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The Discrete Fourier Transform (DFT) is used to represent a given time series as a super-
position of discrete harmonics with fixed frequencies (SFig. 1A). To that end, N recorded values,
s1, s2, . . . , sN , are convolved with a set of N discrete harmonics, zl = ei2πl/N ,

Al = Σnsnzn
l . (1)

The magnitude of this convolution defines the amplitude of the discrete plane wave zl in the discrete
Fourier decomposition: the most prominent oscillatory components produce peaks in the Fourier
transform, whereas the noise broadens these peaks, lowers their magnitudes and generally obscures
the spectral properties of the signal [1]. Similar effects are produced by the signal’s nonstationarity,
i.e., by the time dependence of the signal’s frequencies.

The Discrete Padé Transform (DPT) method discussed here is based on studying the gener-
ating function of the recorded time series,

G(z) = Σnsnzn, (2)

where z = x + iy is a complex variable (i.e., the series expansion (2) is an extension of (1) into
the entire complex plane), and of its Padé approximant—a ratio of two polynomials PN−1(z) and
QN(z),

GN(z) = PN−1(z)/QN(z) (3)

that approximates G(z) to the 2N-th order of z [2].
Oscillatory component. In the analyses of the oscillatory signals, the N roots zp, p = 1, ...,N,

of the polynomial QN(z)—the poles of the Padé approximant—play the role of the discrete Fourier
harmonics, zl, in the DFT: they capture the spectral structure of the signal [3–5]. Indeed, consider
a signal r(t) obtained as a superposition of NP damped oscillators,

r(t) = ΣpApe−αpt cos(ωpt + ϕp), (4)

where Ap is the amplitude of the pth oscillator with a damping exponent αp, frequency ωp and
phase ϕp. If the signal is sampled at a frequency S , then it generates a discrete time series,

rk = Σ
NP
p=1cpeiω(+)

p k/S + c∗peiω(−)
p k/S , k ∈ Z, (5)

where ω(±) = iαp ± ωp and cp = Apeiϕp/2. The generating function of this series,

R(z) = Σ∞k=1rkzk = Σ
NP
p=1

(
cp

1 − zeiω(+)
p /S

+
c∗p

1 − zeiω(−)
p /S

)
, (6)

is a rational fraction of degree (2NP − 1)/2NP with poles

z(±)
p = e−iω(±)

p /S .

The phase of each pole zp defines the frequencyωp, and its magnitude defines the damping constant
αp. The residue of zp defines the amplitude Ap and the phase ϕp of the corresponding oscillator.
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Notice that poles come in complex conjugate pairs and have to lie either outside of the unit circle,
if the signal is damped (=ωp = αp > 0), or on the circle if the signal has no damping.

Noise component. If a signal is perturbed by an additive noise ξ(t), then the generating function
(3) of the resulting “noisy” time series sn = rn + ξn is the sum of the “regular” and the “noisy” part,
G(z) = R(z) + Ξ(z), where

Ξ(z) = Σnξnzn. (7)

A remarkable theorem proven by H. Steinhaus [8] establishes that the poles of Ξ(z) concentrate,
with probability 1, at the unit circle (SFig. 1B). In other words, the generating function of a ran-
dom data series is an analytic function inside the unit disk, possessing a dense set of poles as |z|
approaches 1. Thus, the total generating function of the full signal G(z) = R(z) + Ξ(z) has a finite
number of poles contributed by R(z) and an infinite number of poles contributed by Ξ(z).

Figure 1: Fourier and Padé in complex plane. A. The discrete waves, zl = ei2πl/N , used to construct the Fourier
decompositions, are uniformly distributed over the unit circle S 1, embedded into the complex plane of the variable
z. B. The poles of the Padé approximant to the signal’s generating function, zp (red crosses), also concentrate in a
close vicinity of the unit circle, in accordance with Steinhaus’ theorem [8]. For illustration purposes, the number of
Padé-poles shown on panel B is much larger than the number of harmonics shown on panel A. These poles are not
constrained to any a priori selected locations; in fact, their positions in the complex plane C1 are dictated solely by the
signal’s structure, which ultimately leads to the super-resolution property [5–7]. C. According to the Froissart’s theory
[3, 9], zeros and poles that represent the noise component of the signal form close pairs—the Froissart doublets. A
zoom-in into a small segment of the unit circle shows many Froissart doublets (zeros shown as blue dots), and two
isolated poles that represent the regular, oscillatory part of the signal.

A key property of the Padé approximant to Ξ(z) is that its poles occur in close vicinities of
its zeros, forming the so-called Froissart doublets [9–11] that can be easily detected numerically
(Fig. 1C). In our analyses, the typical distance in a pole-zero pair is smaller than 10−6 − 10−7 in
the standard Euclidean metric on C1. We hence identified such pairs as the ones smaller than a
critical distance δ = 10−5. These results are stable: injecting small amounts of white and colored
noise into the signal (about 10−3 of the signal’s mean amplitude, i.e., at least ten times more than
the signal’s natural noise level) does not alter the reconstructed positions of the regular poles and
hence the parameters the spectral waves remain the same as the “perturbed” Froissart doublets are
removed.

J-matrix formalism. In order to obtain a Padé approximation to G(z) in the entire complex
plane, the Ξ(z) has to be analytically extend through its natural boundary, which remains an open
problem of complex analysis. However, the “J-matrix approach” developed in a recent series of
publications [3–5], allows addressing this problem in practical terms. The generating function G(z)
can be associated with a tri-diagonal Hilbert space operator J that has G(z) as its resolvent matrix
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element, G(z) = 〈e0|(J − z1)−1|e0〉, e0 = (1, 0, ...) [2]. In accordance with Steinhaus’ theorem,
the spectrum of J consists of two parts: an essential spectrum with support on the unit circle,
which represents the noise component and a discrete spectrum, containing a finite number of poles
outside the unit circle, which represent the regular component of the signal (a finite number of
damped oscillators). In the spectrum of finite order truncations JN of the J-operator, the poles of
the Froissart doublets take the place of the essential spectrum. Moreover, these finite matrices can
be explicitly constructed as follows. Let us consider the set of subdiagonal Padé approximations
to the generating function of a given time series defined by (3). The polynomials QN(z) satisfy a
third order recursive relation which can be written in a matrix form, JNV = zV where JN is the (tri-
diagonal) finite order matrix approximation to the J-operator of order N + 1. The column vector
V is defined by the polynomials QN , VT = [Q0(z),Q1(z), ...,QN(z)]. The zeros of QN+1(z) define
the eigenvalues (z0, z1, ..., zN) of JN and therefore the poles of RN . The same procedure applied to
PN (with a slightly modified matrix) gives us the zeros of GN , thus completely characterizing RN

itself.
Short Time Padé Transform, (STPT) is analogous to the standard Short Time Fourier Trans-

form (STFT) method [12]. Starting with a segment s1, s2, ..., sN centered at t1, we compute the
Padé approximants, identify and discard the Froissart doublets, and then evaluate the frequencies,
ωq(t1), the amplitudes, Aq(t1) and the phases, ϕq(t1), associated with the stable poles z1, z2, ...zp1 ,
q = 1, ..., p1. After that, the window is shifted by ∆T to the position centered at t2, and the same
analysis is applied to the next segment of the time series, revealing the frequencies, ωi(t2), the
amplitudes, Ai(t2) and the phases, ϕi(t2), i = 1, ..., p2, and so on.

Separating the noise from the oscillations. The Froissart doublets and the regular poles of
G(z), exhibit qualitatively different behaviors in response to changes of the DPT algorithms’ pa-
rameters. If the size of time window TW in the STPT is altered, or as it is shifted from one segment
of the time series to another, or if the order of the Padé approximant is changed, the Froissart-
paired poles move significantly and irregularly around the unit circle, as one would expect from a
structure that represents noise. In contrast, the poles associated with the regular part of the signal
remain stable and isolated. These differences can be easily detected numerically, producing the
computational DPT method [3, 4].

Note that every data point obtained by the STPT method is obtained independently: evaluation
of N frequencies at each time-step, identification of the “noisy” vs. “regular” frequencies, etc.
does not affect the values obtained at the other time-steps and hence the pattern formed by the data
points is completely empirical.

Computing the parameters of the spectral waves. Since the instantaneous parameters of the
oscillons are computed independently based on a finite number of data points, the reconstructed
spectral waves contain gaps and other irregularities. We therefore construct the smoothened spec-
tral waves by interpolating the “raw” traces of the regular frequencies over the uniformly spaced
time points, and compute the mean parameters ωq,0, ωq,i, Ωq,i, and ϕq,i in the expansion

ωq(t) ≡ ∂tφq = ωq,0 + ωq,1 sin(Ωq,1t + ϕq,1) + ωq,2 sin(Ωq,2t + ϕq,2) + . . . . (8)

using the standard DFT methods.
The SFig. 2 illustrates how the inherent conflict between the time and the frequency resolutions

obscures the spectral waves in the Fourier spectrogram.
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Figure 2: Insufficiency of Fourier resolution. The two lowest (θ and low-γ) spectral waves of an LFP signal, filtered
between 1 and 56 Hz, are superimposed on four Fourier spectrograms of the same signal, computed for TW = 8 msec,
TW = 32 msec, TW = 100 msec and TW = 200 msec. The sliding window widths TW are shown by gray vertical
stripes. The horizontal stripes on each Fourier spectrogram indicate the magnitude of the spectral resolution, ∆ f . The
spectral resolution of the Fourier spectrogram becomes comparable to the frequency scale of the spectral waves only
for TW = 100 msec (third panel from the top), but the temporal resolution at this value exceeds the characteristic period
of the spectral waves. Increasing the frequency resolution broadens the window size beyond the spectral waves’ period
(bottom panel) and vice versa, increasing temporal resolution destroys the frequency resolution (top two panels). As
a result, the spectral waves remain unresolved by the DFT, which can only detect a band of increased amplitudes, but
not the detailed pattern of the oscillating frequencies.



5

The wavelet spectrograms (scalograms) of the same signal using three different wavelets are
shown on SFig. 3.

Figure 3: Wavelet spectrograms of the same signal, computed for the “Mexican hat” (top panel), the Gauss wavelet
of level 8 (middle panel) and Daubechies’ wavelet of level 24 (bottom panel). In all three cases,the maxima of the
wavelet coefficients correspond to undulating patterns of the signals’ amplitude at different temporal scales but do not
resolve the spectral waves.

To illustrate the effectiveness of the proposed method, we simulated a superposition of five
artificial oscillons with the amplitudes A1 = 0.5, A2 = 0.3, A3 = 0.15, A4 = 0.1 and A5 = 0.05,
the mean frequencies are ω1,0 = 5 Hz, ω2,0 ≈ 20 Hz, ω3,0 ≈ 30 Hz, ω4,0 ≈ 40 Hz, and ω5,0 ≈ 50
Hz, and five modulating frequencies ω1,1 = 2 Hz, ω2,1 = 2.5 Hz, ω3,1 = 4 Hz, ω4,1 = 5 Hz and
ω2,1 = 6 Hz respectively. The amplitudes of the frequency modulations are approximately π Hz
in all cases. The resulting “spectral waves” are shown as black sinusoids in the background of
the four panels of SFig. 4. Each panel corresponds to a particular window width: TW = 0.10 sec,
TW = 0.15 sec, TW = 0.2 sec and TW = 0.25 sec, at the sampling rate of S = 1000 Hz. In the first
case, the DPT is therefore based on N1 = 100 data points per window, i.e., 50 sample frequencies
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Figure 4: Discrete Padé spectrograms of the simulated combination of five oscillons, computed for four window
widths (TW = 0.10 sec, TW = 0.15 sec, TW = 0.2 sec and TW = 0.25) . While the first window is too narrow to capture
the structure of the spectral waves, the second window resolves them. The last two values of TW are too large–the
undulating pattern of the spectral waves is replaced by the emerging sidebands.

occupying the range between 0 and 500 Hz, or about one frequency per 10 Hz interval. As shown
on the SFig. 4A, this (or smaller) values are insufficient for resolving oscillons with magnitude
±π: the undulatory pattern is not captured. In the second case, each window contains N2 = 150
points, or one frequency per ≈ 6.6 Hz, and the spectral waves become apparent (SFig. 4B). If
window becomes bigger, N3 = 200 points (SFig. 4C) or N4 = 250 points (SFig. 4D), the temporal
resolution suffers: the patterns of all spectral waves become averaged over the window width. As
a result the upper spectral waves produce sidebands and the lowest spectral waves the flatten out.
We emphasize however, that the original signal can be reconstructed with high precision in all
cases; the issue is only whether the spectral can or cannot be resolved.

For comparison, the corresponding Fourier spectrograms and the wavelet scalogram computed
using Daubechies’ wavelet of level 24 are shown on SFig. 5.
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Figure 5: Alternative methods. A. The Fourier spectrograms of the same signal as shown on SFig. 4, computed for
the same window widths (TW = 0.10 sec, TW = 0.15 sec, TW = 0.2 sec and TW = 0.25) do not resolve the simulated
spectral waves. B. Wavelet spectrograms of the same signal, computed using Daubechies’ wavelet of level 24, also
captures the undulatory pattern of the signal but does not resolve the spectral waves.
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[4] Bessis, D., Padé approximations in noise filtering. J. Comput. Appl. Math., 66, 85-88 (1996).
[5] Perotti, L., Vrinceanu, D., & Bessis, D., Enhanced Frequency Resolution in Data Analysis. Amer. J.

Comput. Math 3, 242-251 (2013).
[6] Perotti, L., Regimbau, T., Vrinceanu, D. & Bessis, D., Identification of gravitational-wave bursts in



8
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[9] Froissart, M., Approximation de Padé: application la physique des particules élémentaires. CNRS

RCP Programme 29, 1-13 (1969).
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J. Comput. Appl. Math 153, 235-242 (2003).
[12] Jacobsen, E. & Lyons, R., The sliding DFT. Signal Processing Magazine. IEEE 20, 74-81 (2003).


	References
	References

