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Deformation of ellipsoids

The deformation of ellipsoids is calculated by the difference between the measured radius

and the initial radius of ellipsoids. (Figure S1).

Intermediate scattering function

The short-time collective diffusion coefficient Ds(q) (cf. Figure 2) is extracted from a single

exponential fit to the short-time part of the intermediate scattering function

S(q, t) ≈ S(q, 0)e−q
2Ds(q)t (S1)

where the intermediate scattering function (Figure S2A) is calculated by

S(q, t) =

〈
1

N

N∑
j,k

eiq·(rj(0)−rk(t))

〉
. (S2)

Note that only the short-time part of S(q, t) is used for the fit (t ≤ 0.2τ , where τ = Rh
2/D0

is the characteristic time of colloids).

Mean-square-displacement

The short-time self-diffusion coefficient Ds
s (cf. Figure 3) is calculated from the mean-square-

displacement 〈∆r2〉 = 6Ds
st of colloids (Figure S2B). Note that only the short-time linear

part of the MSD is used for the fit (t ≤ 0.6τ).

Number of connected neighbors

The local environment of individual colloids is analyzed by the average number of connected

neighbors Nnbr (i.e. belonging to the same cluster) within a cutoff radius Rcut = 7Rh of

attractive spheres and ellipsoids as a function of volume fraction (Figure S3), which is nor-

malized by the number density, N∗nbr = Nnbr/[(N/L
3
s)× (4

3
πR3

cut)− 1]. Here, two colloids are

considered as connected neighbors when their bead separation is smaller than the distance

at the first minimum of the pair correlation function (r ≤ 1.4σ), and the cutoff radius Rcut

is set to eliminate the effect of the simulation box size in the analysis.
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Orientational angle distribution

The orientational ordering of ellipsoids is analyzed by the distributions P (cos(θ)) of angles θ

between neighboring ellipsoids (Figure S4). The orientation of an ellipsoid is defined by its

semi-principal axis ra, where the angle cos(θ) of two ellipsoids varies from 0 for perpendicular

orientation to 1 for parallel orientation.

Structure factor

The characteristic of the structure can be analyzed by the structure factor (cf. Figure 5)

S(q) = 1 +
N

V

∫ ∞
0

4πr2 [g(r)− 1]
sin (qr)

qr
dr (S3)

where the the pair-correlation function

g(r) =
V

N2

〈∑
i

∑
j 6=i

δ(r− rij)

〉
(S4)

is the probability to find a pair of colloids a distance r apart.

S3



����

� � � � 	 


�
��
�
�

��
���

��
��


�
���

�
��


�
���

��
�

��
�

��
�

Figure S1: Deformation of ellipsoids.
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Figure S2: (A) Intermediate scattering function (ISF) for different volume fractions of hard
ellipsoid. The ISF of 0.02τ ≤ t ≤ 0.2τ is used for the fit to obtain the short-time collec-
tive diffusion coefficient Ds(q). (B) Mean-square- displacement (MSD) for different volume
fractions of hard ellipsoid. The MSD of 0.02τ ≤ t ≤ 0.6τ is used for the fit to obtain the
short-time self-diffusion coefficient Ds

s.
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Figure S3: Normalized average number of connected neighbors N∗nbr within a cutoff radius
Rcut = 7Rh of attractive spheres (ATT S) and ellipsoids (ATT E) as a function of volume
fraction.
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Figure S4: Distributions of angles θ between neighboring (A) hard and (B) attractive ellip-
soids for different volume fractions.
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