCCGCAGACGTG TAAATCTTTT
476	agsh9-B	TCGAAAAAAGATTTACACGTCTGCGGAAAGATCCGCA GACGTGTAAATT
427	agsh11-A	GATCAACATTTACACGTCTGCGGATCCGCAGACGTGTA
428	agsh11-B	TCGAAAAAAGACATTTACACGTCTGCGGATCCGCAGA
433	agsh12.1-A	GATCACTGTAGGAAGCTCATCTCTCCAGATGAGCTTCC TACAGCTTTT
434	agsh12.1-B	TCGAAAAAAGCTGTAGGAAGCTCATCTGGAGAGATGA GCTTCCTACAGT
435	agsh12.2-A	GATCATGTAGGAAGCTCATCTCTCCTGAGATGAGCTTC CTACACTTTT
436	agsh12.2-B	TCGAAAAAAGTGTAGGAAGCTCATCTCAGGAGAGATG AGCTTCCTACAT
437	agsh12.3-A	GATC AGTAGGAAGCTCATCTCTCCTAAGAGATGAGCTT CCTACCTTTT
438	agsh12.3-B	TCGA AAAAAGGTAGGAAGCTCATCTCTTAGGAGAGAG GAGCTTCCTACT
477	sh12.3-A	GATC GGAGAGATGAGCTTCCTACTTCAAGAGAGTAGG AAGCTCATCTCCCTTTTT
478	sh12.3-B	TCGA AAAAAGGAGAGAGATGAGCTTCCTACTCTCTGAAG TAGGAAGCTCATCTCTCC
471	agsh13-A	GATC AAAGTACGTTCGTTTAACTCAAGTTAAACGAACG TACTTCTTTT
472	agsh13-B	TCGA AAAAAGAAGTACGTTCGTTTAACTTGAGTTAAAC GAACGTACTTT
Synthe	tic pri-miR-dishRNA	inserts (pUC57-based)
		CTCGAGACAGAATCGTTGCCTGCACATCTTGGAAACAC
		TTGCTGGGATTACTTCTTCAGGTTAACCCAACAGAAGG
		CTAAAGAAGGTATATTGCTGTTGACAGTGAGCGACAGT
	miR30a-v1-12.3	AGGAAGCTCATCTCTCCTAAGAGATGAGCTTCCTACTG
		CTGCCTACTGCCTCGGACTTCAAGGGGGCTACTTTAGGA
		GCAATTATCTTGTTTACTAAAACTGAATACCTTGCTATC
		TCTTTGATACATTTTTACAAAGCTGAA ACCGGT
		CTCGAGACAGAATCGTTGCCTGCACATCTTGGAAACAC
		TTGCTGGGATTACTTCTTCAGGTTAACCCAACAGAAGG
		CTAAAGAAGGTATATTGCTGTTGACAGTGACCGACAGT
	miR30a-v2-12.3	AGGAAGCTCATCTCCTCAAGAGATGAGCTTCCTACCG
		CTGGCTACTGCCTCGGACTTCAAGGGGGCTACTTTAGGA
		GCAATTATCTTGTTTACTAAAACTGAATACCTTGCTATC
		TCTTTGATACATTTTTACAAAGCTGAAACCGGT
	miR106b-v1-12.3	CTCGAGTGGTAAGTGCCCAAATTGCTGGAGGGCCATCT
		GTTTTGACCCTTAAAGGGGTAGCTCCTTACCGTGCTCTC

		ATTGCCGCCTCCCACCTCCCGCTCCAGCCCTGCCGGG
		GCAGTAGGAAGCTCATCTCTCCTAAGAGATGAGCTTCC
		TAAGAGCTCCAGCAGGGCACGCACAGCGTCCGTGGAG
		GGAAAGGCCTTTTCCCCACTTCTTAACCTTCACTGAGA
		GGGTGGTTGGGGTCTGTTTCACTCCATGTGTCCTAGATC
		CTACCGGT
		CTCGAGTGGTAAGTGCCCAAATTGCTGGAGGGCCATCT
		GTTTTGACCCTTAAAGGGGTAGCTCCTTACCGTGCTCTC
		ATTGCCGCCTCCCACCTCCGCTCCAGCCCTGCCGGG
		GCAGTAGGAAGCTCATCTCTCCTAAGAGATGAGCTTCC
	miR106b-v2-12.3	TACCAGCTCCAGCAGGGCACGCACAGCGTCCGTGGAG
		GGAAAGGCCTTTTCCCCACTTCTTAACCTTCACTGAGA
		GGGTGGTTGGGGTCTGTTTCACTCCATGTGTCCTAGATC
		CTACCGGT
		CTCGAGTGGTAAGTGCCCAAATTGCTGGAGGGCCATCT
		GTTTTGACCCTTAAAGGGGTAGCTCCTTACCGTGCTCTC
		ATTGCCGCCTCCCACCTCCGCTCCAGCCCTGCCGGG
		GCAGTAGGAAGCTCATCTCTCCTAAGAGATGAGCTTCC
	m1R106b-v3-12.3	TACCTTTCCAGCAGGGCACGCACAGCGTCCGTGGAGGG
		AAAGGCCTTTTCCCCACTTCTTAACCTTCACTGAGAGG
		GTGGTTGGGGTCTGTTTCACTCCATGTGTCCTAGATCCT
		ACCGGT
		CTCGAGGTTTTATAAAATTAACAAATGATTAAGAATTA
		ATATCAATTTTCTTAAATTCAAGTTTTGTAACACCAAAA
		AGATCCAATAATGGAAGAGGATTAAAGTCATCATTCAG
		AAATGGTATACAGGAAAAGTAGGAAGCTCATCTCTCCT
	IIIIK215-12.5	AAGAGATGAGCTTCCTACCTATTCTGTATGACTGTGCT
		ACTTCAATATCAGAAATCGACTAACACCACGCAACCAA
		CGCAATGGCAGGTACACAGAAGATAATCTGTAACACTA
		CCATGTAAATGTATTGAGTAAATAAAACATAACGGGT
		CTCGAGTTCTTAAAAGGGGTGGATGTAAGGGATGAGG
		TAGAATTAACTTCTGGTACTGCTGGCAGGCACCTGAGC
		AGAACATCATTGCTGTCTCTCTCGCAGAAGCTGAGCT
		GACTATGCCTCCCAGTAGGAAGCTCATCTCTCCTAAGA
	miR324-12.3	GATGAGCTTCCTACCGGGGGTTGTAGTCTGACCCGACT
	111102112.0	GGGAAGAAAGCCCCAGGGCTCCAGGGAGAGGGGCTTG
		GGAGGCCCTCACCTCAGTTACATACTGCAGCATAACCA
		TCCGTGCCAGCTTCTCCTGGATCAGCCCAAAGTTGTGA
		AACCGGT
	miR409-12.3	CTCGAGTCTGGGCTCTGAATGCCCAGACCTTGTGCTCC
		CCTTGGGGGAGGGTCTTCTGCAAGCACAGCCGCCTGCA
		AGCATTCACCTTAGTCCGAGCATCTGAGCCTGGTACTC
		GGGGAGAGTAGGAAGCTCATCTCTCTCTAAGAGATGAG
		UIACIICAACCGGI

		CTCGAGCCAGCTCTGGAGCCTGACAAGGAGGACAGGA
		GAGATGCTGCAAGCCCAAGAAGCTCTCTGCTCAGCCTG
	m:D451 12 2	TCACAACCTACTGACTGCCAGGGCACTTGGGAATGGCA
	IIIIK451-12.5	AGGAGTAGGAAGCTCATCTCTCCTAAGAGATGAGCTTC
		CTACCTCTTGCTATACCCAGAAAACGTGCCAGGAAGAG
		AACTCAGGACCCTGAAGCAGACTACTGGAAGGGAGAC
		TCCAGCTCAAACAAGGCAGGGGTACCGGT
		CTCGAGTTCTTAAAAGGGGTGGATGTAAGGGATGAGG
		TAGAATTAACTTCTGGTACTGCTGGCAGGCACCTGAGC
		AGAACATCATTGCTGTCTCTCTCTCGCAGAAGCTGAGCT
		GACTATGCCTCCCATCTTCGTCGCTGTCTCCGCTTGGAG
	miR324_HIV_S1	
	1111(324-111 (-51	GGGA AGA A AGCCCC AGGCTCC AGGGAGAGGGGCTTG
		CCACCCCTCACCTCACTTACATACTCCACCATAACCA
		GAGATGCTGCAAGCCCAAGAAGCTCTCTGCTCAGCCTG
		TCACAACCTACTGACTGCCAGGGCACTTGGGAATGGCA
	miR451-HIV-S1	AGGATCTTCGTCGCTGTCTCCGCTTGGAGACAGCGACG
		AAGACTCTTGCTATACCCAGAAAACGTGCCAGGAAGA
		GAACTCAGGACCCTGAAGCAGACTACTGGAAGGGAGA
		CTCCAGCTCAAACAAGGCAGGGGTACCGGT
		CTCGAGGTTTTATAAAATTAACAAATGATTAAGAATTA
		ATATCAATTTTCTTAAATTCAAGTTTTGTAACACCAAAA
		AGATCCAATAATGGAAGAGGATTAAAGTCATCATTCAG
	miP215 PPM2 887	AAATGGTATACAGGAAAACAACACGTTCACCATAGGT
	IIIIX213-XXIVI2-007	AGTTATGGTGAACGTGTTGCTATTCTGTATGACTGTGCT
		ACTTCAATATCAGAAATCGACTAACACCACGCAACCAA
		CGCAATGGCAGGTACACAGAAGATAATCTGTAACACTA
		CCATGTAAATGTATTGAGTAAATAAAACATA ACCGGT
		CTCGAGTTCTTAAAAGGGGTGGATGTAAGGGATGAGG
		TAGAATTAACTTCTGGTACTGCTGGCAGGCACCTGAGC
		AGAACATCATTGCTGTCTCTCTCTCGCAGAAGCTGAGCT
		GACTATGCCTCCCACAACACGTTCACCATAGGTAGTTA
	miR324-RRM2-887	TGGTGAACGTGTTGCGGGGGGTTGTAGTCTGACCCGACT
		GGGAAGAAAGCCCCAGGGCTCCAGGGAGAGGGGCTTG
		GGAGGCCCTCACCTCAGTTACATACTGCAGCATAACCA
		TCCGTGCCAGCTTCTCCTGGATCAGCCCAAAGTTGTGA
		AACCGGT
	miR409-RRM2-887	CTCGAGTCTGGGCTCTGAATGCCCAGACCTTGTGCTGC
		CCTTGGGGGAGGGTCTTCTGCAAGCACAGCCGCCTGCA
		AGCATTCACCTTAGTCCGAGCATCTGAGCCTGGTACTC
		GGGGAGACAACACGTTCACCATAGGTAGTTATGGTGAA
		CGTGTTGCCTTTTCCGTATCACCTCCGCCACCTCCCCC
		ΔΤGGΔTGGTCGΔCCΔCTTCGΔΔΔCALLCLUUUUTACUUUU
	UIACIICAACCGGI	

		CTCGAGCCAGCTCTGGAGCCTGACAAGGAGGACAGGA
		GAGATGCTGCAAGCCCAAGAAGCTCTCTGCTCAGCCTG
		TCACAACCTACTGACTGCCAGGGCACTTGGGAATGGCA
	miR451-RRM2-887	AGGACAACACGTTCACCATAGGTAGTTATGGTGAACGT
		GTTGCTCTTGCTATACCCAGAAAACGTGCCAGGAAGAG
		AACTCAGGACCCTGAAGCAGACTACTGGAAGGGAGAC
		TCCAGCTCAAACAAGGCAGGGGTACCGGT
		CTCGAG GTTTTATAAAATTAACAAATGATTAAGAATTA
		ATATCAATTTTCTTAAATTCAAGTTTTGTAACACCAAAA
		AGATCCAATAATGGAAGAGGATTAAAGTCATCATTCAG
	miR215-RRM2-	AAATGGTATACAGGAAAAATTCTCTGTTGGACTTGACA
	1354	TTAAGTCCAACAGAGAATCTATTCTGTATGACTGTGCT
		ACTTCAATATCAGAAATCGACTAACACCACGCAACCAA
		CGCAATGGCAGGTACACAGAAGATAATCTGTAACACTA
		CCATGTAAATGTATTGAGTAAATAAAACATA ACCGGT
		CTCGAGTTCTTAAAAGGGGTGGATGTAAGGGATGAGG
		TAGAATTAACTTCTGGTACTGCTGGCAGGCACCTGAGC
		AGAACATCATTGCTGTCTCTCTCGCAGAAGCTGAGCT
		GACTATGCCTCCCAATTCTCTGTTGGACTTGACATTAAG
	miR324-RRM2-	TCCAACAGAGAATCGGGGGGTTGTAGTCTGACCCGACTG
	1354	GGAAGAAAGCCCCAGGGCTCCAGGGAGAGGGGCTTGG
		GAGGCCCTCACCTCAGTTACATACTGCAGCATAACCAT
		CCGTGCCAGCTTCTCCTGGATCAGCCCAAAGTTGTGAA
		ACCGGT
		CTCGAGTCTGGGCTCTGAATGCCCAGACCTTGTGCTGC
		CCTTGGGGGGGGGGTCTTCTGCAAGCACAGCCGCCTGCA
		AGCATTCACCTTAGTCCGAGCATCTGAGCCTGGTACTC
	miR409-RRM2-	GGGGAGAATTCTCTGTTGGACTTGACATTAAGTCCAAC
	1354	AGAGAATCCTTTTCGGTATCAGCTGGGGCACCTCGGGG
		AAGGACGCCGGCATCAGCACCATTCTGGGGTACGGGG
		ATGGATGGTCGACCAGTTGGAAAGTAATTGTTTCTAAT
		GTACTTCAACCGGT
		CTCGAGCCAGCTCTGGAGCCTGACAAGGAGGACAGGA
		GAGATGCTGCAAGCCCAAGAAGCTCTCTGCTCAGCCTG
	'D 451 DDMO	TCACAACCTACTGACTGCCAGGGCACTTGGGAATGGCA
	miR451-KRM2-	AGGAATTCTCTGTTGGACTTGACATTAAGTCCAACAGA
	1354	GAATCTCTTGCTATACCCAGAAAACGTGCCAGGAAGAG
		AACTCAGGACCCTGAAGCAGACTACTGGAAGGGAGAC
		TCCAGCTCAAACAAGGCAGGGGTACCGGT
Northern blot probes		
382	U6	TATGGAACGCTTCTCGAATT
C146	12.3-antisense	A <u>G</u> AG <u>A</u> TG <u>A</u> GC <u>T</u> TC <u>C</u> TA <u>C</u>
C145	12.3-sense	<u>GT</u> AG <u>G</u> AA <u>G</u> CT <u>C</u> AT <u>C</u> TC <u>T</u>
C147	12.3-sense-short	<u>GT</u> AG <u>G</u> AA <u>G</u> CT <u>C</u> AT

Restriction site tags or compatible overhangs marked in bold. LNAs are underlined.