SUPPORTING INFORMATION

Identification of two segments of the γ subunit of ATP synthase responsible for the different affinities of the catalytic nucleotide binding sites

Nelli Mnatsakanyan, Yunxiang Li, and Joachim Weber

Table S1: Conservation of Residues in the γ 5-15 Segment Table S2: Conservation of Residues in the γ 256-265 Segment Fig. S1: Purity and long-term stability of the enzyme preparations Fig. S2: γ content of the truncation mutants Fig. S3: Possible interactions of the segments γ 5-15 and γ 256-265 with α and β

Table S1

Conservation of Residues in the γ 5-15 Segment

Species	Position	γ5	γ15
Bos taurus		DITRR	LKSIKN
Gallus gallus		DITRR	LKSIKN
Danio rerio (zeb	rafish)	DITIR	LKSIKN
Drosophila mela	nogaster	MISIR	LKSVKN
Saccharomyces d	cerevisiae	EVEMR	LKSIKN
Neurospora cras	sa	EIETR	LKSIRN
Arabidopsis thal	iana	ELRER	IDSVKN
Spinacia olerace	а	ELRDR	IGSVKN
Escherichia coli		EIRSK	IASVQN
Clostridium acet	obutylicum	IIKRR	IKSITN
Vibrio alginolytic	cus	EIRNK	IGSVKS
Bacillus subtilis		DIKSR	ITSTKK
Geobacillus stea	rothermophilus	DIKTR	INATKK
Bacillus sp. strain	n TA2.A1	EIKRR	IRSVKN
Wolinella succin	ogenes	EIRKK	ITSVKN
Thermotoga mar	itima	QIKRK	INATQS
Synechococcus e	longatus	AIRDR	IKSVRN
Consensus		hp +	h sbpp

The table lists the amino acids found in selected species in the γ 5-15 segment which is responsible for determination of the affinity of the catalytic sites. Residue numbers refer to the *G. stearothermophilus* enzyme. Consensus annotation: **b**, β -branched residue; **h**, hydrophobic residue; **p**, polar residue; **s**, small residue; +, positively charged residue.

Table S2

Conservation of Residues in the y256-265 Segment

Species	Position	γ256	γ265
Ros taurus		ראני די די	Т Г N В Т
Gallus gallus			TENRT
Danio rerio		DKLTL	TFNRT
Drosophila melan	ogaster	DKLTL	TFNRT
Saccharomyces ce	erevisiae	NRYSI	LYNRT
Neurospora crass	а	SKYQI	LFNRT
Arabidopsis thalid	ina	KSLSM	VYNRA
Spinacia oleracea	!	KTLSI	NYNRA
Escherichia coli		KELQL	VYNKA
Clostridium aceto	butylicum	DALNI	KYNRI
Vibrio alginolytic	us	DDLEL	VYNKA
Bacillus subtilis		DSLSL	SYNRA
Geobacillus stear	othermophilus	RTLTL	SYNRA
Bacillus sp. strain	TA2.A1	ETLTL	QFNRA
Wolinella succino	genes	KSLTI	AYNKA
Thermotoga maria	tima	RELTL	AYNKA
Synechococcus ele	ongatus	GQLTL	VYNKA
Consensus		hph	aN+

The table lists the amino acids found in selected species in the $\gamma 256-265$ segment which is responsible for determination of the affinity of the catalytic sites. Residue numbers refer to the *G. stearothermophilus* enzyme. Consensus annotation: **a**, aromatic residue; **h**, hydrophobic residue; **p**, polar residue; +, positively charged residue.

Fig. S1. **Purity and long-term stability of the enzyme preparations.** (A) SDS-PAGE of $\alpha_3\beta_3\gamma$ (left) and $\alpha_3\beta_3$ (right). The gel was run within a week of preparation of the enzymes. The positions of marker protein bands are indicated. (B) Size exclusion chromatography of $\alpha_3\beta_3\gamma$ (black) and $\alpha_3\beta_3$ (red) of samples stored for more than four years as ammonium sulfate precipitate at 4 °C. UV absorbance at 280 nm was recorded as signal. Traces represent the average of two runs. Peak 1 at 3.7 min corresponds to $\alpha_3\beta_3\gamma$ or $\alpha_3\beta_3$ (352 kDa and 320 kDa, respectively), peak 2 at 4.7 min to isolated α or β subunits (55 kDa and 52 kDa, respectively). The blue arrows (3 and 4) indicate the elution times (4.3 and 4.5 min) for lactate dehydrogenase (137 kDa) and bovine serum albumin (66 kDa), respectively.

Fig. S2. γ content of the truncation mutants. Western blots with a primary antibody against the globular portion of γ are shown. Figs. A and B also show a control experiment with an anti- β antibody (right-hand panel). (A) $\alpha_3\beta_3$ and N-terminal truncations. Left panel: anti- γ antibody. 5 µg protein was loaded per lane, except for lane 7 (2.5 µg). Lane 1, $\alpha_3\beta_3$; lane 2, $\gamma\Delta N45$; lane 3, $\gamma\Delta N29$, lane 4, $\gamma\Delta N13$; lane 5, $\gamma\Delta N9$; lane 6, $\gamma\Delta N4$; lanes 7 and 8, wild-type $\alpha_3\beta_3\gamma$. Right panel; anti- β antibody. 5 µg protein was loaded per lane, except for lanes 7 (1.25 µg) and 8 (2.5 µg). Lane 1, $\alpha_3\beta_3$; lane 2, $\gamma\Delta N45$; lane 3, $\gamma\Delta N29$, lane 4, $\gamma\Delta N13$; lane 5, $\gamma\Delta N9$; lane 6, $\gamma\Delta N4$; lanes 7 (1.25 µg) and 8 (2.5 µg). Lane 1, $\alpha_3\beta_3$; lane 2, $\gamma\Delta N45$; lane 3, $\gamma\Delta N29$, lane 4, $\gamma\Delta N13$; lane 5, $\gamma\Delta N9$; lane 6, $\gamma\Delta N4$; lanes 7 to 9, wild-type $\alpha_3\beta_3\gamma$. (B) C-terminal truncations. Left panel: anti- γ antibody; right panel: anti- β antibody. 20 µg protein was loaded per lane, except for lanes 5 (2.5 µg), 6 (5 µg), and 7 (10 µg). Lane 1, $\gamma\Delta C36$; lane 2, $\gamma\Delta C27$; lane 3, $\gamma\Delta C20$; lane 4, $\gamma\Delta C14$; lanes 5 to 8, wild-type $\alpha_3\beta_3\gamma$. (C) N-terminal truncations after fluorescence binding assay and Centricon (see RESULTS). 5 µg protein was loaded per lane, except for lane 3, $\gamma\Delta N13$; lane 4, $\gamma\Delta N9$; lane 5, $\gamma\Delta N4$; lanes 6 and 7, wild-type $\alpha_3\beta_3\gamma$. The blue tinge in some of the blots is due to the filter setting used to take the picture.

Fig. S3. **Possible interactions of the segments \gamma5-15 and \gamma256-265 with \alpha and \beta. (A) \gamma5-15. \gamma5-15 is shown in pink; subunits \alpha_E and \alpha_{DP} are colored light grey, \beta_{DP} green, and \beta_{TP} yellow. Amino acids in \alpha_E, \beta_{DP} and \beta_{TP} that might make contact with side chains of \gamma5-15 are shown in "stick" representation and labeled (subscript "mc" indicates main chain atoms). The portion of the C-terminal helix of \gamma running antiparallel to segment \gamma5-15 is shown in cyan (\gamma256-265) and purple. (B) \gamma256-265. \gamma256-265 is shown in cyan, \alpha_{TP} in light grey, and \beta_E in orange; residue \gammaA265 is hidden in this view. Amino acids in \alpha_{TP} that might make contact with side chains of \gamma256-265 are shown in "stick" representation and labeled. The most intensive contacts between the C-terminal helix of \gamma and the "catch loop" of \beta_E (shown in transparent "spacefill") are formed by the two residues immediately downstream of the identified segment, \gammaR266 and \gammaQ267 (shown in purple and unlabeled). The portion of the C-terminal helix of \gamma running antiparallel to segment \gamma256-265 is shown in pink (\gamma5-15) and purple.**