Biophysical Journal, Volume 116

Supplemental Information

Quantitative Analysis of the Correlation between Cell Size and Cellular

Uptake of Particles

Jawahar Khetan, Md Shahinuzzaman, Sutapa Barua, and Dipak Barua

Quantitative analysis of the correlation between cell size and cellular uptake of particles

Jawahar Khetan¹, Md Shahinuzzaman¹, Sutapa Barua¹, and Dipak Barua^{1,*}

¹Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA *Correspondence: baruad@mst.edu

DERIVATION OF THE REACTION-DIFFUSION MODEL

In the model, particles are reversibly captured by a cell-surface transporter. The transporter represents a generic molecule accounting for all different endocytic structures in the cell plasma membrane. Each transporter can handle one particle at a time. A particle captured by a transporter may dissociate and return to the solution, or it may be taken inside the cell through endocytosis. These steps are described by the following reaction scheme:

$$
Particle (solution) + Transporter \frac{k_f}{k_r} \text{Complex } \frac{k_1}{r} \text{ Transporter } + Particle (internalized)
$$

In the above scheme, the three reactions are associated with the following three rate constants: k_f is associated with the forward reaction that leads to the formation of the particle-transporter complex, *k*^r is associated with the reverse reaction that leads to dissociation of the complex, and *k*¹ is associated with the reaction that leads to particle endocytosis and regeneration of the transporter. The constant K_m is the Michaelis-Menten constant and is given by Eq. [1:](#page-1-0)

$$
K_m = \frac{k_r + k_1}{k_f} \tag{1}
$$

At steady-state condition, the flux of nanoparticles across the cell membrane can be described by the Michaelis-Menten rate law:

$$
J = J_m \frac{C_0}{K_m + C_0} \tag{2}
$$

Here, C_0 represents nanoparticle concentration at the solution-cell membrane interface, and $J_m = k_1 n$ represents maximum flux when there are *n* transporter molecules per unit area of the cell membrane.

For convenience, we rewrite Eq. [2](#page-1-1) in dimensionless form:

$$
J^* = \frac{C_0^*}{1 + C_0^*}
$$
 (3)

where $C_0^* = \frac{C_0}{K_m}$ and $J^* = \frac{J}{J_m}$. Further, we consider a spherical cell of radius *r*₀ and define dimensionless distance $r^* = \frac{r}{r_0}$ such that $r^* = 1$ at the cell surface.

The steady state concentration profile around a cell can be given by:

$$
\nabla \cdot (D \nabla C^*) = 0 \tag{4}
$$

where $C^* = \frac{C}{K_m}$ is the dimensionless nanoparticle concentration at $r^* > 1$. For spherical coordinates Eq. [4](#page-1-2) becomes:

$$
\frac{d}{dr^*}\left(r^{*2}\frac{dC^*}{dr^*}\right) = 0\tag{5}
$$

where *r*^{*} is the dimensionless radius $r^* = \frac{r}{r_0}$. Due to the symmetry of the spherical geometry, we assume no gradient in C^* in the θ and ϕ directions. Applying the two boundary conditions for the system:

$$
C^* = C_b^* \, \text{ at } r^* \to \infty \tag{6}
$$

$$
C^* = C_0^* \, \text{ at } \, r^* = 1 \tag{7}
$$

where $C_b^* = C_b/K_m$ is the dimensionless bulk nanoparticle concentration, we get the following solution:

$$
\frac{C_b^* - C^*}{C_b^* - C_0^*} = \frac{1}{r^*}
$$
\n(8)

The particle flux is given Fick's first law:

$$
J = -D\nabla C \tag{9}
$$

Thus,

$$
J = -D\frac{\partial C}{\partial r}\Big|_{r=r_0} = \frac{D}{r_0}(C_b - C_0)
$$
\n(10)

which can be brought back to the dimensionless form:

$$
J^* = \frac{DK_m}{J_m r_0} (C_b^* - C_0^*) = \Psi (C_b^* - C_0^*)
$$
\n(11)

where,

$$
\Psi = \frac{DK_m}{J_m r_0} \tag{12}
$$

From Eq[.11](#page-2-0) we get the total particle uptake rate by multiplying flux with cell surface area:

$$
\dot{m} = 4\pi r_0^2 J_m \Psi (C_b^* - C_0^*) = 4\pi r_0 D K_m (C_b^* - C_0^*) = k (C_b^* - C_0^*),\tag{13}
$$

where $k = 4\pi r_0 D K_m$.

Mass conservation requires that the two fluxes in Eq. [3](#page-1-3) and Eq. [11](#page-2-0) be equal. Thus by equating the two, we obtain the following quadratic equation:

$$
C_0^{*2} + \left(\frac{1}{\Psi} + 1 - C_b^*\right)C_0^* - C_b^* = 0\tag{14}
$$

Solving for the nanoparticle concentration at the cell boundary we get:

$$
C_0^* = -\frac{1}{2} \left(\frac{1}{\Psi} + 1 - C_b^* \right) + \frac{1}{2} \sqrt{\left(\frac{1}{\Psi} + 1 - C_b^* \right)^2 + 4C_b^*}
$$
(15)

We then substitute C_0^* from Eq[.15](#page-2-1) in Eq[.13](#page-2-2) to get the total particle uptake rate by the entire cell,

$$
\dot{m} = k \left(C_b^* + \frac{1}{2} \left(\frac{1}{\Psi} + 1 - C_b^* \right) - \frac{1}{2} \sqrt{\left(\frac{1}{\Psi} + 1 - C_b^* \right)^2 + 4C_b^*} \right) \tag{16}
$$

When considering variation in mean transporter density, \tilde{n} , with cell size, we substitute the following equation:

$$
\frac{\tilde{n}}{\langle n \rangle} = \left(\frac{r_0}{\langle r_0 \rangle}\right)^{\alpha} \tag{17}
$$

into Ψ to get:

$$
\Psi = \frac{DK_m}{J_m r_0} = \frac{DK_m}{k_1 \tilde{n} r_0} = \frac{DK_m}{k_1 \langle n \rangle \left(\frac{r_0}{\langle r_0 \rangle}\right)^{\alpha} r_0}
$$
(18)

PYTHON CODE IMPLEMENTING THE REACTION-DIFFUSION MODEL

Use the following Python code to create a Python file, such as model.py. Execute the Python file, which will generate Fig. 5B of the paper.

```
#!/usr/bin/python
import matplotlib
matplotlib.use("TkAgg")
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import matplotlib.ticker as mtick 
import numpy as np
import random
import math 
from pylab import genfromtxt;
font = \{ 'family' : 'serif', 'weight' : 'normal',
         'size' : 20}
matplotlib.rc('font', **font)
plt.rc('axes', labelsize=22) 
#mat0 = genfromtxt("L molecule avg dist7.dat");
```

```
#mat1 = genfromtxt("L molecule avg dist8.dat");
#mat2 = genfromtxt("L molecule avg dist9.dat");
```
 $f = 1$ sample = Fs

a = 0.05 # particle radius in micron w = 10.0 # ug/mL solution; nanoparticle solution on weight-basis spg = 1.06 # Polystyrene (nanoparticle material) specific gravity. m particle = $(4.0/3)*(np.pl)*(a/10000)**3)*1.00*(10**6)$ # Mass of a nanoparticle in microggram Cb = $(w/(10**(12)))$ /m particle # Bulk particle concentration; number of particles per um^3 of the bulk solution

 $r0 = 10.0$ # Mean cell size (radius) mur = np.log(r0) # Mean cell size (radius) in log scale sigmar = 0.5 # Standard deviation for cell size distribution

 $KB = 1.38064852e-23 # Boltzmann constant$ $T = 298.15$ # Temperature nu = 1e-3 # Water viscosity, Pa.s

 $D = (KB * T / (6 * np.pi * nu * a * 1e-6)) * 1e12 * particle$ diffusivity micron^2/s

kf = 0.1 # Goldstein, intrinsic on rate nmu0 = 0.119 # Number of coated pits per unit surface area (150 in a cell of 10 micron radius) nstd = 0.4 # standard deviation - cell -to cell variability in surface density of pit $kr = 0.1$ # Mean residence time of a particle in a pit is 10 second

```
k1 = 0.02 # Mean lifetime of a pit is 50 seconds; this is inverse of
the pit lifetime 
#npit = np.exp(np.random.normal(np.log(nmu), nstd, sample)) 
#y = 4 * np.py i * r * D * r * km / (D + r * km)\#y = 4 * np.pi * r * r * kmdef evaluate f2(*vartuple):
    kf = variable[0]kr = vartuple[1]k1 = \text{variable}[2] n = vartuple[3]
    r = vartuple[4]
    Cb = \text{vartuple}[5]D = \text{vartuple}[6]Jm = k1 * nKm = (kr + k1)/kfCb = cb/Km # dimensionless bulk concentration
    Psi = D*Km / (Jm * r)Zet = ((1 / Psi) + 1 - Cb)CO = -Zet/2 + (math, sqrt(Zet*Zet + 4*Cb))/2k = 4 * np.pyi * r * D * Kmm = k * (Cb - C0)
```

```
 return(m);
```

```
n elem = 6;#z1 = [[0 for x in range(sample)] for y in range(n elem)]
\#z = [[0 for xx in range (sample)] for yy in range(5)]y = np.empty([nelem, sample])
factor = np.array([1, 0.1, 0.03, 0.01, 0.003, 0.001])colors = np.array(['k', 'orange', 'g', 'r', 'c', 'b'])
plots = np. empty([n elem])
alpha = np.array([1, 0.5, 0, -0.5, -1, -2])
marker size = 0.5for j in range (n elem) :
     csize = np.random.normal(mur, sigmar, sample) 
   x = np \exp(csize) for i in range(sample): 
        r = x[i]nmu = nmu0*(r/r0) **(alpha[2])) ntot = np.exp(np.random.normal(np.log(nmu), nstd)) 
        val1 = evaluate f2(kf, kr, k1, ntot, r, cb, factor[j]*D)Dmean = Drmean = r0kmeanCb = 4*(np.pl)*rmean*Dmean*Cb # k*(Cb*) =4*(pi)*r OD*Km*(Cb/Km) = 4*(pi)*r O*D*Cb
```

```
y[i, i] = val1/kmeanCb # Normalized by k*Cb*plt.scatter(x, y[j,:], color= colors[j], marker= ".", s =
marker_size)
     #plt.plot(x, y[j,:], color= colors[j])
# x-axis label
plt.xlabel("Cell radius ($\mu$m)")
# frequency label
#plt.ylabel("Uptake ($m/\~{k}C_b$)")
plt.ylabel("Uptake")
# plot title
#plt.title('My scatter plot!')
# showing legend
leg = plt.length()leg.get_frame().set_alpha(0.0) 
#plt.xscale("log"); 
plt.xlim(1,20); 
plt.ylim(0,0.012); 
plt.tick params(direction='in', length=6, width=2, colors='k',
                grid_color='r', grid_alpha=0.5, pad=10)
plt.gca().yaxis.set major formatter(mtick.FormatStrFormatter('%0.1g'))
plt.tight_layout()
plt.savefig('Fig5B.png', format='png', dpi=1500) 
# function to show the plot
plt.show()
```