Sean R. Johnson, Wajid Waheed Bhat, Jacob Bibik, Aiko Turmo, Britta Hamberger, Evolutionary Mint Genomics Consortium, Björn Hamberger

- Table S1. Sources of plants used in this study.
- Table S2. List of Primers used in this study.
- Table S3. Index of class I diTPS functional assays by N. benthamiana transient expression.
- Table S4. Index of class II diTPS functional assays by N. benthamiana transient expression.
- Table S5. Index of *in-vitro* assays.
- Figure S1. An example of skeleton extraction.
- Figure S2. Pathway diagram of newly characterized enzyme activities
- Figure S3. Class I diTPS N. benthamiana assays with (+)-CPP.
- Figure S4. Class I diTPS N. benthamiana assays with (+)-8-LPP.
- Figure S5. Class I diTPS N. benthamiana assays with PgPP.
- Figure S6. Class I diTPS N. benthamiana assays with ent-CPP.
- Figure S7. (+)-CPP synthase N. benthamiana assays.
- Figure S8. Other class II diTPS N. benthamiana assays.
- Figure S9. Comparison of *in-vitro* and *in-vivo* activities for selected combinations.
- Figure S10. NMR of trans-abienol [11]
- Figure S11. NMR of labda-7,13E-dien-15-ol [21a]
- Figure S12. NMR of labda-7,13(16),14-triene [22]
- Figure S13. NMR of labda-7,12E,14-triene [24]
- Figure S14. NMR of (10R)-labda-8,13E-diene-15-ol [25a]
- Figure S15. NMR of (10R)-labda-8,14-dien-13-ol [26]
- Figure S16. NMR of trans-biformene [34]
- Figure S17. NMR of neo-cleroda-4(18),14-dien-13-ol [37]
- Figure S18. NMR of neo-cleroda-4(18),13E-diene-15-ol [38a]
- Figure S19. NOESY of (+)-cis-abienol

Figure S20. Phylogenetic tree of all known and candidate diTPSs from Lamiaceae

Figure S21. Activity-determining regions in an alignment of previously known, newly characterized, and candidate TPS-c enzymes from Lamiaceae

Figure S22. An activity-determining region in an alignment of previously known, newly characterized, and candidate TPS-e enzymes from Lamiaceae

Taxon	Subfamily	Source		
Ajuga reptans L.	Ajugoideae	Horizon Herbs, Williams, Oregon, USA		
Hyptis suaveolens (L.) Poit.	Nepetoideae	Native seeds, Tucson, Arizona, USA		
Leonotis leonurus (L.) R.Br.	Lamioideae	Logee's Greenhouses, Danielson, Connecticut, USA		
Mentha spicata L.	Nepetoideae	Richters Herbs, Goodwood, Ontario, Canada		
Nepeta mussinii Spreng. ex Henckel.	Nepetoideae	Outside Pride, Independence, Oregon, USA		
Origanum majorana L.	Nepetoideae	Richters Herbs, Goodwood, Ontario, Canada		
Perovskia atriplicifolia Benth.	Nepetoideae	Department of Horticulture, Michigan State University (https://www.canr.msu.edu/hrt/)		
Plectranthus barbatus	Nepetoideae	Companion Plants, Athens, Ohio, USA		
Pogostemon cablin (Blanco) Benth.	Lamioideae	Richters Herbs, Goodwood, Ontario, Canada		
Prunella vulgaris L.	Nepetoideae	WJ Beal Botanical Garden, Michigan State University		
Salvia officinalis L.	<i>cinalis</i> L. Nepetoideae Department of Horticulture, Michigan St University (https://www.canr.msu.edu/ht			

Table S1. Sources of plants used in this study.

Name	Sequence	Gene of				
Amplification of	Amplification of full length genes from cDNA synthesized from plant tissues total RNA					
ZmAN2-F	ATGGTTCTTTCATCGTCTTGCACA	ZmAN2				
ZmAN2-R	TTATTTTGCGGCGGAAACAGGTTCA					
CfTPS2-F	AGATTGAGGATTCCATTGAGTACGTGAAGG	CfTPS2				
CfTPS2-R	GAAGTTTAATATCCTTCATTCTTTATTACA					
CfTPS3-F	AGCTCCATTCAACTAGAGTCATGTCGT	CfTPS3				
CfTPS3-R	TTCATCTGGCTTAACTAGTTGCTGACAC					
CfTPS16-F	TTAAAGTACTCTCTCAAAGAGTACTTTGG	CfTPS16				
CfTPS16-R	GCGACCAACCATCATACGACT					
LlTPS1-F	AATGGCCTCCACTGCATCCACTCTA	LlTPS1				
LlTPS1-R	CCATACTCATTCAACTGGTTCGAACA					
LlTPS4-F	AGCCTGTGTACTCGAAATGTC	LlTPS4				
LlTPS4-R	CAAGAGGATGATTCATGTACCAAC					

SoTPS1-F	TCTCTTTCAAGAATATCCCCTCTC	SoTPS1
SoTPS1-R	GGCATTCAATGATTTTGAGTCG	
ArTPS1-F	AAATGGCCTCTTTGTCCACTCTC	ArTPS1
ArTPS1-R	TTACGCAACTGGTTCGAAAAGCA	
ArTPS2-F	TAATGTCATTTGCTTCCCAAGCCA	ArTPS2
ArTPS2-R	GGCCTAGACTACCTTCTCAAACAA	
ArTPS3-F	AATGTCACTCTCGTTCACCATCAA	ArTPS3
ArTPS3-R	ACTTCAAGAGGATGAAGTGTTTAGG	
PaTPS1-F	CTCCAAAACTCGGGCCGGTAAAT	PaTPS1
PaTPS1-R	TACGTATTTCCTCACAATCGAGCA	
PaTPS3-F	CTAGAAATGTTACTTGCGTTCAAC	PaTPS3
PaTPS3-R	GGGTAAGAGTTGAATTTAGATGTCT	
NmTPS1-F	ATGACTTCAATATCCTCTCTAAATTTGAGC	NmTPS1
NmTPS1-R	GAATATAGTAATCAGACGACCGGTCCA	
NmTPS2-F	GCCATATCATGTCTCTTCCGCTCT	NmTPS2
NmTPS2-R	TTATTCATGCACCTTAAAATCCTTGAGAG	
OmTPS1-F	ATGACCGATGTATCCTCTCTCGT	OmTPS1
OmTPS1-R	AAACACTCACATAACCGGCCCAA	
OmTPS3-F	GTCCTTGCTTTCGGAATACT	OmTPS3
OmTPS3-R	GAAGTGATCTACAAGGATTCATAAA	
OmTPS4-F	TCATTGATTTGCCCTGCATCCAC	OmTPS4
OmTPS4-R	CAAAGCTAGTGCTGCTTCTGATT	
OmTPS5-F	ATGGTATCTGCATGTCTAAAACTCAA	OmTPS5
OmTPS5-R	CTTTCTCTCTCTTGTGCATCTTAGT	
MsTPS1-F	ACGTTCATCTTCAATGAGTTCCA	MsTPS1
MsTPS1-R	TACGTGTATGTCGATCTGTTCCAAT	
PcTPS1-F	CATGTCATTTGCTTCTCAATCAC	PcTPS1
PcTPS1-R	CCCATTATCTAAAAGTCTACATCACC	
HsTPS1-F	TCCTCATAAAGCAATGGCGTATA	HsTPS1
HsTPS1-R	CTAAGATTCAGACAATGGGCTCA	
EpTPS8-F	GCAGACGCCAATCTTTCTTGGT	EpTPS8
EpTPS8-R	TTATGAAGTTAAAAGGAGTGGTTCGTTGAC	
PVTPS1-F	GGAACGAGAAATGTCACTCAC	PVTPS1
PVTPS1-R	TTCTAGTTTCTCACAGAAGTCAA	
		Synthesize d by Integrated
LP4-2A Ver.1	TCAAATGCAGCAGACGAAGTTGCTACTCAACTTTTGAATTTTGACTTGCTGA	DNA Technologi
sequence	AUTIOUTIOITUATUTUAUTUAAAUUUTUAAUU	es, Skokie.
		Illinois,
Cloping of full	angth diTDS gauge into nEAO UT for transient armus-in in N. Louthania	USA
T CIOHING OF HUILI	engun un r 5 genes muo peay-mi nor transient expression in <i>Iv. Denindmiana</i>	ļ

pEAQ_Infusion CfTPS1_F	TTCTGCCCAAATTCGATGGGGTCTCTATCCACTATGA	CfTPS1
nFAO Infusion		
CfTPS1-R	AGTTAAAGGCCTCGATCAGGCGACTGGTTCGAAAAGTA	
pEAQ_Infusion		a aa
$_SsSCS-F$	TTCTGCCCAAATTCGATGTCGCTCGCCTTCAAC	2222
pEAQ_Infusion		
_SsSCS-R	AGTTAAAGGCCTCGATCAAAAGACAAAGGATTTCATA	
pEAQ_Infusion		ZmAN2
_ZmAN2-F	TTCTGCCCAAATTCGATGGTTCTTTCATCGTCTTGCAC	
pEAQ_Infusion		
_ZMAN2-R	AGTTAAAGGCCTCGATTATTTTGCGGCGGAAACAGGT	
CfTPS2_F	ΤΤΥΤΟΥΥΥΛΑΛΑΤΤΥΥΛΑΤΩΑ Α Α ΑΤΩΤΤΩΑΤΩΑΤΥΛΑ Α Α ΑΩΤ	CfTPS2
nEAO Infusion		CJ11 52
CfTPS2-R	AGTTAAAGGCCTCGATCAGACCACTGGTTCAAATAGTA	
pEAQ Infusion		
CfTPS3-F	TTCTGCCCAAATTCGATGTCGTCCCTCGCCGGCAACCT	CfTPS3
pEAQ_Infusion		
_CfTPS3-R	AGTTAAAGGCCTCGACTAGTTGCTGACACAACTCATT	
pEAQ_Infusion		CfTPS16
_CfTPS16-F	TTCTGCCCAAATTCGATGCAGGCTTCTATGTCATCT	0,11,510
pEAQ_Infusion		
CfIPSIO-R	AGTTAAAGGCCTCGATCATACGACTGGTTCAAACATT	
ITPS1 F	ΤΤΥΤΟΡΟΥΛΑΛΤΤΟΘΑΤΟΘΟΤΟΓΑΟΤΟΘΑΤΟΟ	LlTPS1
nEAO Infusion		
LITPS1-R	AGTTAAAGGCCTCGATCATTCAACTGGTTCGAACAA	
pEAQ_Infusion		
_LlTPS2-F	TTCTGCCCAAATTCGATGATTCCTAATCCCGAAA	LIIP52
pEAQ_Infusion		
_LlTPS2-R	AGTTAAAGGCCTCGATTACATTGGCAATCCGATGAA	
pEAQ_Infusion		LlTPS4
_LIIPS4-F		
ITPSA P	Λ GTT Λ Λ Λ GGCCTCG Λ TC Λ Λ G Λ GG Λ TG Λ T	
nFAO Infusion	AUTTAAAOOCCTCOATCAAOAOOATOATTCATOTACC	
SoTPS1-F	TTCTGCCCAAATTCGATGTCCCTCGCCTTCAACG	SoTPS1
pEAO Infusion		
_SoTPS1-R	AGTTAAAGGCCTCGATCATTTGCCACTCACATTT	
pEAQ_Infusion		$\Lambda_{r}TDS1$
_ArTPS1-F	TTCTGCCCAAATTCGATGGCCTCTTTGTCCACTTTCC	ATTISI
pEAQ_Infusion		
_ArTPS1-R	AGITAAAGGCCTCGATCACGCAACTGGTTCGAAAAGA	
pEAQ_Infusion		ArTPS2
_Arirsz-r		
$p EAQ_Infusion$ $\Delta_r TPS2_P$	ΔGTTΔΔΔGGCCTCGΔCTΔGΔCTΔCCTTCTCΔΔΔCΔΔΔΔ	
nEAO Infusion		
ArTPS3-F	TTCTGCCCAAATTCGATGTCACTCTCGTTCACCATCA	ArTPS3
pEAQ Infusion		
_ArTPS3-R	AGTTAAAGGCCTCGATCAAGAGGATGAAGTGTTTAG	

		1
pEAQ_Infusion		PaTPS1
PEAQ_INJUSION PaTPS1-R	AGTTAAAGGCCTCGATCATACGACCGGTCCAAACAGT	
 pEAO_Infusion		
_PaTPS3-F	TTCTGCCCAAATTCGATGTTACTTGCGTTCAACATAAGC	PaTPS3
pEAQ_Infusion		
_PaTPS3-R	AGTTAAAGGCCTCGATTAATTAGGTAGGTAGAGGGGTT	
pEAQ_Infusion		NmTPS1
_NmTPS1-F	ATATTCTGCCCAAATTCGATGACTTCAATATCCTCTCTAAATTTGAGCAATG	1,111,51
<i>pEAQ_Infusion</i> <i>NmTPS1-R</i>	CAGAGTTAAAGGCCTCGATCAGACGACCGGTCCAA	
nFAO Infusion		
_NmTPS2-F	TTCTGCCCAAATTCGATGTCTCTTCCGCTCTCCTCT	NmTPS2
pEAO Infusion		
NmTPS2-R	GATAAGITAAAGGCCTCGATTATTCATGCACCITAAAATCCTTGAGAGC	
pEAQ_Infusion		ΟμηΤΡς1
_OmTPS1-F	TTCTGCCCAAATTCGATGACCGATGTATCCTCTCTC	0111 01
pEAQ_Infusion		
_OmTPS1-R	AGTTAAAGGCCTCGATCACATAACCGGCCCAAACA	
pEAQ_Infusion		OmTDS3
_OmTPS3-F	TTCTGCCCAAATTCGATGGCGTCGCTCGCGTTCAC	0m1135
pEAQ_Infusion		
_OmTPS3-R	AGTTAAAGGCCTCGACTACAAGGATTCATAAATTAAGGA	
pEAQ_Infusion		OmTPS4
_OmTPS4-F	TTCTGCCCAAATTCGCGAATGTCACTCGCCTTCAGC	01111 54
pEAQ_Infusion		
_OmTPS4-R	AGTTAAAGGCCTCGAGCTAGGAGCTTAGGGTTTTCAT	
pEAQ_Infusion		OmTPS5
_OmTPS5-F	TTCTGCCCAAATTCGATGGTATCTGCATGTCTAAA	0
pEAQ_Infusion		
_OmTPS5-R	AGTTAAAGGCCTCGATCATGAAGGAATTGAAGGAA	
pEAQ_Infusion		M TDG1
_MSTPS1-F	ТГСТӨСССАААТТСӨАТӨАӨТТССАТТСӨАААТТТААӨТ	MsTPS1
pEAQ_Infusion MsTPS1-R	AGTTAAAGGCCTCGATCACTTGAGAGGCTCAAACATCAT	
nEAO Infusion		
PcTPS1-F	TTCTGCCCAAATTCGATGTCATTTGCTTCTCAATCAC	PcTPS1
pEAQ Infusion		
_PcTPS1-R	AGTTAAAGGCCTCGACTACATCACCCTCTCAAACAATAC	
pEAQ_Infusion		
_HsTPS1-F	TTCTGCCCAAATTCGATGGCGTATATGATATCTATTTCAAATCTC	HsTPS1
pEAQ_Infusion		
_HsTPS1-R	AGTTAAAGGCCTCGATCAGACAATGGGCTCAAATAGAAC	
pEAQ_Infusion		
_EpTPS8-F	TTCTGCCCAAATTCGATGCAAGTCTCTCTCTCCCTCA	EpTPS8
pEAQ_Infusion		
_EpTPS8-R	AGTTAAAGGCCTCGATTATGAAGTTAAAAGGAGTGGTT	
pEAQ_Infusion		PVTPS1
_PVIPSI-F		
PVTPS1-R	AGTTAAAGGCCTCGAGCTAGTTTCTCACAGAAGTCAA	
Cloning of diTP	S genes into pET-28 b (+) for E. coli expression	1
5		

pET28 CfTPS1		C/TDC1
-F	AGGAGATATACCATGGCCGAGATTCGAGTTGCCAC	CfIPSI
pET28_CfTPS1		
- <i>R</i>	GGTGGTGGTGCTCGAAGGCGACTGGTTCGAAAAGTAC	
pET28_SsSS-F	AGGAGATATACCATGGATTTCATGGCGAAAATGAAAGAGA	SsSS
pET28_SsSS-R	GGTGGTGGTGCTCGAAAAAGACAAAGGATTTCATAT	
pET28_CfTPS2		
-F	AGGAGATATACCATGCAAATTCGTGGAAAGCAAAGATCAC	CfTPS2
pET28_CfTPS2		
-R	GGTGGTGGTGCTCGAAGACCACTGGTTCAAATAGAACT	
pET28_CfTPS3		
-F	AGGAGATATACCATGTCTAAATCATCTGCAGCTGT	CfTPS3
pET28_CfTPS3		
- <i>R</i>	GGTGGTGGTGCTCGAAGTTGCTGACACAACTCATT	
pET28_OmTPS		OmTPS3
3-F	AGGAGATATACCATGACCGTCAAATGCTAC	0
pET28_OmTPS		
3-R	GGTGGTGGTGCTCGAACAAGGATTCATAAATTAAG	
pET28_OmTPS		OmTPS5
5-F	AGGAGATATACCATGACTGTCAAGTGCAGC	0
pET28_OmTPS		
5-R	GGTGGTGGTGCTCGAATGAAGGAATTGAAG	
pET28_PcTPS		
<i>I-F</i>	AGGAGATATACCATGTTTATGCCCACTTCCATTAAATGTA	PcTPSI
pET28_PcTPS		
1-K	GGTGGTGGTGCTCGAACATCACCCTCTCAAACAATACTTTGG	
pET28_HsTPS		
	AGGAGATATACCATGGTAGCAAAAGTGATCGAGAGCCGAGTTA	HsTPSI
pET28_HsTPS		
1-R	GGTGGTGGTGCTCGAAGACAATGGGCTCAAATAGAACTTTAAAT	

Table S2. List of synthetic oligonucleotides used in this study.

	CfTPS	61 [31]	CfTPS	62 [10]	LITPS	S1 [5]	ZmAN	l2 [16]	HsTPS	S1 [21]	PcTPS	S1 [25]	ArTPS	<mark>32</mark> [38]	OmTP	<mark>S1 [31]</mark>
	products	figure	products	figure	products	figure	products	figure	products	figure	products	figure	products	figure	products	figure
ArTPS3	32	S-3A	8	S-4B	1, 2, 3	S-5A	np	S-6B	-		-		-	-	-	
LITPS4	27	S-3A	8	S-4A	1, 2, 3	S-5B	np	S-6A	-		-		-		-	
MsTPS1	27	S-3A	8	S-4C	3	S-5A	np	S-6A	-		-		np	S-8A	-	
NmTPS2	np	S-3D	np	S-4D	np	S-5D	19	S-6A	-		-		np	S-8A	-	
OmTPS3	34	S-3A	11	S-4D,E	1, 2	S-5A	np	S-6A	24	S-8B	-		np	S-8A	34	S-3C
OmTPS4	33	S-3A	8	S-4C	1, 2, 3, 4	S-5D	20	S-6A	-		-		-		33	S-3C
OmTPS5	29	S-3A	8	S-4A	1, 2, 3	S-5A	np	S-6A	-		-		np	S-8A	29	S-3C
PaTPS3	32	S-3B	8	S-4B	1, 2, 3	S-5C	np	S-6B	-		-		-		-	
PvTPS1	32	S-3B	8	S-4B	1, 2, 3	S-5C	np	S-6B	-		-		-		-	
SoTPS1	32	S-3B	8	S-4B	1, 2, 3	S-5D	np	S-6B	-		-		-		-	
CfTPS3	32		8		1, 2, 3		np		22	S-8B	np	S-8C	np		32	S-7D
SsSS	33		-		4		20		23	S-8B	26	S-8C	37	S-8A	-	

Table S3. Index of class I diTPS functional assays by N. benthamiana transient expression. Bold umbers refer to compound numbers; "np" indicates that the combination was tested but no product was detected; "-" indicates that the combination was not tested. Blue genes are new to this study.

	Product	Figure
ArTPS1	CopalyI-PP [31]	S-7A
CfTPS16	CopalyI-PP [31]	S-7B
NmTPS1	CopalyI-PP [31]	S-7C
OmTPS1	CopalyI-PP [31]	S-7D
PaTPS1	CopalyI-PP [31]	S-7A
ArTPS2	Neo-cleroda-4(18),13E-dienyl-PP [38]	S-8A
HsTPS1	Labda-7,13E-dienyl-PP [21]	S-8B
LITPS1	Peregrinol-PP [7]	S-5B
PcTPS1	Ent-labda-8,13E-dienyl-PP [25]	S-8C

Class II	Class I	Product	Figure
CfTPS1 [31]	OmTPS3	trans-biformene [34]	S-9C
CfTPS2 [10]	OmTPS3	trans-abienol [11]	S-9D
HsTPS1 [21]	OmTPS3	[24]	S-9B
CfTPS1 [31]	OmTPS5	palustradiene [29]	S-9E
ArTPS2 [38]	SsSS	[37]	5A
HsTPS1 [21]	SsSS	[23]	S-9A
PcTPS1 [25]	SsSS	[26]	5B

Table S4. Index of class II diTPS functional assays by *N*.*benthamiana* transient expression. Blue genes are new to this study.

Table S5. Index of *in-vitro* assays. Blue genes are new to this study.

Figure S1. An example of skeleton extraction. By deleting all heteroatoms, desaturation, and stereochemistry, the labdane skeleton is extracted from the forskolin structure.

Figure S2. Newly characterized enzyme activities. Blue genes are newly characterized. Blue square: TPS-e from that position on the key catalyzes the shown transformation. White square: corresponding TPS-e does not catalyze the shown activity. Grey square: corresponding TPS-e was not tested on the substrate.

Figure S4. GC-MS chromatograms of hexane extracts from *N. benthamiana* transiently expressing CfTPS2 along with new class I diTPSs, and reference combinations.

Figure S6. GC-MS chromatograms of hexane extracts from *N. benthamiana* transiently expressing ZmAN2 along with new class I diTPSs, and reference combinations.

Figure S8. GC-MS chromatograms of hexane extracts from *N. benthamiana* transiently expressing new class II diTPSs, reference combinations, and combinations with new class I diTPSs.

Figure S9. Comparison of GC-MS chromatograms of hexane extracts from *in-vitro* assays of purified diTPSs with extracts from *N. benthamiana* transiently expressing diTPS combinations.

Figure S10-A. ¹H NMR of trans-abienol [11].

Figure S10-B. ¹³C NMR of trans-abienol [11].

Figure S10-C. ¹H-¹H COSY of trans-abienol [11].

Figure S10-D. ¹H-¹³C HSQC of trans-abienol [11].

Figure S10-E. ¹H-¹³C HMBC of trans-abienol [11].

Figure S10-F. ¹H NOESY of trans-abienol [11].

Figure S11-A. ¹H NMR of labda-7,13E-dien-15-ol [21a].

Figure S11-B. ¹³C NMR of labda-7,13E-dien-15-ol [21a].

Figure S11-C. ¹H-¹H COSY of labda-7,13E-dien-15-ol [21a].

Figure S11-D. ¹H-¹³C HSQC of labda-7,13E-dien-15-ol [21a]

Fig S11-E. ¹H-¹³C HMBC of labda-7,13E-dien-15-ol [21a]

Fig S11-F. ¹H NOESY of labda-7,13E-dien-15-ol [21a]

Figure S11-G. Overlay of ¹³C NMR of labda-7,13E-dien-15-ol [**21a**] (red) with ¹³C NMR spectrum (blue) reconstructed from shifts reported for the same compound by Mafu et al. (2011) (DOI: 10.1002/cbic.201100336).

Figure S12-A. ¹H NMR of partially purified labda-7,13(16),14-triene [22].

Figure S12-B. ¹³C NMR of partially purified labda-7,13(16),14-triene [22].

Figure S12-C. Overlay of ¹³C NMR of partially purified labda-7,13(16),14-triene [**22**] (red) with ¹³C NMR spectrum (blue) reconstructed from shifts reported for the same compound by Jia et al. (2016) (DOI: 10.1016/j.ymben.2016.04.001).

Figure S13-A. ¹H NMR of labda-7,12E,14-triene [24].

Figure S13-B. ¹³C NMR of labda-7,12E,14-triene [24].

Figure S13-C. ¹H-¹H COSY of labda-7,12E,14-triene [24].

Figure S13-D. ¹H-¹³C HSQC of labda-7,12E,14-triene [24].

Figure S13-E. ¹H-¹³C HMBC of labda-7,12E,14-triene [24].

Figure S13-G. Overlay of ¹³C NMR of labda-7,12E,14-triene [**24**] (red) with ¹³C NMR spectrum (blue) reconstructed from shifts reported for the same compound by Roengsumran et al. (1999) (DOI: 10.1016/S0031-9422(98)00604-9).

Figure S14-A. ¹H NMR of (10R)-labda-8,13E-diene-15-ol [25a].

Figure S14-B. ¹³C NMR of (10R)-labda-8,13E-diene-15-ol [25a].

Figure S14-C. ¹H-¹H COSY of (10R)-labda-8,13E-diene-15-ol [25a].

Figure S14-D. ¹H-¹³C HSQC of (10R)-labda-8,13E-diene-15-ol [25a].

S-39

Figure S14-F. ¹H NOESY of (10R)-labda-8,13E-diene-15-ol [25a].

Figure S14-G. Overlay of ¹³C NMR of (10R)-labda-8,13E-diene-15-ol [**25a**] (red) with ¹³C NMR spectrum (blue) reconstructed from shifts reported for the same compound by Suzuki et al. (1983) (DOI: 10.1016/0031-9422(83)80249-0).

Figure S15-C. ¹H-¹H COSY of (10R)-labda-8,14-dien-13-ol [26].

Figure S15-D. ¹H-¹³C HSQC of (10R)-labda-8,14-dien-13-ol [26].

15b 14 6b 6a 1b 12 3b 20 3a .15a 7b 2b,11b 11a 1a 18 -10 17 7a 16 5 19 2a 6 19 <u>20 17 2,11</u> -20 0 16 0 -30 . 7 18 4 1 10-12-3 -40 -50 . 5 -60 -70 . -80 -90 -100 -110 15 -120 -130 -140 14 -150 3.5 f2 (ppm) 5.5 2.5 1.5 1.0 6.5 6.0 5.0 4.5 4.0 3.0 2.0 0.5 0.0

Figure S15-E. ¹H-¹³C HMBC of (10R)-labda-8,14-dien-13-ol [26].

Figure S15-F. ¹H NOESY of (10R)-labda-8,14-dien-13-ol [26].

Figure S15-G. Overlay of ¹³C NMR of (10R)-labda-8,14-dien-13-ol [**26**] (red) with ¹³C NMR spectrum (blue) reconstructed from shifts reported for the same compound by Wu and Lin (1997) (DOI: 10.1016/S0031-9422(96)00519-5).

Figure S16-A. ¹H NMR of trans-biformene [34].

Figure S16-B. ¹³C NMR of trans-biformene [34].

Figure S16-C. ¹H-¹H COSY of trans-biformene [34].

Figure S16-D. ¹H-¹³C HSQC of trans-biformene [34].

Figure S16-E. ¹H-¹³C HMBC of trans-biformene [34].

Figure S16-F. ¹H NOESY of trans-biformene [34].

Figure S16-G. Overlay of ¹³C NMR of trans-biformene [**34**] (red) with ¹³C NMR spectrum (blue) reconstructed from shifts reported for the same compound by Bohlmann and Czerson (1979) (DOI: 10.1016/S0031-9422(00)90926-9).

Figure S17-A. ¹H NMR of neo-cleroda-4(18),14-dien-13-ol [37].

Figure S17-B. ¹³C NMR of neo-cleroda-4(18),14-dien-13-ol [37].

Figure S17-C. ¹H-¹H COSY of neo-cleroda-4(18),14-dien-13-ol [**37**].

Figure S17-D. ¹H-¹³C HSQC of neo-cleroda-4(18),14-dien-13-ol [37].

Figure S17-E. ¹H-¹³C HMBC of neo-cleroda-4(18),14-dien-13-ol [37].

Figure S17-F. ¹H NOESY of neo-cleroda-4(18),14-dien-13-ol [37].

Figure S17-H. Overlay of ¹³C NMR of neo-cleroda-4(18),14-dien-13-ol [**37**] (red) with ¹³C NMR spectrum (blue) reconstructed from shifts reported for the same compound by Rudi and Kashman (1992) (DOI: 10.1021/np50088a004).

Figure S18-A. ¹H NMR of neo-cleroda-4(18),13E-diene-15-ol [38a].

Figure S18-C. ¹H-¹H COSY of neo-cleroda-4(18),13E-diene-15-ol [38a].

Figure S18-D. ¹H-¹³C HSQC of neo-cleroda-4(18),13E-diene-15-ol [38a].

Figure S18-E. ¹H-¹³C HMBC of neo-cleroda-4(18),13E-diene-15-ol [38a].

S-69

Figure S18-G. Overlay of ¹³C NMR of neo-cleroda-4(18),13E-diene-15-ol [**38a**] (red) with ¹³C NMR spectrum (blue) reconstructed from shifts reported for the same compound by Ohsaki (1994) (DOI: 10.1016/S0960-894X(01)80834-9).

Figure S21: Activity-determining regions in an alignment of previously known (black), newly characterized (blue), and candidate (grey) TPS-c enzymes from Lamiaceae. Red stars indicate residues previously implicated in catalytic specificity. Histidine at the first position and asparagine at the second position have been associated with ent-CPP synthase activity. Red hash indicates residue previously implicated in Mg²⁺ driven inhibition. A histidine in this position leads to sensitivity to Mg²⁺ inhibition, which is characteristic of ent-CPP synthases involved in gibberellin biosynthesis, whereas enzymes of specialized metabolism lacking the histidine showed no susceptibility to Mg²⁺ inhibition. Positions are colored to indicate conservation within each subgroup.

e.1	LAAN, c45824 g1_i1_len_1972 GLHE_c51663_g1_i1_len_1889 IrKSL4 LAAN_c49734_g1_i6_len_2679 GTPS14 IrKSL5 GCDC_c17711_g1_i7_len_2645 SAHL c21045 g1_i1_len_2593 GCOC_c17711_g1_i7_len_2445 SAHL c21045 g1_i1_len_2518 ROOF_c42480_g1_i1_len_2514 SAOF_c56608_g2_i2_len_2830 PEAT_c42177_g1_i7_len_2662 PEAT_c42177_g1_i1_len_2596 MESP_c4172.6g1_i6_len_2514 THVU_c71798_g1_i1_len_2596 GRVU_c48016_g1_i3_len_2814 NmTPS2 LYAM_c36163_g1_i8_len_2814 NMT255 LYAM_c36163_g1_j8_len_2814 LYAM_c36163_g1_j8_len_2815 MYOF_c40108_g1_j5_len_2502 AGFO_c19795_g1_12_len_2012 LELE_c30109_g1_j2_len_2012 LELE_c30109_g1_j2_len_2012 LELE_c30109_g1_j2_len_2013	412 L GP V L SAL 420 406 S G P V L P L 414 406 L G P V L P A V 67 647 L G P V L P A V 67 647 L G P V L P A V 65 647 L G P V L P A L 655 651 L G P V L P A L 655 666 L G P V L P A L 657 666 L G P V L P A L 657 668 L G P V L P A L 657 669 L G P V L P A L 657 661 L G P V L P A L 657 661 L G P V L P A L 657 663 L G P V L P A L 657 663 L G P V L P A L 657 664 L G P V L P A L 657 665 L G P V L P A L 657 665 L G P V L P A L 657 664 L G P V L P A L 657 665 L G P V L P A L 657 665 L G P V L P A L 657 665 L G P V L P A L 657 665 L G P V L P A L 657 665 L G P V L P A L 657 665 L G P V L P A L 657 665 L G P V L P A L 657 665 L G P V L P A L 657 665 L G P V L P A L 657 665 L G P V L P A L 657 665 L G P V L P A L 657 665
	LANG. 2010/22 91 /1 [Jen] 2385 TECA. 2302/43 91 /1 [Jen] 2385 TECA. 2302/43 91 /1 [Jen] 2385 TECA. 2302/83 91 /1 [Jen] 2385 TECA. 2305/88 91 /1 [Jen] 2686 ROMM0725/88 91 /1 [Jen] 2681 SCBA. 041959 91 /1 [Jen] 2681 SCBA. 041959 91 /1 [Jen] 2681 VIAG. 237546 91 /1 [Jen] 2780 PRIM. 04179 92 /1 [Jen] 2617 WEFR. 042053 91 /1 [Jen] 2700 LELE. 233431 91 /1 [Jen] 2700 LELE. 23431 91 /1 [Jen] 2700 VaCPS6 VIAG. 047867 92 /1 [Jen] 2003 VaCPS6 VIAG. 047867 92 /1 [Jen] 2003 VaCPS6 VIAG. 047867 92 /1 [Jen] 2003 VaCPS6 VIAG. 047867 92 /1 [Jen] 2100 VAG. 047867 92 /1 [Jen] 2100 PRLA. 043613 91 /2 [Jen] 2643 CAAM. 043613 91 /2 [Jen] 2643 CAAM. 04361 92 /1 [Jen] 2643 CAAM. 04361	G41 LG PI IVL P CL 649 G41 LG PI IVL P AL 654 Z33 LG PI IVL P AL 291 G60 LG SIR GV AV 658 G41 LG PI IVL P AL 291 G50 LG SIR GV AV 658 G44 LG PI IVL P AL 652 G47 LG PI IVL P AL 652 G47 LG PI IVL P AL 655 G47 LG PI IVL P AL 652 G47 LG PI IVL P AL 652 G47 LG PI IVL P AL 652 G47 LG PI IVL AL 142 G46 LG PI IVL INSL 434 G46 CH I CH I </th
e.2.1	SCBA_c32374_g1_i1_ien_2023 HOSA_c47306_g1_i1_ien_2023 HOSA_c47306_g1_i1_ien_1530 PRML_c37955_g1_j1_ien_1530 SsTps1132 SsSS ORMA_c53741_g1_j3_len_1957 OmTPS4 PEFR_c47770_g1_j2_len_1580 COCA_c63234_g1_i3_ien_1944 ORMA_c46446_g1_i1_ien_1844 OmTPS3 SKSL SpMilS RoKSL2 PEAT_c41289_g2_i5_len_2060 PaTPS3 ORVU_c50768_g6_j2_len_1826 CTIPS4 PLBA_c46055_g1_j5_len_2229 CTIPS3 IrKSL1 IrTPS4 LAAN_c45623_g1_j3_len_1948 MODL_c42947_g1_2_len_2424 MESP_c37832_g1_i_len_1433 PVTPS1 HYOC_c42050_g3_j2_len_2025 GLHE_c55333_g1_j1_len_1493	434 CR I C I L NS L 422 475 CR I C I L NS L 483 308 CR I C I L T SM 316 259 CR I C I L T SM 267 433 SR I C I L T SM 267 433 SR I C I L T SM 267 433 SR I C I L T M 441 433 SR I C I L T M 441 429 CR S I C I L T SM 470 431 CR I C I L T SM 481 432 CR I C I L T SM 481 434 CR I C I L T SM 488 434 CR I C I L V SM 442 436 CR I C I L M SM 446 438 CR I C I L M SM 446 439 CR I C I L M SM 446 430 CR I C I L M SM 445 431 CR I C I L M SM 445 432 CR I C I L M SM 445 433 CR I C I L M SM 441 435 CR I C I L I SM 441 433 CR I C I L I SM 441 433 CR I C I L I SM 442 433 CR I C I L V SM 420 433 CR I C I L V SM 420 433 CR I C I L SM 442 433 CR I C I L M SM 441 433 CR I C I M SM 441
e.2.2 e.2.3	SrkSL1 SrkSL RoKSL1 ROOF_60490_g1_if_en_2583 SAOF_c18770_g1_i1_en_2004 SoTPS1 HYSU_c32723_g2_i2_ian_1796 ORMA_c52272_g2_i10_jen_2153 OrKV_52 INKSL6 ORVJ_c50288_g1_i1_en_2379 IrKSL3 HTPS2 WEFR_c48613_g1_i10_jen_2048 SCBA_c35286_g1_i4_jen_2531 VIAG_c45016_g1_i3_jen_2541 VIAG_c45016_g1_i3_jen_2541 VIAG_c45013_g1_jen_2443	433 CRI CILLMSM 441 435 CRI CILLMSM 446 435 CRI CILLMSM 443 435 CRI CILLMSM 443 437 CRI CILLMSM 443 433 CRI CILLMSM 441 533 SVI CSCLSV 561 447 CRI CILLAI 475 455 CRI CILLAI 475 455 CRI CILLAI 475 455 CRI CILLAI 456 631 CELCVLTAV 630 632 CRI CILLVSI 634 631 CELCVLTAV 640 537 AKVI SFSVI 365 642 SNM FIMSI 370 650 CRI CILLAV 51 656 CRI CILLAV 51 656 CRI CILLAV 51 657 CRI CILLAV 51 658 CRI CILLAN 51 659 CRI CILLAN 51 659 CRI CILLAN 51 650 CRI CI

e.2

Figure S22: An activity-determining region in an alignment of previously known (black), newly characterized (blue), and candidate (grey) TPS-e enzymes from Lamiaceae. Red stars indicate residues previously implicated in catalytic specificity. The combination of leucine and isoleucine has been implicated in contributing to ent-kaurene synthase activity. Positions are colored to indicate conservation within each subgroup.