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Supplementary Methods 

 

MRS acquisition 

We chose to utilize a short-echo, full signal intensity semi-LASER sequence to achieve lower 

apparent T2 relaxation, minimal J-coupling evolution and smaller chemical shift 

displacement errors relative to the PRESS and STEAM sequences 
1
. In addition, the adiabatic 

refocusing pulses in the semi-LASER provided minimal signal loss, high B1+ insensitivity 

and localization against the varying destructive interferences throughout the brain at ultra-

high field. This MRS sequence has been extensively tested and resulted in high quality 

spectra (Supplementary Figures 1,2,3) across high and ultra-high field magnetic fields at 

different MRI centers 
1–5

. We used VAPOR 
6
 water suppression and outer volume 

suppression 
5
.  

A dielectric pad (BaTiO3, 14.5 x 12.5 cm
2
) was placed over the left occipito-parietal cortex 

to increase B1 efficiency in the regions where the MRS voxels were placed 
7
. First and 

second order shims were adjusted for each voxel separately using FASTMAP (fast, automatic 

shimming technique by mapping along projections) with echo-planar imaging readout 
8
. 

Acquisition parameters were optimized for each voxel by determining the appropriate 

transmit voltage (flip angle calibration) and flip angle (VAPOR calibration), to maximize 

readout and water suppression respectively 
7
.  

Two non-suppressed water spectra were acquired: one for eddy current correction and 

reconstruction of the phased array spectra (the RF pulses of the VAPOR scheme were turned 

off, NT = 2, TR = 5.010 s, TE = 36 ms, number of dummy scans = 2, spectral bandwidth = 6 

kHz, data points = 2048) and one for use as reference for metabolite quantification (VAPOR 

and OVS schemes turned off in order to eliminate magnetization transfer effects, NT = 2, TR 

= 5.010 s, TE = 36 ms, number of dummy scans = 2, spectral bandwidth = 6 kHz, data points 
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= 2048). The reconstruction of the phased array spectra included weighting the spectra based 

on the sensitivity of each receive element at the VOI and correcting for the different constant 

phase shift terms of the complex spectra prior to the summation. Single scan spectra summed 

from 32 channels were corrected for frequency and phase variations induced by subject 

motion and then summed before further analyses.  

 

Data analysis 

Behavioral data analysis 

To take into account individual variability in performance, we estimated behavioral 

improvement as the difference in mean performance (i.e. mean accuracy per 200 trials) 

between the first training block and the training block with maximum performance per 

participant (85% of the participants achieved maximum performance during the last two 

MRS measurements), divided by performance in the first training block.  

MRS data analysis 

Eddy-current correction and reconstruction of the phased array spectra was applied using in-

house scripts. Water residual signal was removed using a Hankel singular value 

decomposition (HLSVD) MATLAB routine 
9
. LC-Model 

10
 was used to quantify metabolite 

concentrations in the range of 0.5 to 4.2 ppm (Fig. 2c, Supplementary Figures 1,2) using 

optimal initialization parameters.  

The model spectra of aspartate (Asp), ascorbate/vitamin C (Asc), glycerophosphocholine 

(GPC), phosphocholine (PC), creatine (Cr), phosphocreatine (PCr), γ-amino-butyric acid 

(GABA), glucose (Glc), glutamine (Gln), Glutamate (Glu), glutathione (GSH), myo-inositol 

(myo-Ins), N acetylaspartate (NAA), Nacetylaspartylglutamate (NAAG), 

phosphoethanolamine (PE), scyllo-inositol (scyllo-Ins) and taurine (Tau) were generated 
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based on previously reported chemical shifts and coupling constants by using 

GAMMA/PyGAMMA simulation library of VESPA (Versatile Simulation, Pulses and 

Analysis) for carrying out the density matrix formalism. Simulations were performed with the 

same RF pulses and sequence timings as that on the 7T system in use 
11

. 

We followed the same macromolecule inclusion procedure as Bednarik et al.
12

. 

Macromolecule spectra acquired from the occipital cortex from 3 healthy volunteers, using an 

inversion recovery sequence (TR=3 s, TE=36 ms, inversion time TI=0.685 s), were included 

in the LCModel basis set. The residual signal of the methylene of tCr at 3.93 ppm was 

removed by post processing and the high-frequency noise was suppressed using a Gaussian 

filter (σ=0.05 s) before including the macromolecule spectrum into the LCModel basis set. 

We referenced metabolite concentrations to the sum of the concentrations of Creatine (Cr) 

and Phosphocreatine (PCr), that is total Creatine (tCr). In particular, for each MRS voxel, we 

normalized GABA/tCr in each training block to GABA/tCr in the baseline block (Fig. 3). We 

computed GABA/tCr change for each participant as the difference between GABA/tCr in the 

training block with maximum performance and GABA/tCr in the baseline block. We chose 

tCr as reference for two main reasons. First, tCr concentration was measured in the same 

spectrum, concurrently with GABA, while water concentration was estimated from a 

different scan. Using another metabolite acquired in the same spectrum as reference accounts 

for the possibility of small but relevant changes in neuronal density and spectral data quality 

that might be expected during periods of task activity 
13

.  Second, referencing metabolites to 

tCr has been shown to have better reproducibility compared to other referencing methods 
14

 

and has been widely used as a reference metabolite in MRS studies 
15,16

. Our control analysis 

(see ‘Control analyses’) confirmed that tCr concentration did not change significantly during 

training across voxels or tasks, suggesting that our results are specific to GABA changes and 

are not driven by changes in tCr concentration. Finally, we replicated our findings 
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(Supplementary Figure 4) using absolute GABA quantification (GABA referenced to water) 

to ensure that our results were not driven by the chosen reference (e.g. 
3,17,18

). 

Only data without lipid contamination, GABA CRLB values smaller than one standard 

deviation above the mean and GABA values per block within two standard deviations from 

the mean across participants were included in further steps of MRS related analyses. That is, 

OCT data for 6 participants (2 for SN, 4 for FD) and PPC data for 6 participants (4 for SN, 2 

for FD) were excluded due to high CRLB values. Thus, data from 18 participants were 

included for further analysis for the SN and 22 participants for the FD task. To account for 

variability in tissue composition within the MRS voxel across participants, we conducted 

whole brain tissue-type segmentation of the T1-weighted anatomical scan using SPM12.2 

(SPM segment) and calculated percentage of gray matter (GM) and white matter (WM) 

voxels in each of the MRS voxels.  

rs-fMRI data pre-processing  

We pre-processed the resting-state fMRI (rs-fMRI) data using SPM12.2 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) following the optimized pipeline 

described in recent work 
19

. Data were excluded from one participant with incomplete data 

acquisition. We first processed the T1-weighted anatomical images by applying brain 

extraction and segmentation (SPM segment). From the segmented T1 we created a white 

matter (WM) mask and a cerebrospinal fluid (CSF) mask. For each participant, we corrected 

the EPI data for slice scan timing (i.e. to remove time shifts in slice acquisition, SPM slice 

timing), motion (least squares correction) and susceptibility distortions (applying fieldmap 

correction, SPM realign & unwarp). We then co-registered the EPI data to the T1 image 

(rigid body) per participant and calculated the mean CSF and WM signal per volume (SPM 

coregister & reslice). We subsequently aligned the T1 image to the MNI space (affine) and 
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applied the same transformation to the EPI data and the MRS voxels (OCT, PPC) (SPM 

normalise). We resliced the aligned EPI data to native resolution (3 x 3 x 3 mm
3
) and applied 

spatial smoothing with a 5mm isotropic full width at half maximum (FWHM) Gaussian 

kernel (SPM smooth). Finally, we despiked any secondary motion artifacts using the Brain 

Wavelet Toolbox v1.1 
20

.  

We modeled the pre-processed data in a first-level analysis model (SPM first-level analysis) 

using an autoregressive AR(1) model to treat for serial correlations and regressing out the 

signal from CSF, WM, the motion parameters (translation, rotation and their squares and 

derivatives) and the signal from noise components (i.e. components overlapping with 

ventricles or brainstem) 
21

.  

 

Functional connectivity analysis  

We computed functional connectivity measures (connectivity between MRS voxels, temporal 

coherence within each MRS voxel) based on the following method. We computed the overlap 

across participant MRS voxels for OCT and PPC separately and created a group MRS mask 

that included gray matter voxels present in at least 50% of the participants’ MRS voxels.  For 

each participant, we extracted the average time course of the gray matter voxels within each 

MRS mask. We then applied a 5th order Butterworth band-pass filter, between 0.01 and 0.08 

Hz, to remove effects of scanner noise and physiological signals (respiration, heart beat) 
22

. 

We computed the functional connectivity between the OCT and the PPC MRS voxels as the 

Pearson correlation between the average time course from each of the MRS masks. We then 

applied Fisher z-transform to the correlation coefficient and derived an OCT-PPC 

connectivity value per participant. To confirm the specificity of the OCT-PPC connectivity, 

we computed the functional connectivity between OCT and two control areas (V1, M1). We 

defined masks of equal size to the MRS masks based on anatomical co-ordinates: primary 

visual cortex (V1, MNI coordinates [3, -85, 5]) and left M1 (MNI coordinates [-39, -22, 53]).  
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We assessed the temporal coherence within each MRS mask (OCT, PPC) by correlating the 

time course of each voxel within the mask with the MRS mask’s average time course. This 

method was first described by Van Dijk et al 
23

 and has been extensively used in recent 

studies 
24–27

. We then applied Fisher z-transform to the correlation matrix and averaged the z-

values across voxels, resulting in one connectivity value per participant and MRS voxel.  

 

MRS Data quality controls 

We provide data quality metrics and statistics showing that data quality is highly similar 

across MRS voxels and participant groups. In particular, we considered: a) differences in 

signal-to-noise ratio (SNR) across MRS measurements, b) BOLD effects on MRS spectra as 

indicated by narrowing of the linewidth, c) frequency drift, d) GABA CRLB values 

First, we tested whether the learning-dependent changes we observed in GABA, were due to 

differences in SNR across MRS measurements potentially due to artifacts (e.g. head 

movement, gradient heating). For OCT GABA, there was no significant differences in SNR 

across blocks, nor a significant interaction between Task x block (LME model for OCT SNR 

with Task and MRS Block as fixed effects; main effect of Block: F(1,118)=0.12, p=0.73; 

Task x Block: F(1,118)=0.45, p=0.50). Similarly for PPC GABA, there was no significant 

effect of block, nor a significant interaction of Task x block (LME model for PPC SNR with 

Task and MRS Block as fixed effects; main effect of Block: F(1,145)=0.52, p=0.47; Task x 

Block: F(1,145)=0.90, p=0.34), suggesting that our results could not be explained simply by 

differences in MRS SNR over time.   

Second, we tested whether the learning-dependent changes we observed in GABA, were 

simply due to BOLD effects. BOLD effects on MRS spectra are presented as narrowing of 

the linewidth 
12,28

. To control for potential effects from BOLD on the GABA measurements, 

we compared spectral FWHM across MRS blocks for the two regions. For OCT GABA, there 
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was no significant differences in FWHM across blocks, nor a significant interaction between 

Task x block (LME model for OCT FWHM with Task and MRS Block as fixed effects; main 

effect of Block: F(1,118)=1.28, p=0.26; Task x Block: F(1,118)=2.31, p=0.13). Similarly for 

PPC GABA, there was no significant effect of block, nor a significant interaction of Task x 

block (LME model for PPC FWHM with Task and MRS Block as fixed effects; main effect 

of Block: F(1,145)=2.77, p=0.10; Task x Block: F(1,145)=0.89, p=0.35), suggesting that our 

results could not be explained simply by differences in peak linewidth over time. 

Third, we calculated frequency drift across MRS spectra and found no systematic frequency 

drift due to the hardware instability across participants and measurements. Overall, frequency 

drift was below 5Hz (0.4 ± 1.5 Hz for OCT; -0.08 ± 1.9 Hz for PPC), suggesting minimal 

potential artefacts originating from system instability or head movement.  

Finally, we used the CRLB provided by LCModel as the measure for quality of the fit of 

individual resonances and used metabolite concentration values with GABA CRLB values 

smaller than one standard deviation above the mean. OCT data for 6 participants (2 for SN, 4 

for FD) and PPC data for 6 participants (4 for SN, 2 for FD) were excluded due to high 

CRLB values. Given the consistency in SNR and FWHM across tasks and MRS blocks, 

higher CRLBs observed during training could be attributed to reduction in GABA signal in 

the voxel 
3,29

, while decreased CRLBs are expected for increased GABA/tCr 
30

. This link 

between CRLB and GABA values which has been reported in previous studies 
3,29,30

 suggests 

that it is not appropriate to reject spectra due to changes in CRLBs over time. 

 

Control analyses 

We conducted the following control analyses that corroborated our results showing mean 

changes in GABA with training and correlations with behavioral improvement. 
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First, to ensure our results were not simply driven by GABA measurements at baseline, we 

tested a linear mixed effects model on the training blocks only (i.e. excluding the baseline 

block; LME model for OCT GABA with Task and training MRS Block as fixed effects). This 

analysis showed a significant interaction between Task and MRS blocks (Task x Block: 

F(1,83)=4.97, p=0.03) and a significant main effect of MRS block (F(1,83)=4.06, p=0.05). 

These analyses suggest that the learning-dependent GABA changes we observed were due to 

training rather than simply differences in GABA between the training blocks and the 

baseline.  

Second, we demonstrated that the learning-dependent changes we observed in GABA levels 

could not be simply due to the order with which the MRS voxels were acquired during 

training. For OCT GABA, the Task x Block interaction remained significant (Task x Block: 

F(1,115)=13.51, p=0.0004) when we included the order of voxel acquisition in the LME 

model . Further, there was no significant effect of MRS acquisition order (LME model for 

OCT GABA with Acquisition Order, Task and MRS Block as fixed effects; main effect of 

Order: F(1,115)=0.08, p=0.78; Order x Task x Block: F(1,115)=1.58, p=0.21) Similarly, for 

PPC GABA, the main effect of block remained significant (F(1,141)=7.72, p=0.01) and there 

was no significant effect of MRS acquisition order (LME model for OCT GABA with 

Acquisition Order, Task and MRS Block as fixed effects; main effect of Order: 

F(1,141)=1.51, p=0.22; Order x Task x Block: F(1,141)=1.50, p=0.22 ).  

Third, we tested whether the learning-dependent changes we observed in GABA/tCr were 

driven by changes in tCr concentration during training. For OCT GABA, there were no 

significant differences in tCr across blocks, nor a significant interaction between Task x block 

(LME model for OCT tCr with Task and MRS Block as fixed effects; main effect of Block: 

F(1,119)=0.11, p=0.74; Task x Block: F(1,119)=0.02, p=0.90). Similarly for PPC GABA, 

there was no significant effect of block, nor a significant interaction of Task x block (LME 
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model for PPC tCr with Task and MRS Block as fixed effects; main effect of Block: 

F(1,137)=0.59, p=0.45; Task x Block: F(1,137)=0.42, p=0.52), suggesting that our results 

could not be explained simply by changes in tCr concentration over time (Supplementary 

figure 5).  

Fourth, our results remained significant when we referenced GABA to water rather than tCr 

concentration (Supplementary figure 4), suggesting that our results replicate across 

referencing methods. That is, we observed a significant Task x block interaction for OCT  

(LME model for OCT GABA with Task and MRS Block as fixed effects; Task x Block: 

F(1,119)=10.68, p=0.001) and a significant main effect of block for PPC (LME model for 

PPC GABA with Task and MRS Block as fixed effects main effect of Block: F(1,137)=7.08, 

p=0.01).  

Fifth, we tested whether the correlations we observed between GABA change and behavioral 

improvement were confounded by baseline GABA or variability in tissue composition across 

participants. The linear regression analysis showing the dissociable effect of OCT GABA 

changes on behavioral improvement between the two tasks (i.e.: OCT GABA change x Task 

Interaction: F(1,29)=9.03, p=0.005) remained significant when we used percentage OCT 

GABA change (OCT GABA change / OCT baseline GABA), suggesting that our results 

could not be due to differences in baseline OCT GABA. The same interaction remained 

significant a) when we controlled for tissue (GM+WM) composition (F(1,29)=5.24, p=0.03) 

and b) when we used partial volume corrected 
31

 and water scaled 
31

 GABA values 

(F(1,29)=12.32, p=0.001), suggesting that our results could not be due to variability in tissue 

composition across participants. Following previous studies, we used T2=46ms for water 
32

 

and T2=100ms for all metabolites 
33

 for LCModel parameters ATTH2O and ATTMET, 

respectively.  
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Finally, to investigate the neurochemical specificity of our results, we tested for changes in 

Glutamate, the other major cortical neurotransmitter, during training (Fig. 3b). We found no 

significant differences in Glutamate changes between tasks (LME model for OCT Glutamate 

with Task and MRS Block as fixed effects Task x Block: F(1,119)=0.53, p=0.47; for PPC 

Glutamate: main effect of Block: F(1,137)=2.65, p=0.11), suggesting that our results were 

specific to GABA and do not generalize to Glutamate.  
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Supplementary Figures  

 

  

 

 

 

 

 

 

 

Supplementary Figure 1: Average MRS Spectrum across participants 

Mean (solid black line) ± standard deviation (shade) of summed spectra (TR = 5.010 s, TE = 36 ms, 

number of transients = 64) from the OCT and PPC voxel across participants for the baseline 

measurement. The spectra are normalized to the Creatine signal from the same voxel.  

 

  



13 

 

 

 

 

Supplementary Figure 2: Individual participant MRS spectra  

Individual participant fitted MRS spectra from the OCT (in red) and PPC (in blue) voxel for the 

baseline measurement. 
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Supplementary Figure 3: Correlation coefficients across metabolites 

To quantify the separation between metabolites, we evaluated the correlation coefficients between 

metabolite fits, as calculated by LC Model during fitting. The mean correlation coefficient between 

GABA and all other metabolites was always greater than -0.30 
3,34,35

 for both voxels, suggesting that 

GABA was separable from other metabolite concentrations in our MRS measurements.  
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Supplementary Figure 4: Measurements of GABA/Water and Glutamate/Water during training 

a. MRS-measured GABA over time is shown from two voxels (occipito-temporal, posterior parietal 

cortex) per task (Signal in noise, Feature differences). For each MRS-voxel, we calculated % GABA 

change: we normalized GABA/water per training block (T1, T2, T3) to GABA/water recorded during 

the baseline block; that is, we computed GABA/water change subtracting GABA/water measurements 

in each of the three training blocks from the baseline block and then divided by GABA/water in the 

baseline block. b. MRS-measured Glutamate over time is shown from two voxels (occipito-temporal, 

posterior parietal cortex) per task (Signal-in-noise, Feature differences). For each MRS-voxel, we 

calculated % Glutamate change: we normalized Glutamate/water per training block (T1, T2, T3) to 

Glutamate/water recorded during the baseline block; that is, we computed Glutamate/water change 

subtracting Glutamate/water measurements in each of the three training blocks from the baseline 

block and then divided by Glutamate/water in the baseline block. Error bars indicate standard error of 

the mean across participants. Error bars are not visible for small changes in metabolite concentrations. 
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Supplementary Figure 5: Measurements of tCr during training 

MRS-measured tCr over time is shown from two voxels (occipito-temporal, posterior parietal cortex) 

per task (Signal in noise, Feature differences). For each MRS-voxel, we calculated % tCr change: we 

normalized tCr per training block (T1, T2, T3) to tCr recorded during the baseline block; that is, we 

computed tCr change subtracting tCr measurements in each of the three training blocks from the 

baseline block and then divided by tCr in the baseline block. Error bars indicate standard error of the 

mean across participants. Error bars are not visible for small changes in metabolite concentrations.  
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