
Biophysical Journal, Volume 116
Supplemental Information
Quantitative Analysis of the Correlation between Cell Size and Cellular

Uptake of Particles

Jawahar Khetan, Md Shahinuzzaman, Sutapa Barua, and Dipak Barua

Quantitative analysis of the correlation between cell size
and cellular uptake of particles
Jawahar Khetan1, Md Shahinuzzaman1, Sutapa Barua1, and Dipak Barua1,*

1Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA
*Correspondence: baruad@mst.edu

DERIVATION OF THE REACTION-DIFFUSION MODEL
In the model, particles are reversibly captured by a cell-surface transporter. The transporter represents a generic molecule
accounting for all different endocytic structures in the cell plasma membrane. Each transporter can handle one particle at a
time. A particle captured by a transporter may dissociate and return to the solution, or it may be taken inside the cell through
endocytosis. These steps are described by the following reaction scheme:

Particle (solution) + Transporter
k f

kr
Complex

k1 Transporter + Particle (internalized)

In the above scheme, the three reactions are associated with the following three rate constants: k f is associated with the
forward reaction that leads to the formation of the particle-transporter complex, kr is associated with the reverse reaction that
leads to dissociation of the complex, and k1 is associated with the reaction that leads to particle endocytosis and regeneration of
the transporter. The constant Km is the Michaelis-Menten constant and is given by Eq. 1:

Km =
kr + k1

k f
(1)

At steady-state condition, the flux of nanoparticles across the cell membrane can be described by the Michaelis-Menten rate
law:

J = Jm
C0

Km + C0
(2)

Here, C0 represents nanoparticle concentration at the solution-cell membrane interface, and Jm = k1n represents maximum flux
when there are n transporter molecules per unit area of the cell membrane.

For convenience, we rewrite Eq. 2 in dimensionless form:

J∗ =
C∗0

1 + C∗0
(3)

where C∗0 =
C0
Km

and J∗ = J
Jm

. Further, we consider a spherical cell of radius r0 and define dimensionless distance r∗ = r
r0

such
that r∗ = 1 at the cell surface.

The steady state concentration profile around a cell can be given by:

∇ · (D∇C∗) = 0 (4)

where C∗ = C
Km

is the dimensionless nanoparticle concentration at r∗ > 1. For spherical coordinates Eq. 4 becomes:

d
dr∗

(
r∗2

dC∗

dr∗

)
= 0 (5)

where r∗ is the dimensionless radius r∗ = r
r0
. Due to the symmetry of the spherical geometry, we assume no gradient in C∗ in

the θ and φ directions. Applying the two boundary conditions for the system:

C∗ = C∗b at r∗ →∞ (6)

C∗ = C∗0 at r∗ = 1 (7)

where C∗
b
= Cb/Km is the dimensionless bulk nanoparticle concentration, we get the following solution:

C∗
b
− C∗

C∗
b
− C∗0

=
1
r∗

(8)

The particle flux is given Fick’s first law:
J = −D∇C (9)

Thus,
J = −D

∂C
∂r

���
r=r0
=

D
r0
(Cb − C0) (10)

which can be brought back to the dimensionless form:

J∗ =
DKm

Jmr0
(C∗b − C∗0) = Ψ(C

∗
b − C∗0) (11)

where,
Ψ =

DKm

Jmr0
(12)

From Eq.11 we get the total particle uptake rate by multiplying flux with cell surface area:

Ûm = 4πr2
0 JmΨ(C∗b − C∗0) = 4πr0DKm(C∗b − C∗0) = k(C∗b − C∗0), (13)

where k = 4πr0DKm.
Mass conservation requires that the two fluxes in Eq. 3 and Eq. 11 be equal. Thus by equating the two, we obtain the

following quadratic equation:

C∗0
2
+

(1
Ψ
+ 1 − C∗b

)
C∗0 − C∗b = 0 (14)

Solving for the nanoparticle concentration at the cell boundary we get:

C∗0 = −
1
2

(
1
Ψ
+ 1 − C∗b

)
+

1
2

√(
1
Ψ
+ 1 − C∗

b

)2
+ 4C∗

b
(15)

We then substitute C∗0 from Eq.15 in Eq.13 to get the total particle uptake rate by the entire cell,

Ûm = k
©

«

C∗b +
1
2

(

1
Ψ
+ 1 − C∗b

)

− 1
2

√

(

1
Ψ
+ 1 − C∗

b

)2
+ 4C∗

b

ª

®

¬

(16)

When considering variation in mean transporter density, ñ, with cell size, we substitute the following equation:

ñ
〈n〉 =

(
r0
〈r0〉

)α
(17)

into Ψ to get:
Ψ =

DKm

Jmr0
=

DKm

k1ñr0
=

DKm

k1〈n〉
(

r0
〈r0 〉

)α
r0

(18)

Supporting Material

PYTHON CODE IMPLEMENTING THE REACTION-DIFFUSION MODEL

Use the following Python code to create a Python file, such as model.py. Execute the Python file, which
will generate Fig. 5B of the paper.

#!/usr/bin/python

import matplotlib

matplotlib.use("TkAgg")

import matplotlib.pyplot as plt

import matplotlib.mlab as mlab

import matplotlib.ticker as mtick

import numpy as np

import random

import math

from pylab import genfromtxt;

font = {'family' : 'serif',

 'weight' : 'normal',

 'size' : 20}

matplotlib.rc('font', **font)

plt.rc('axes', labelsize=22)

#mat0 = genfromtxt("L_molecule_avg_dist7.dat");

#mat1 = genfromtxt("L_molecule_avg_dist8.dat");

#mat2 = genfromtxt("L_molecule_avg_dist9.dat");

Fs = 10000

f = 1

sample = Fs

a = 0.05 # particle radius in micron

w = 10.0 # ug/mL solution; nanoparticle solution on weight-basis

spg = 1.06 # Polystyrene (nanoparticle material) specific gravity.

m_particle = (4.0/3)*(np.pi)*((a/10000)**3)*1.00*(10**6) # Mass of a
nanoparticle in microggram

Cb = (w/(10**(12)))/m_particle # Bulk particle concentration; number
of particles per um^3 of the bulk solution

r0 = 10.0 # Mean cell size (radius)

mur = np.log(r0) # Mean cell size (radius) in log scale

sigmar = 0.5 # Standard deviation for cell size distribution

KB = 1.38064852e-23 # Boltzmann constant

T = 298.15 # Temperature

nu = 1e-3 # Water viscosity, Pa.s

D = (KB * T / (6 * np.pi * nu * a * 1e-6))*1e12 # particle
diffusivity micron^2/s

kf = 0.1 # Goldstein, intrinsic on rate

nmu0 = 0.119 # Number of coated pits per unit surface area (150 in a
cell of 10 micron radius)

nstd = 0.4 # standard deviation - cell -to cell variability in surface
density of pit

kr = 0.1 # Mean residence time of a particle in a pit is 10 second

k1 = 0.02 # Mean lifetime of a pit is 50 seconds; this is inverse of
the pit lifetime

#npit = np.exp(np.random.normal(np.log(nmu), nstd, sample))

#y = 4 * np.pi * r * D * r * km / (D + r * km)

#y = 4 * np.pi * r * r * km

def evaluate_f2(*vartuple):

 kf = vartuple[0]

 kr = vartuple[1]

 k1 = vartuple[2]

 n = vartuple[3]

 r = vartuple[4]

 Cb = vartuple[5]

 D = vartuple[6]

 Jm = k1 * n

 Km = (kr + k1)/kf

 Cb = Cb/Km # dimensionless bulk concentration

 Psi = D*Km / (Jm * r)

 Zet = ((1 / Psi) + 1 - Cb)

 C0 = -Zet/2 + (math.sqrt(Zet*Zet + 4*Cb))/2

 k = 4 * np.pi * r * D * Km

 m = k * (Cb - C0)

 return(m);

n_elem = 6;

#z1 = [[0 for x in range(sample)] for y in range(n_elem)]

#z = [[0 for xx in range (sample)] for yy in range(5)]

y = np.empty([n_elem, sample])

factor = np.array([1, 0.1, 0.03, 0.01, 0.003, 0.001])

colors = np.array(['k', 'orange', 'g', 'r', 'c', 'b'])

plots = np.empty([n_elem])

alpha = np.array([1, 0.5, 0, -0.5, -1, -2])

marker_size = 0.5

for j in range(n_elem):

 csize = np.random.normal(mur, sigmar, sample)

 x = np.exp(csize)

 for i in range(sample):

 r = x[i]

 nmu = nmu0*((r/r0)**(alpha[2]))

 ntot = np.exp(np.random.normal(np.log(nmu), nstd))

 val1 = evaluate_f2(kf, kr, k1, ntot, r, Cb, factor[j]*D)

 Dmean = D

 rmean = r0

 kmeanCb = 4*(np.pi)*rmean*Dmean*Cb # k*(Cb*) =
4*(pi)*r_0D*Km*(Cb/Km) = 4*(pi)*r_0*D*Cb

 y[j,i] = val1/kmeanCb # Normalized by k*Cb*

 plt.scatter(x, y[j,:], color= colors[j], marker= ".", s =
marker_size)

 #plt.plot(x, y[j,:], color= colors[j])

x-axis label

plt.xlabel("Cell radius (μm)")

frequency label

#plt.ylabel("Uptake ($m/\~{k}C_b$)")

plt.ylabel("Uptake")

plot title

#plt.title('My scatter plot!')

showing legend

leg = plt.legend()

leg.get_frame().set_alpha(0.0)

#plt.xscale("log");

plt.xlim(1,20);

plt.ylim(0,0.012);

plt.tick_params(direction='in', length=6, width=2, colors='k',

 grid_color='r', grid_alpha=0.5, pad=10)

plt.gca().yaxis.set_major_formatter(mtick.FormatStrFormatter('%0.1g'))

plt.tight_layout()

plt.savefig('Fig5B.png', format='png', dpi=1500)

function to show the plot

plt.show()

