Supplementary Information for

Dual Cationic-Anionic Profiling of Metabolites in a Single Embryonic Cell in a Live Xenopus laevis Embryo by Microprobe CE-ESI-MS

Erika P. Portero and Peter Nemes*

Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742

***Correspondence to**: Peter Nemes, Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA. Phone: (1) 301-405-0373. E-mail: <u>nemes@umd.edu</u>

Table of Contents

Table S1	2
Table S2	4
Table S3	6
Table S4	7

TABLES

 Table S1. Molecular features detected by anionic analysis. Identified features are highlighted.

 Key: t_m, migration time.

m/z	t _m (min)
173.1027	11.3
145.0957	13.9
213.1135	14.4
211.0593	14.9
195.0857	15.0
145.0605	15.1
180.0331	15.8
194.0430	16.3
179.0555	16.4
185.9915	16.5
199.9901	16.5
242.0362	16.5
273.1059	16.5
172.0222	16.8
314.8748	17.3
204.0888	17.5
130.0613	17.6
170.0429	17.6
186.0166	17.7
192.0509	17.7
188.0169	17.9
183.0162	18.0
229.0413	18.0
223.0096	18.1
315.9317	18.2
116.0725	18.2
153.0272	18.3
190.0351	18.3
140.0112	18.5
169.0002	18.5
193.0701	18.5
131.0461	18.6
249.0243	18.6
138.0555	18.8
100.0410	19.0
214.0492	19.1
124.0068	19.1
400.1150	19.9

m/z	t _m (min)	m/z	t _m (min)	m/z	t _m (min)
200.1303	32.2	179.0751	39.3	 290.9664	49.7
349.0044	32.2	182.0472	39.7	171.0125	50.5
243.0813	32.4	138.9780	39.8	213.9731	50.8
185.1554	32.6	199.0001	39.9	234.1102	50.9
144.0310	32.8	176.9354	40.0	173.0040	51.0
275.1325	32.8	296.9767	40.1	121.0305	51.1
216.0885	32.9	131.0724	40.2	 210.0276	53.4
125.0981	33.2	146.0472	40.4	232.0090	53.4
186.1146	33.2	149.0470	40.5	112.0511	53.5
221.0824	33.3	362.0071	40.9	120.9804	53.5
321.0455	33.4	380.0180	40.9	88.0405	53.6
172.1431	33.5	176.9372	40.9	 102.9703	53.6
217.9959	33.8	323.0301	40.9	166.9735	53.6
251.0712	34.0	282.0396	40.9	271.9400	53.6
236.0980	34.1	272.9581	41.0	285.9386	53.6
285.0446	34.1	132.0420	41.0	192.0174	53.7
149.1341	34.3	213.0235	41.0	247.9830	53.7
172.0999	34.5	267.5315	42.4	269.9646	53.7
175.0229	34.5	282.0214	43.0	130.0613	53.9
157.2450	34.8	111.0211	43.1	103.0760	55.2
159.1295	34.9	241.0127	43.1	192.9881	55.3
190.0551	35.2	283.0236	43.1	208.9613	55.3
177.0928	35.6	117.0565	44.4	248.9531	55.5
248.0784	35.6	229.0107	44.5	135.0131	57.3
127.0265	36.0	231.0182	45.3	105.0205	57.8
143.1086	36.5	207.0131	45.4	 115.0761	60.8
181.0517	36.5	135.0311	45.4	100.9857	61.3
193.0913	37.1	197.0312	45.4	188.9389	61.3
171.0057	38.2	298.9435	46.3	200.9415	61.3
289.0316	38.3	271.4403	47.3	225.1867	61.3
322.0462	38.4	110.0358	47.4	239.2023	61.4
290.0891	38.5	131.0727	47.7	259.0234	62.0
129.0930	38.5	150.0176	47.7	130.0617	66.1
134.0482	38.7	128.0364	47.8		
165.0414	38.7	119.0360	48.0		

ID	Metabolite	Formula	Time (min)	<i>m/z</i> measured	<i>m/z</i> theoretical	∆ <i>m/z</i> (mDa)	Δ <i>m/z</i> (ppm)
<u>1</u>	Spermidine (SPM)**,R1	C7H19N3	15.5	146.1663	146.1652	-1.1	-7.5
<u>2</u>	Thiamine**,R1	$C_{12}H_{16}N_4OS$	17.8	265.1114	265.1118	0.4	1.4
<u>3</u>	Choline (Cho) ^{*,**,R1}	C ₅ H ₁₃ NO	18.6	104.1068	104.1070	0.2	1.9
<u>4</u>	Arg-Ala (RA) ^{**,R1}	$C_9H_{19}N_5O_3$	19.3	246.1570	246.1561	-0.9	-3.8
<u>5</u>	Lys-Ser (KS) ^{**,R1}	$C_9H_{19}N_3O_4$	19.3	234.1434	234.1448	1.4	6.1
<u>6</u>	Val-Lys (VK) ^{**,R2}	$C_{11}H_{23}N_3O_3$	19.6	246.1805	246.1812	0.7	2.9
<u>7</u>	S-adenosyl-methionine (SAM) ^{**,R1}	$C_{15}H_{22}N_6O_5S$	19.6	399.1430	399.1445	1.5	3.8
<u>8</u>	Ser-Arg (SR) ^{**,R1}	$C_9H_{19}N_5O_4$	19.6	262.1511	262.1510	-0.1	-0.4
<u>9</u>	Ornithine (Orn) ^{**,R1}	$C_5H_{12}N_2O_2$	19.8	133.0973	133.0972	-0.1	-0.8
<u>10</u>	Lysine (Lys) ^{*,**,R1}	$C_6H_{14}N_2O_2$	20.0	147.1132	147.1128	-0.4	-2.7
<u>11</u>	Arginine (Arg) ^{*,**,R1}	$C_6H_{14}N_4O_2$	20.4	175.1193	175.1190	-0.3	-2.0
<u>12</u>	Homolysine**,R1	$C_7H_{16}N_2O_2$	20.4	161.1287	161.1285	-0.2	-1.5
<u>13</u>	Tyr-Lys (YK) ^{**,R2}	$C_{15}H_{23}N_3O_4$	20.4	310.1749	310.1761	1.2	4.0
<u>14</u>	γ-aminobutyric acid (GABA) ^{*,**,R2}	$C_4H_9NO_2$	20.5	104.0707	104.0706	-0.1	-0.9
<u>15</u>	N6,N6,N6-trimethyl-lysine (TML) ^{**,R1}	$C_9H_{20}N_2O_2$	20.5	189.1599	189.1598	-0.1	-0.8
<u>16</u>	Histidine (His) ^{*,**,R1}	$C_6H_9N_3O_2$	20.5	156.0774	156.0768	-0.6	-4.1
<u>17</u>	Methylhistidine**	$C_7H_{11}N_3O_2$	20.7	170.0928	170.0924	-0.4	-2.3
<u>18</u>	Guanidinopropanoate**	$C_4H_9N_3O_2$	20.8	132.0761	132.0768	0.7	4.9
<u>19</u>	Acetylcholine (AcCho) ^{*,**,R1}	$C_7H_{15}NO_2$	20.8	146.1177	146.1176	-0.1	-1.0
<u>20</u>	Leu-Ala (LA) ^{**,R2}	$C_9H_{18}N_2O_3$	22.0	203.1388	203.1390	0.2	1.1
<u>21</u>	Cis-urocanate (cURA) ^{**,R1}	$C_6H_6N_2O_2$	22.2	139.0500	139.0502	0.2	1.4
<u>22</u>	Guanine**,R1	C₅H₅N₅O	22.3	152.0572	152.0567	-0.5	-3.4
<u>23</u>	Carnitine (Car) ^{*,**,R1}		22.8	162.1131	162.1125	-0.6	-3.9
<u>24</u> 25	Methylquanine ^{**,R2}	C6H6N2O2 C6H7N5O	23.0 23.3	139.0500	139.0502	0.2 -0.3	1.4 -1.8
<u></u> 26	Pyridoxal ^{**}		23.4	168 0659	168 0655	-0.4	-2.3
<u></u> 27	Acetylcarnitine (AcCar)**,R1	C9H17NO₄	24.5	204.1231	204.1230	-0.1	-0.3
<u></u> 28	Methylaspartate ^{**,R2}	C₅H₀NO₄	25.4	148,0605	148.0604	-0.1	-0.4
<u></u> 29	Glvcine ^{*,R2}	C ₂ H ₅ NO ₂	25.3	76.0386	76.0393	0.7	9.3
30	Niacinamide ^{*,R2}	C ₆ H ₆ N ₂ O	25.4	123.0549	123.0553	0.4	3.2

Table S2. Metabolites identified by cationic microprobe CE-ESI-MS. Key to symbols is in the footnote of **Table S3**.

ID	Metabolite	Formula	Time (min)	<i>m/z</i> measured	<i>m/z</i> theoretical	∆ <i>m/z</i> (mDa)	Δ <i>m/z</i> (ppm)
<u>31</u>	Creatine (CR) ^{*,**,R1}	$C_4H_9N_3O_2$	25.6	132.0779	132.0768	-1.1	-8.7
<u>32</u>	Pro-Val (PV) ^{**,R2}	$C_{10}H_{18}N_2O_3$	25.8	215.1378	215.1390	1.2	5.7
<u>33</u>	Alanine (Ala) ^{*,R1}	$C_3H_7NO_2$	27.4	90.0548	90.0550	0.2	1.7
<u>34</u>	Argininosuccinate (ASA)**	$C_{10}H_{18}N_4O_6$	28.5	291.1292	291.1299	0.7	2.4
<u>35</u>	Valine (Val) ^{*,**,R1}	$C_5H_{11}NO_2$	30.5	118.0864	118.0863	-0.1	-1.2
<u>36</u>	Serine (Ser) ^{*,**,R1}	C ₃ H ₇ NO ₃	30.6	106.0498	106.0499	0.1	0.7
<u>37</u>	Isoleucine ^{*,‡,R1}	$C_6H_{13}NO_2$	30.7	132.1023	132.1019	-0.4	-3.0
<u>38</u>	Leucine ^{*,‡,R1}	$C_6H_{13}NO_2$	31.0	132.1023	132.1019	-0.4	-3.0
<u>39</u>	Asparagine (Asn)**	$C_4H_8N_2O_3$	32.1	133.0610	133.0608	-0.2	-1.7
<u>40</u>	Threonine (Thr) ^{*,**,R1}	C ₄ H ₉ NO ₃	32.1	120.0654	120.0655	0.1	1.0
<u>41</u>	Tryptophan (Trp) ^{*,**,R1}	$C_{11}H_{12}N_2O_2$	32.6	205.0967	205.0972	0.5	2.2
<u>42</u>	Methionine (Met) ^{*,**,R1}	$C_5H_{11}NO_2S$	32.7	150.0588	150.0583	-0.5	-3.2
<u>43</u>	Glutamine (Gln)**	$C_5H_{10}N_2O_3$	32.8	147.0769	147.0764	-0.5	-3.3
<u>44</u>	2-Aminoadate**,R2	$C_6H_{11}NO_4$	32.9	162.0767	162.0761	-0.6	-3.8
<u>45</u>	Acetylhomoserine ^{†,R2}	$C_6H_{11}NO_4$	32.9	162.0767	162.0761	-0.6	-3.8
<u>46</u>	Citrulline (Cit)**,R1	$C_6H_{13}N_3O_3$	33.1	176.1027	176.1030	0.3	1.5
<u>47</u>	Homocitrulline**,R1	C7H15N3O3	33.2	190.1178	190.1186	0.8	4.3
<u>48</u>	Glutamic acid (Glu)**	$C_5H_9NO_4$	33.2	148.0610	148.0604	-0.6	-3.8
<u>49</u>	Phenylalanine (Phe) ^{**,R1}	$C_9H_{11}NO_2$	33.7	166.0867	166.0863	-0.4	-2.7
<u>50</u>	Acetyllysine ^{†,R2}	$C_8H_{16}N_2O_3$	34.0	189.1219	189.1234	1.5	7.8
<u>51</u>	Tyrosine (Tyr) ^{*,**,R1}	C ₉ H ₁₁ NO ₃	34.1	182.0813	182.0812	-0.1	-0.7
<u>52</u>	Hypoxanthine (HPX)**	$C_5H_4N_4O$	34.3	137.0461	137.0458	-0.3	-2.3
<u>53</u>	Proline (Pro) ^{*,**,R1}	$C_5H_9NO_2$	34.6	116.0707	116.0706	-0.1	-0.8
<u>54</u>	Ser-Val (SV) ^{†,R2}	$C_8H_{16}N_2O_4$	34.9	205.1181	205.1183	0.2	0.9
<u>55</u>	Cysteine ^{*,**,R2}	C ₃ H ₇ NO ₂ S	35.8	122.0269	122.0270	0.1	1.0
<u>56</u>	Aspartic acid ^{*,**}	C ₄ H ₇ NO ₄	36.0	134.0451	134.0448	-0.3	-2.4
<u>57</u>	Glycine betaine (GB) ^{*,‡,R1}	$C_5H_{11}NO_2$	36.6	118.0864	118.0863	-0.1	-1.2
<u>58</u>	Glutathione, oxidized (GSSG) ^{**,R1}	$C_{20}H_{32}N_6O_{12}S_2$	37.2	307.0826	307.0833	0.7	2.1
<u>59</u>	Hydroxyproline (Hyp)**	C ₅ H ₉ NO ₃	38.3	132.0660	132.0655	-0.5	-3.6
<u>60</u>	Glutathione (GSH) ^{*,**,R1}	$C_{10}H_{17}N_3O_6S$	40.0	308.0908	308.0911	0.3	0.9

ID	Metabolite (Abbrev)	Formula	Time (min)	<i>m/z</i> measured	<i>m/z</i> theoretical	Δ <i>m/z</i> (mDa)	Δ <i>m/z</i> (ppm)
<u>1</u>	Arginine (Arg)**	$C_6H_{14}N_4O_2$	11.3	173.1027	173.1033	0.6	3.5
<u>2</u>	Lysine (Lys)**	$C_6H_{14}N_2O_2$	13.9	145.0958	145.0971	1.3	9.2
<u>3</u>	Glutamine (Gln)**	$C_5H_{10}N_2O_3$	15.1	145.0605	145.0608	0.3	2.3
<u>4</u>	Glucose ^{*,**}	$C_{6}H_{12}O_{6}$	16.4	179.0555	179.0550	-0.5	-2.8
<u>5</u>	Asparagine (Asn)**	$C_4H_8N_2O_3$	17.3	131.0461	131.0451	-1.0	-7.6
<u>6</u>	Creatine (CR)**	$C_4H_9N_3O_2$	17.6	130.0613	130.0609	-0.4	-3.1
<u>7</u>	Phenethoxybenzamid - oxopentanoic acid ^{**}	C19H19N3O7	19.9	400.1150	400.1139	-1.1	-2.8
<u>8</u>	Phosphorylcholine**	C4H12NO4P	20.5	168.0413	168.042	0.7	4.3
<u>9</u>	Pyridoxal ^{**}	C ₈ H ₉ NO ₃	20.8	166.0519	166.0498	-2.1	-12.6
<u>10</u>	Aspartic acid (Asp)**	C ₄ H ₇ NO ₄	24.8	132.0287	132.0291	0.4	3.3
<u>11</u>	Phosphoylethanolamine**	$C_2H_8NO_4P$	28.2	140.0115	140.0107	-0.8	-5.7
<u>12</u>	Glyceric acid**	$C_3H_6O_4$	31.3	105.0191	105.0182	-0.9	-8.6
<u>13</u>	Guanine**	$C_5H_5N_5O$	31.9	150.0415	150.041	-0.5	-3.3
<u>14</u>	Pantothenic acid**	$C_9H_{17}NO_5$	32.0	218.1044	218.1023	-2.1	-9.6
<u>15</u>	Cytidine phosphate (CMP)**	C9H14N3O8P	38.4	322.0462	322.0434	-2.8	-8.7
<u>16</u>	Adenine**	$C_5H_5N_5$	38.7	134.0482	134.0461	-2.1	-15.7
<u>17</u>	Pyridoxic acid (PHOS)**	C ₈ H ₉ NO ₄	39.7	182.0472	182.0447	-2.5	-13.7
<u>18</u>	Glutamate (Glu)**	$C_5H_9NO_4$	40.4	146.0472	146.0456	-1.6	-11.0
<u>19</u>	Uridine monophosphate**	$C_9H_{13}N_2O_9P$	40.9	323.0301	323.0274	-2.7	-8.4
<u>20</u>	Hypoxanthine (HPX)**	$C_5H_4N_4O$	45.4	135.0311	135.0301	-1.0	-7.4
<u>21</u>	Phosphocreatine**	$C_4H_{10}N_3O_5P$	53.4	210.0276	210.0274	-0.2	-1.0
<u>22</u>	Alanine (Ala)**	$C_3H_7NO_2$	53.6	88.0405	88.0393	-1.2	-13.6
<u>23</u>	Guanidinopropanoate**	$C_4H_9N_3O_2$	53.9	130.0613	130.0611	-0.2	-1.5
<u>24</u>	Glucose phosphate**	C6H13O9P	62.0	259.0234	259.0214	-2.0	-7.7

Table S3. Metabolites identified by anionic microprobe CE-ESI-MS.

Note: Asterisk (*) signifies identification based on migration-time comparison to chemical standards. Double asterisk (**) denotes identification by tandem mass spectrometry experiments on related standards or comparison to data available in Metlin (hppt://metlin.scripps.edu), MzCloud (hppt://mzcloud.org), or HMDB (hppt://hmdb.ca). Dagger (†) indicates that tandem mass spectrum agrees with molecular fragmentation predicted in Mass Frontier 7.0 (Thermo Fisher). Double dagger (‡) indicates mass-match in Metlin. R1 indicates previous metabolite identification based on reference¹ and R2 indicates identification based on reference².

Identifier	m/z	t _m (min)
<u>1</u>	204.0888	17.5
<u>2</u>	214.0492	19.1
<u>3</u>	124.0068	19.1
<u>4</u>	173.1060	22.7
<u>5</u>	136.9618	26.8
<u>6</u>	308.0950	29.2
<u>7</u>	254.1767	29.5
<u>8</u>	257.1761	29.7
<u>9</u>	243.0813	32.4
<u>10</u>	216.0885	32.9
<u>11</u>	186.1146	33.2
<u>12</u>	190.0551	35.2
<u>13</u>	181.0517	36.5
<u>14</u>	149.0470	40.5
<u>15</u>	176.9354	40.9
<u>16</u>	117.0565	44.4

Table S4. Selected molecular features detected by anionic analysis of a single V1 cell.

References

- 1. R. M. Onjiko, S. E. Morris, S. A. Moody and P. Nemes, *Analyst*, 2016, 141, 3648-3656.
- 2. R. M. Onjiko, E. P. Portero, S. A. Moody and P. Nemes, *Anal. Chem.*, 2017, **89**, 7069-7076.