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ABSTRACT The size of a cell is central to many functions, including cellular communication and exchange of materials with the
environment. This modeling and experimental study focused on understanding how the size of a cell determines its ability to
uptake nanometer-scale extracellular materials from the environment. Several mechanisms in the cell plasma membrane
mediate cellular uptake of nutrients, biomolecules, and particles. These mechanisms involve recognition and internalization
of the extracellular molecules via endocytic components, such as clathrin-coated pits, vacuoles, and micropinocytic vesicles.
Because the demand for an external resource could be different for cells of different sizes, the collective actions of these various
endocytic routes should also vary based on the cell size. Here, using a reaction-diffusion model, we analyze single-cell data to
interrogate the one/one mapping between the size of the MDA-MB 231 breast cancer cells and their ability to uptake nanopar-
ticles. Our analysis indicates that under both reaction- and diffusion-controlled regimes, cellular uptake follows a linear relation-
ship with the cell radius. Furthermore, this linear dependency is insensitive to particle size variation within 20–200 nm range. This
result is counterintuitive because the general perception is that cellular uptake is proportional to the cell volume (mass) or
surface area and hence follow a cubic or square relationship with the cell radius. A further analysis using our model reveals
a potential mechanism underlying this linear relationship.
INTRODUCTION
Cell size is a critical attribute central to many cellular func-
tions. The plasma membrane is the sole interface between a
cell and the extracellular medium. It mediates the exchange
of nutrients, particles, proteins, biomolecules, and metabo-
lites between the cell and its environment. Therefore, the
size of a cell or the surface area of its plasma membrane
may play a central role in determining the rate of cellular
uptake of materials. The general perception is that cellular
uptake is proportional to the volume of a cell because the
demand for the external resources might be determined
by the cell mass. However, it is also argued that uptake
is proportional to the surface area of a cell because the
extracellular materials are internalized by a variety of
transporter proteins and endocytic structures in the cell
plasma membrane (1,2). A larger surface area of a cell
perhaps implies a more abundance of these plasma-mem-
brane-associated components involved in the recognition,
transport, and trafficking of the extracellular molecules
and particles.
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Nevertheless, in addition to the cell volume or surface
area, several other factors may also contribute to the uptake
characteristics of a cell. For example, the extracellular trans-
port of a molecule or particle could influence its uptake in a
diffusion-controlled environment (3). Examples of such en-
vironments include porous media or biological tissues, in
which a variety of barriers may hinder the motion of the
molecules and particles (4,5). On the contrary, transport
could play a minor role in a cell-culture medium, in which
the limiting factor could be a cell’s intrinsic ability to pro-
cess materials via different endocytic pathways (6). There-
fore, the uptake behavior of a cell may be influenced by
the relative rate of diffusion and reaction (cell-surface
recognition and intracellular trafficking). However, the ulti-
mate uptake characteristics could be more complicated
given the possibility that the size or growth of a cell may
be dictated by its rate of uptake of the extracellular re-
sources and vice versa (7–9). Under such circumstances, a
feedback-like relationship between cellular uptake and cell
size is expected.

Several works in the past investigated cell-size-dependent
nutrient uptake by the phytoplanktonic organisms (2,3,10–
13). These earlier works focused on understanding how
the size of these organisms define their uptake behavior
under a limiting nutrient environment. However, for the
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mammalian cells, relevant literature seems surprisingly
limited. As noted earlier, the reason might be that the corre-
lation between cell size and uptake seems too intuitive to
deserve a systematic investigation. In a recent work, Wang
et al. (14) investigated cell-size-dependent uptake of nano-
particles in human mesenchymal stem cells (hMSCs). In
this study, a micropatterned surface was used to grow cells
of different sizes. Their experiments revealed a linear in-
crease in particle uptake with cell size. Furthermore, the
larger cells displayed a reduced uptake per unit area of the
cell membrane compared to their smaller counterparts.
The authors attributed these observed uptake behaviors to
the higher plasma membrane tension in the larger micropat-
terened hMSCs.

In recent years, remarkable efforts have been made to un-
derstand endocytic recognition and internalization of bio-
molecules and nanoparticles (15,16). However, many of
these studies, inspired primarily by the drug delivery or can-
cer research, have paid little attention to the cell size or other
cellular attributes at the single-cell level. Instead, attention
has been mostly directed to investigating how the physio-
chemical attributes of the nanoparticles determine the
mean (cell population average) uptake (17–26). The size
of a nanoparticle (or a cargo molecule) perhaps remains to
be the most extensively studied particle attribute in this
context (15,24–27). It has been demonstrated that phagocy-
tosis and micropinocytosis mediate trafficking of relatively
larger cargoes in the micrometer range. In contrast, cla-
thrin-coated pits primarily mediate uptake of smaller parti-
cles in the nanometer range. An earlier work by Rejman
et al. (24) demonstrated that particles larger than 500 nm
are internalized predominantly by the caveolae-mediated
pathway, whereas particles smaller than 200 nm size are
internalized primarily by the clathrin-mediated endocytosis.
More recently, Zhang et al. (25) demonstrated that 25–
30 nm particles represent the optimal size range for internal-
ization via the endocytic pathways. The review article by
Shang et al. (26) provides a detailed overview of particle-
size-dependent uptake of nanoparticles in various cell types.
Nevertheless, despite these advancements, it remains poorly
understood how the physical attributes of a single cell
govern its ability to uptake particles because the measure-
ments and analysis have mostly focused on the cell popula-
tion average uptake with an interest in the attributes of the
particles rather than cells.

Here, using a reaction-diffusion model, we analyze
single-cell data to investigate the one/one correspondence
between cell size and particle uptake. Our model incorpo-
rates cellular heterogeneity in cell size and cell-to-cell vari-
ability in endocytic capacities. The model couples these
cell-specific attributes to nanoparticle diffusion in the
extracellular medium. Using the model, we investigate
cell-size-dependent nanoparticle uptake in the reaction-
and diffusion-limited conditions. By analyzing flow cy-
tometry data and microscopy image analysis, we map the
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MDA-MB 231 cell size to nanoparticle uptake in a typical
cell-culture condition. By model fitting to the experimental,
we identify parameters governing the particle uptake
behavior of MDA-MB 231 cells. For a range of nanoparticle
sizes, we show that cellular uptake of particles may vary
linearly with cell radius under both diffusion- and reac-
tion-controlled conditions. From diffusion theory, such
linear relationship is expected only in the diffusion-limited
regime. Nevertheless, our single-cell experimental data
reveal similar behavior in a regular cell-culture medium,
in which the diffusion effect is expected to be minimal.
Based on our analysis, we propose a potential mechanism
that can explain the linear correlation between cell size
and uptake in a reaction-limited regime.
MATERIALS AND METHODS

Cell culture

MDA-MB 231 cells were grown in Roswell Park Memorial Institute

(RPMI) 1640 medium (Corning Cellgro Mediatech, Manassas, VA) supple-

mented with 10% fetal bovine serum (Gibco Life Technologies, Grand

Island, NY), and 1% penicillin/streptomycin (Gibco). Cells were kept in

a humidified incubator at 37�C and 5% CO2 and split at 70–80% conflu-

ence, using 0.25% trypsin-EDTA solution (Gibco).

For flow cytometry and fluorescence microscopy experiments, cells were

seeded in 24-well plates. Each well was added with 1 mL media (100,000

cells per mL of RPMI 1640) and incubated for 24 h to allow cell attachment.

After the incubation, the media in each well was replaced with a solution of

nanoparticles in RPMI 1640. The cells were incubated with the nanoparticle

solution for 5 h before conducting flow cytometry.
Nanoparticle preparation

Green fluorescent polystyrene nanoparticles (Thermo Scientific Fluoro-

Max, Fremont, CA) were used without further modification and purifica-

tion. The particles had a mean size (diameter) of 100 nm. Particle stock

solutions were stored in accordance with the manufacturer’s instructions.

Dynamic light scattering was used to confirm particle size. Before the

uptake experiment, the particle solutions were vortexed and sonicated in

accordance with the manufacturer’s recommendations. For use in the

dynamic light scattering measurements (Zetasizer Nano ZS; Malvern Pan-

alytical, Westborough, MA), the sample stock solutions were diluted with

deionized water to maintain the specific concentrations recommended in

the Zetasizer protocol.

Working particle solution was prepared by diluting the stock solution

with deionized water at room temperature. The solution was then further

diluted in RPMI 1640 media and vortexed to ensure uniform mixing. The

RPMI 1640 media was prewarmed to 37�C for better particle dispersion.
Flow cytometry

After 5 h of incubation with the nanoparticle-RPMI solution, cells were

washed three times with phosphate-buffered saline and detached with

0.25% trypsin-EDTA (Gibco). The cell suspension was mixed with

500 mL of fresh RPMI 1640 media solution for flow cytometric measure-

ment. Measurements were performed using a BD Accuri C6 plus (Becton

Dickinson, Franklin Lakes, NJ) with a 488 nm argon-ion laser. Fluorescence

data were collected through a 533/30 nm bandpass filter. At least 20,000

events per sample were taken for analysis. A forward scatter (FSC) versus

90� side scatter (SSC) log-log plot revealed two distinct populations, one
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with lowSSCand FSC and the otherwith high SSC and FSC. The formerwas

understood to be dust or debris and discarded, whereas the latter, which

accounted for over 80% of the data, was used for analysis.
Cell-size estimation from FSC

The BD Accuri C6 plus was used to collect forward-scatter (FSC-A) data

for a mixture of standard fluorescent particles of mean diameter 2 and

3 mm. The data revealed two distinct peaks corresponding to the two parti-

cle sizes. The size of individual MDA-MB 231 cells was then estimated

from linear extrapolation: cell size (mm) ¼ 3 þ (Fc � F3)/(F3 � F2), where

Fc, F2, and F3 represent the FSC peak intensities of the MDA-MB 231 cells,

2 mm bead, and 3 mm bead, respectively.
Fluorescence microscopy

MDA-MB 231 cell suspension on a cover glass was imaged using a Zeiss

Apotome 2 microscope with a 63� objective lens. Images were analyzed

using the ImageJ software to quantify the size of individual MDA-MB

231 cells.
Model implementation

A detailed derivation of the reaction-diffusion model is provided in the Sup-

porting Materials and Methods. The model was implemented in Python.

The Python code is also provided in the Supporting Materials and Methods.
RESULTS

Correlation between MDA-MB 231 cell size and
nanoparticle uptake

We carried out flow cytometer measurement to identify the
correlation between MDA-MB 231 cell size and nanopar-
ticle uptake. Measurements were done to acquire the
FSC-A and the fluorescence intensity of the cell-internal-
ized nanoparticles in single cells. The FSC-Awas converted
into the cell size, which was then mapped to the particle up-
take (fluorescence intensity of the internalized particles).
Fig. 1 shows the conversion of the FSC signal into cell
size. In Fig. 1 A, FSC-A peaks of two standard fluorescent
beads and the MDA-MB 231 cells are shown. The relative
positions of these three peaks were used to estimate the
cell sizes, as described in Materials and Methods. The
cell-size distribution is shown in Fig. 1 B. The data suggests
that MDA-MB 231 cell-size distribution can be approxi-
mated to a lognormal distribution with mean cell size
hr0i � 11 mm and SD sc ¼ 0.20.

To check the reliability of the FSC-based estimate, we
also calculated cell size directly from microscopy images
(Fig. 1D). The comparison between the FSC-based estimate
and the actual cell size (microscopy-image-based calcula-
tion) indicates that the FSC provides a slight overestimate.
Nevertheless, it provides a pretty accurate estimate for the
peak width (distribution variance). After shifting, the FSC-
based distribution showed good agreement with the actual
cell-size distribution (Fig. 1 D). Because the microscopy
data corresponds to a relatively small sample (1500 cells),
we used the shifted distribution as the correct measure of
cell-size distribution. The mean and standard deviation
(SD) of the shifted distribution are hr0iz8 mm and sc ¼
0.20, respectively.

The cell sizes calculated above were mapped to the corre-
sponding fluorescence of internalized nanoparticles, as
shown in Fig. 2 A. The figure indicates almost a perfect
linear increase in the uptake of 100 nm nanoparticles with
cell size. A linear equation with a lognormally distributed
noise shows an excellent agreement with the experimental
data.

A recent experimental study has reported similar linear
correlation between cell size and uptake of nanoparticles
in micropatterned hMSCs (14). This observed behavior is,
however, unexpected because cell size is expressed in cell
radius (r0), not in cell surface area or cell mass. It defies
the intuition that particle uptake rate is proportional to the
FIGURE 1 Size distribution of MDA-MB 231

cells. (A) From left to right: flow cytometer forward

scatter (FSC-A) peaks corresponding to 2 mm

beads, 3 mm beads, and MDA-MB 231 cells. (B)

MDA-MB 231 cell-size distribution estimated

from flow cytometer FSC-A. The distribution rep-

resents calculation based on 10,000 cells. (C) An

image showing a few representative MDA-MB

231 cells. (D) MDA-MB 231 cell-size distribution

obtained from microscopy images (black) and

FSC-A-based calculation (green). The shifted (cor-

rected) FSC-A-based distribution is shown in red.

To see this figure in color, go online.
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FIGURE 2 Flow cytometer analysis reveals a linear correlation between

cell size and nanoparticle uptake. The experiment was carried out with

100 nm (diameter) nanoparticles. (A) Each black point represents flow-cy-

tometer-measured single-cell nanoparticle uptake plotted against corre-

sponding cell size. The uptake is expressed as a normalized quantity,

which is the ratio of the fluorescence intensity of a cell’s internalized nano-

particle (I) to the median fluorescence of a 3 mm fluorescent bead (Ib). The

red points represent the following linear relationship with lognormally

distributed noise: I=Ib ¼ Kr0e
Nð0;s2t Þ, where K ¼ 0.046, st ¼ 0.263, and

Nð0;s2t Þ is a normally distributed random variable. (B) Green represents

distribution of the cell autofluorescence (normalized with Ib). Black repre-

sents cellular distribution of particle uptake (measured I=Ib, black points in

A). Red represents distribution of uptake based on the above linear relation-

ship (red points in A). To see this figure in color, go online.
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cell surface area or cell mass. Both cases define a nonlinear
relationship between the particle uptake rate and r0. If up-
take is directly proportional to the surface area, it can be
defined as

_m ¼ ksCb4pr
2
0e

Nð0;s2t Þ; (1)

where _m is the rate of uptake, ks is a constant, Cb is the con-

centration of nanoparticles in the extracellular solution, and
Nð0; s2t Þ is a normal distribution with mean 0 and SD st.
Nð0; s2t Þ accounts for the possibility of noise in particle up-
take among cells of identical sizes. On the other hand, if up-
take rate is proportional to cell mass, it can be described as

_m ¼ kvrCb

4

3
pr30e

Nð0;s2t Þ; (2)
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where kv is a constant and r is the mass per unit cell volume.
However, these simple models, which appear to be physi-
cally meaningful, are inconsistent with the linear trend
observed in Fig. 2 A because uptake rate in these two models
is proportional to r20 and r30 , respectively.

In Fig. 3, we present two hypothetical cases showing
how particle uptake should vary against cell size according
to the above simple intuitive models (Eqs. 1 and 2). In
one case, we consider a widely distributed cell size
(Fig. 3, A and B), whereas in another case, we consider a
relatively narrowly distributed cell size (Fig. 3, C and D).
In both cases, the nonlinearities of the noisy curves are
evident even though it is more apparent for the wider cell-
size distribution (Fig. 3 B). However, because our measure-
ments (Fig. 2) indicate quite narrowly distributed MDA-MB
231 cell sizes, we also provide a direct comparison between
these nonlinear models and the experimental data. As seen
in Fig. 4, the nonlinear models poorly describe the data
compared to the linear fit in Fig. 2. Note that the theoretical
points in the scatter plots (Fig. 4 A) appear to be more
condensed compared to the experimental data. However,
an attempt to reduce this discrepancy by increasing noise
(st) led to greater disagreements between the experimental
and the theoretical peaks in Fig. 4 B.
Reaction-diffusion model

The scatter plot in Fig. 2 A revealed two distinct types of
heterogeneities in particle uptake by cells. One type of het-
erogeneity reflects the differences in the cell size, as re-
vealed by the linear increase in particle uptake with cell
radius r0. The other type of heterogeneity is the noise, which
probably originates from cell-to-cell variation in the endo-
cytic capacities. Because the two simple models above
were inadequate to describe these variations, we sought
for a more complex model, as detailed below.

In an earlier work, Pasciak et al. (3) developed a reaction-
diffusion model to study nutrient absorption by the phyto-
planktonic organisms. By adopting a similar approach, we
develop a model in which we consider a spherical cell and
freely diffusing nanoparticles in the extracellular space.
The diffusing particles are captured and internalized at the
cell boundary. Unlike the model of Pasciak et al. (3), we
explicitly consider nanoparticle uptake by a finite number
of endocytic components in the cell plasma membrane.
Transmembrane nanoparticle uptake is mediated by a
variety of endocytic components (clathrin-coated pits, vac-
uoles, or phagosomes) in the cell plasma membrane (28).
We lump together all these different components into one
single (average) component. We assume that there are ne
such components per unit area of the plasma membrane of
a cell. Each such component, on average, can handle
maximal nt particles at a time. Based on this consideration,
we assume that unit area of the cell membrane contains



FIGURE 3 Cell-size-dependent particle uptake

described by two simple nonlinear models. (A)

An assumed distribution for cell size r0 ¼
hr0ieNð0;s2c Þ, where hr0i ¼ 10 mm represents the

mean cell size and sc ¼ 0.5 represents the SD. (B)

Black: uptake is proportional to cell surface area

ð _m � ðr0=hr0iÞ2eNð0;s2t ÞÞ. Red: uptake is propor-

tional to the cell mass ð _m � ðr0=hr0iÞ3eNð0;s2t ÞÞ.
The solid lines and points correspond to st ¼ 0

and st ¼ 0.4, respectively. The cell sizes (X axis

values) are sampled from the distribution in (A).

(C) The same as in (A) for a narrower cell-size dis-

tribution (sc ¼ 0.20). (D) The same as (B) for a nar-

rower cell-size distribution (sc ¼ 0.20). To see this

figure in color, go online.
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n¼ ne� nt number of hypothetical particle processing units,
each of which can handle at most one nanoparticle at a time.
We call each of these hypothetical units a ‘‘transporter.’’

We consider a reversible interaction between a transporter
and a nanoparticle. A particle captured by a transporter may
dissociate and return to the solution, or it may be taken in-
side the cell through endocytosis. These steps are described
by the following Michaelis-Menten reaction scheme:

ParticleðsolutionÞ þ Transporter4Complex/

Transporter þ ParticleðinternalizedÞ:

In the above scheme, the three reactions are associated

with the following three rate constants (Table 1): kf is asso-
ciated with the forward reaction that leads to the formation
of the particle-transporter complex, kr is associated with the
reverse reaction that leads to dissociation of the complex,
and k1 is associated with the reaction that leads to particle
endocytosis and regeneration of the transporter.

At steady-state condition, the flux of nanoparticles across
the cell membrane can be described by the Michaelis-
Menten rate law:

J

Jm
¼ C0

Km þ C0

: (3)

Here, C0 represents nanoparticle concentration at the solu-

tion-cell membrane interface, and Jm ¼ k1n represents
maximal flux when there are n transporter molecules per
unit area of the cell membrane. The constant Km is the
Michaelis-Menten constant and is given by Eq. 4:

Km ¼ kr þ k1
kf

: (4)
A function similar to Eq. 3 describes nutrient flux in the
model of Pasciak et al. (3). However, in the Pasciak model,
it was a phenomenological function and no mechanism of
uptake was described at the molecule level. In our model,
it appears naturally from the interaction between a finite
number of endocytic components and their interaction
with particles.

For convenience, we rewrite Eq. 3 in dimensionless form:

J� ¼ C�
0

1þ C�
0

; (5)

where C�
0 ¼ C0=Km and J* ¼ J/Jm. We consider a spherical
cell of radius r0 and define dimensionless distance r*¼ r/r0.
Now, steady-state mass balance leads to the following dif-
ferential equation:

V , ðDVC�Þ ¼ 0; (6)

where C*¼ C/Km is the dimensionless nanoparticle concen-

tration at r* > 1, and D is the particle diffusion constant.
D is estimated using the Einstein-Stokes equation:

D ¼ kBT

6pma
; (7)

where kB is the Boltzmann constant, T is temperature, m is

the dynamic viscosity of the extracellular fluid, and a is
the particle radius. Because of the symmetry of the spherical
geometry, we assume no gradient in C* in the q and f direc-
tions. The two boundary conditions for the system are
C�
b ¼ Cb=Km at r�/N and C�

0 ¼ C0=Km at r* ¼ 1, where
Cb represents the bulk nanoparticle concentration. The solu-
tion to Eq. 6 is
Biophysical Journal 116, 347–359, January 22, 2019 351



FIGURE 4 Comparison between the experimental data and the two sim-

ple nonlinear cases in Eqs. 1 and 2. (A) The black dots represent the flow

cytometer data presented in Fig. 2 A. The orange and blue dots, respectively,

are generated using Eqs. 1 and 2, in which particle uptake is assumed pro-

portional to the cell surface area and cell mass, respectively. (B) Probability

distributions corresponding to the points in (A). To see this figure in color,

go online.

TABLE 1 Nominal Values for the Model Parameters

Parameter Value Comment

hr0i (mm) 10 Cell-population-averaged cell size (radius).

s2c 0.0225–0.25 Cell size (r0) distribution variance:

lnðr0Þ ¼ lnhr0i þ scNð0; 1Þ .
hni (mm�2) 0.119 Cell-population-averaged transporter density.

s2t 0.16 Variance describing the noise in transporter

density n: lnðnÞ ¼ lnð~nÞþ stNð0; 1Þ.
a 0 Parameter correlating cell size (r0) and

mean cell-surface transporter density

~n: ~n=hni ¼ ðr0=hr0iÞa.
kf (mm

3 s�1) 0.1 Forward rate constant for particle recruitment

by a transporter.

kr (s
�1) 0.1 Reverse rate constant for particle detachment

from a transporter.

k1 (s
�1) 0.02 Rate constant for particle internalization.

D (mm2/s) 4.29 Nanoparticle diffusivity, D ¼ kBT/(6pmrp),

where temperature, T ¼ 298.15 K, kB
is Boltzmann constant, particle radius,

rp ¼ 50 nm, and dynamic viscosity of

the extracellular solution, m ¼ 1 cP.
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C�
b � C�

C�
b � C�

0

¼ 1

r�
: (8)

Therefore, particle flux

J� ¼ DKm

Jmr0

� �
vC�

vr�
����
r� ¼ 1

¼ j C�
b � C�

0

� �
; (9)

where j ¼ DKm

Jmr0
. The net rate of particle uptake by the entire
cell

_m ¼ 4pr20Jmj C�
b � C�

0

� � ¼ 4pr0DKm C�
b � C�

0

� �
¼ k C�

b � C�
0

� �
; (10)

where k ¼ 4pr0DKm. From Eqs. 5 and 9, the following

quadratic equation is obtained:

C�2
0 þ 1

�
jþ 1� C�

b

� �
C�

0 � C�
b ¼ 0: (11)

The solution to this quadratic equation yields nanoparticle

concentration at the cell boundary:
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C�
0 ¼ � 1=2ð Þ 1

�
jþ 1� C�

b

� �

þ 1=2ð Þ 1
�
jþ 1� C�

b

� �2 þ 4C�
b

h i1=2
: (12)

Again, from Eq. 10, the total particle uptake rate by the

entire cell

_m ¼ k
�
C�

b þ ð1=2Þ�1=jþ 1� C�
b

�

� ð1=2Þ
h�
1=jþ 1� C�

b

�2 þ 4C�
b

i1=2	
: (13)

The model above is deterministic and describes an
average (or ideal) single-cell behavior, as in the nutrient

uptake model of Pasciak et al. (3). It does not account for
the heterogeneity arising from the difference in the cell
size or cell-to-cell variability in the endocytic capacities.
We consider a lognormal size distribution for cells:
r0 � eNðmc;s

2
c Þ, where hr0i ¼ emc represents the mean cell

size and sc represents the SD of the distribution. With this
consideration, a larger cell can have more cell-surface trans-
porter molecules compared to a smaller cell given the two
cells have identical transporter density (n) in the cell
membrane.

However, the above consideration is inadequate to fully
describe cellular heterogeneity in particle uptake. Two cells
of identical size may still differ in their ability to uptake par-
ticles because of the intrinsic transcriptional noise associ-
ated with the endocytic pathways. To incorporate this
additional source of noise, we consider a nominal case in
which we assume cell-surface transporter density n varies
from cell to cell following a lognormal distribution:
n � eNðmt ;s

2
t Þ. Here, ~n ¼ emt is the mean transporter density

and st is the SD describing the noise in n.
Nonetheless, the nominal case above ignores a possibility

that ~n could be dependent on cell size. Therefore, we
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consider ~n=hni ¼ ðr0=hr0iÞa, where h,i represents the
ensemble average over all cells. The exponent a takes a pos-
itive or negative value (a ¼ 0 represents the nominal case
discussed above). The rationale behind this relation is ex-
plained later when the relevant analysis is provided.

With the above considerations, both k and j become
random numbers, and Eq. 13 takes the following form:

_m ¼ Y1

�
C�

b þ ð1=2Þ�1=Y2 þ 1� C�
b

�

� ð1=2Þ
h�
1=Y2 þ 1� C�

b

�2 þ 4C�
b

i1=2	
; (14)

where Y1 � 4pDKme
Nðmc;s

2
c Þ and Y2 � ðDKm=k1Þ

e�ðN ðmc;s
2
cÞþN ðmt ;s

2
t ÞÞ.
Predicted correlation between cell size and
nanoparticle uptake

We first investigated how particle uptake varies with cell
size when different levels of diffusion barriers are imposed
on nanoparticle transport in the extracellular medium. As
shown in Fig. 5, two different cell-size distributions were
studied. Fig. 5, A and B correspond to a wider cell-size dis-
tribution, whereas Fig. 5, C and D correspond to a narrower
cell-size distribution. All parameters were assigned with
their nominal values (Table 1) unless mentioned explicitly
in the figure caption.

All black lines and points in the figure represent particle
uptake in a cell-culture medium. We assumed a viscosity of
1 cP and estimated particle diffusion constant using the Ein-
stein-Stokes equation. As expected, the result indicates that
particle uptake in a cell-culture medium occurs in a reac-
tion-limited regime. A decrease or increase in the diffusivity
by 10-fold does not make any noticeable difference. For the
diffusion effect to be visible, it requires at least 30-fold
reduced diffusivity (green lines and points).

Fig. 5 indicates a nonlinear relationship between the cell
size and nanoparticle uptake rate in the reaction-limited
condition. However, this relationship tends to be linear as
the system approaches the diffusion-controlled regime.
This could be explained by interpreting the model equa-
tions. Based on Eq. 12, the reaction-limited condition pre-
vails when

1
�
j � ��1� C�

b

��: (15)
Under this condition, particle concentration at the cell

boundary tends to be similar to the bulk concentration
ðC�

0zC�
bÞ, and we recover the Michaelis-Menten rate law

in Eq. 5 by replacing C�
0 with C�

b. The resulting cellular up-
take rate can be given as

_mz4pr20
JmCb

Km þ Cb

: (16)
Moreover, if Km � Cb, this equation reduces to _m � r20 ,

leading to the simple model in Fig. 3, where uptake is pro-
portional to the cell membrane area. On the other hand, the
diffusion effect becomes apparent when 1/j takes a value
comparable to

��1� C�
b

�� . In particular, the diffusion effect
becomes more apparent for cells larger than 5 mm. In
contrast when 1=j[

��1� C�
b

��, the system falls into the
diffusion-controlled regime, and C�

0zJC�
b. From Eq. 11,

the uptake rate becomes
FIGURE 5 Model-predicted correlation between

cell size and nanoparticle uptake. The X axis

represents cell size, and the Y axis represents nano-

particle uptake. The uptake is expressed as a dimen-

sionless quantity _m=4phr0iDmCb, whereDm¼ 4.29

mm2/s represents diffusivity of a 100 nm particle in

water at 25�C (Table 1) and Cb is the particle con-

centration in the bulk solution. (A) Each curve rep-

resents a different particle diffusivity in the

extracellular medium. Black represents diffusivity

in a cell-culture medium, in which viscosity is

assumed to be 1 cP. Orange, green, red, cyan, and

blue, respectively, represent a 0.1, 0.03, 0.01,

0.003, and 0.001-fold reduced diffusivity relative

to the cell-culture medium. Cell sizes are sampled

from a lognormal distribution (hr0i ¼ 10 mm,

sc ¼ 0.5), and cell-surface transporter density is

assumed to be constant (hni ¼ 0:119 mm�2, st ¼
0, a ¼ 0). (B) All conditions are identical to (A),

but a noise is incorporated by sampling n from a

lognormal distribution (hni ¼ 0:119 mm2, st ¼
0.4, a ¼ 0). (C and D) All conditions are identical

to (A) and (B), respectively, but a narrower cell-

size distribution is assumed (hr0i ¼ 10, sc ¼ 0.2).

To see this figure in color, go online.
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_m ¼ 4pr0DKmC
�
bð1� jÞz4pr0DKmCb; (17)

thus leading to a linear correlation between particle uptake
and cell size.

In summary, the result in Fig. 5 suggests a linear correla-
tion between cellular uptake in the diffusion-controlled
regime. However, the linearity observed in Fig. 2 still re-
mains unexplained because a significant transport barrier
is not expected in an in vitro cell-culture medium. Note
that the result in Fig. 5 represents the nominal case where
we assume there is no correlation between the cell size
and the density of transporter molecule in the cell membrane
(a¼ 0). As wewill show later, anticorrelation between these
two (i.e., a negative value of a) can explain a linear depen-
dency between cell size and uptake rate in the reaction-
limited region as well.
FIGURE 6 Noise characteristics in the diffusion limit. The curves (and

their colors) in each panel correspond to those in Fig. 5 B, except that

the value of the parameter kf is (A) 10 times and (B) 100 times higher

than the nominal value (Table 1). To see this figure in color, go online.
Noise in particle uptake

An interesting thing to note in Fig. 5 is that there is a high
degree of cellular noise in particle uptake in the reaction-
limited regime. The noise diminishes gradually with
increasing diffusion effect. To investigate the noise further,
we raised the intrinsic forward rate constant (kf) in an
attempt to drive the system into the diffusion-limited
regime. This change in kf led to a reduced noise, as seen
in Fig. 6. This suppression of the noise indicates a reduced
influence of n on particle uptake in the transport-limited
regime. In a purely diffusion-controlled regime, uptake be-
comes independent of n: _m � r0DKmCb (Eq. 17). Therefore,
the relationship appears deterministic. On the other hand,
based on Eq. 16, the noise in the reaction-controlled regime
should vary in proportion to the cellular heterogeneity in n
when Km[Cb. This result suggests that the cellular noise
in particle uptake may provide insights into the diffusion
barrier of the extracellular medium. From such noise, it
may be possible to infer whether particle uptake occurred
in a reaction- or diffusion-controlled condition.
Correlating cell-surface transporter density with
cell size

In the previous analyses, we assumed that the cell-surface
transporter density is uncorrelated to cell size. As a result,
the mean number of transporters per cell ð4pr20~nÞ was
directly proportional to the cell surface area ðr20Þ. Here, ~n re-
fers to the mean transporter density excluding the stochastic
noise ðs2t ¼ 0Þ. However, it is possible that ~n varies with r0
because of the following reasons. A growing cell may try to
maintain the same rate of uptake per unit of mass (volume).
Therefore, the uptake rate per unit area of the plasma mem-
brane of a growing cell may increase in proportion to r30 .
Thus, for two cells of radius r0,1 and r0,2, r

2
0;1~n1=r

3
0;1 ¼
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r20;2~n2=r
3
0;2, i.e., ~n � r0. On the other hand, a counterargu-

ment may be that ~n decreases with cell size, i.e., the two
are anticorrelated. The rationale is that the transcriptional
output of a growing cell may not be able to cope up with
the growing mass ðr30Þ of the cell. Thus, such anticorrelation
may actually contain a cell from an abnormally high growth.
A third possibility may be that the amount of transporter
per cell ð4pr20~nÞ has nothing to do with cell size and all cells
on average express the same number of transporter mole-
cules (except for the stochastic variations). This leads to
4pr20;1~n1 ¼ 4pr20;2~n2, i.e., ~n � r�2

0 .
To study the above possibilities, we consider

~n ¼ hni r0=ð hr0iÞa, as noted in the model description.
Here, a ¼ 0 refers to the nominal case (Figs. 5 and 6). In
Fig. 7, we show several hypothetical cases in which a takes
different positive and negative values. In these figures, par-
ticle uptake rate in the reaction-limited condition is

_mz4pr20
JmCb

Km þ Cb

¼ 4pk1hnihr0i�a
r2þa
0

Cb

Km þ Cb

; (18)
whereas particle uptake rate in the diffusion-limited condi-

tion is



FIGURE 7 Predicted correlation between cell size and particle uptake when cell-surface transporter density is a function of cell size. The mean transporter

density (~n) varies with cell size according to ~n ¼ hniðr0=hr0iÞa. The top and bottom panels correspond to positive and negative values of a, respectively, as

indicated. Each color represents a distinct particle diffusivity, as in Fig. 5. To see this figure in color, go online.
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_mz4pr0DKmC
�
bð1� jÞ ¼ 4pr0DKmC

�
b

�
1� DKmk

�1
1

� hni�1hr0iar�1�a
0

�
:

(19)

As seen in the figure, in the positive range of a, the effect
of this parameter becomes apparent at a > 1, where uptake
increases sharply with cell size under reaction control. In
contrast, in the negative range of a, its effect becomes
apparent at a < �1.

Notice that, our earlier analysis with a ¼ 0 (Fig. 5) indi-
cated a nonlinear correlation between cell size and particle
uptake rate ð _m � r20Þ in the reaction-limited regime. How-
ever, Fig. 7 suggests that a linear correlation in this regime
is possible as well if a is negative and close to�1. Themodel
predicts that the correlation between cell size and uptake is
lost when a z �2. Again, at a ¼ �5, the model predicts
an optimal cell size for which particle uptake is maximal.
Experiment versus model predictions

We took four sets of fluorescent nanoparticles of mean
diameter 26, 47, 100, and 200 nm, respectively, and
analyzed their uptake in MDA-MB 231 cells using the
model considering nonzero a. Fig. 8 shows fitting between
the experimental data and model predictions for the four
different nanoparticle sizes. The model was used to make
predictions on particle uptake against each of the measured
cell sizes. The predicted particle uptake values were scaled
and fitted to the observed (normalized) fluorescence. Fitting
was done to capture the following observations: 1) cell-size-
dependent particle uptake and associated noise (upper
panels in Fig. 8) and 2) cellular distribution of particle up-
take (lower panels in Fig. 8). The figure shows good agree-
ments between the experiments and the model. The model
parameter values obtained from these fittings are listed in
Table 2.

The data for all four particle types reveals significant
noise, indicating uptake occurs in the reaction-limited
regime in the cell-culture medium. However, a linear depen-
dency between cell size and the internalized number of
nanoparticles is seen for all four particles, thus contradicting
the expectation that uptake in the reaction-limited regime
should vary in proportion to r20 (Fig. 5). Note that, in
Fig. 7, the model predicted that a linear relationship between
cell size and particle uptake is possible in the reaction-
limited regime if a is negative and falls within a certain
range. Our fitting led to a between�0.8 and�0.9 (Table 2).
This negative value indicates that the cell-surface density of
the trafficking components (clathrin pits or other structures)
may decrease with the increasing size of an MDA-MB 231
cell.

From the fitting, we estimated transporter density, hni ¼
0:946 mm�2 and its lognormal variance s2t ¼ 0:071�
0:116 (Table 2). Therefore, a typical MDA-MB 231 cell
of radius 8 mm is expected to have 760 transporter molecules
in the plasma membrane. As explained before, in our model,
a transporter molecule is a hypothetical unit that processes
only one particle at a time. Reportedly, clathrin-coated
pits play the key role in the uptake of nanoparticles smaller
than a few hundred nanometers in size (27). Thus, ignoring
other endocytic pathways and assuming 50–150 coated pits
per cell (29), an average pit may represent 4–15 transporter
molecules. This implies each pit, on average, may handle
maximal 4–15 nanoparticles at a time. However, this could
be an overestimate given other endocytic pathways may
contribute as well. Regardless, our analysis indicates that
the endocytic components of an MDA-MB 231 cell can
Biophysical Journal 116, 347–359, January 22, 2019 355



FIGURE 8 Nanoparticle uptake by MDA-MB 231 cells. The top panels (scatter plots) show single-cell fluorescence of internalized nanoparticles (black)

for four different nanoparticle sizes (diameters): (A) 26 nm, (B) 47 nm, (C) 100 nm, and (D) 200 nm. In the panels, black and red points represent exper-

imental data and model prediction (after fitting), respectively. The solid lines represent the deterministic predictions (st ¼ 0). The experimental data (fluo-

rescence of cell-internalized particles) are presented after normalizing with a bead fluorescence. The model predictions are scaled with a constant value (free

parameter) to fit the normalized fluorescence data. The lower panels (histograms) show the cellular distribution of particle uptake for the four particle sizes. In

each panel, black, red, and green refer to the internalized particle fluorescence, the model predicted uptake, and control cell fluorescence, respectively. To see

this figure in color, go online.
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easily be saturated at high enough nanoparticle concentra-
tion in the solution, thus leading to a reaction-limited
condition.

In the fitting, for all particle sizes, we held k1 and kr fixed
at their nominal values (Table 2) because these two param-
eters are supposed to be cellular properties and hence inde-
pendent of the size of a particle. The fitting led to different
values for the parameter kf depending on the particle size
(Table 2). This parameter defines the intrinsic rate of parti-
cle capture at the cell plasma membrane. As seen in Table 2,
for the two intermediate particle sizes (47 and 100 nm), kf is
relatively small. Because different endocytic pathways pref-
erentially mediate uptake for different cargo sizes, it is not
surprising that this parameter varies with particle size. How-
TABLE 2 Parameter Values Estimated by Fitting the Model to

the MDA-MB 231 Cell Data

Particle Size (Diameter)

Parameter 26 nm 47 nm 100 nm 200 nm

hniðmm�2Þ 0.946a 0.946a 0.946a 0.946a

s2t 0.099a 0.071a 0.077a 0.116a

a �0.878a �0.792a �0.896a �0.811a

kf (mm
3 s�1) 0.495a 0.079a 0.160a 0.269a

kr (s
�1) 0.1 0.1 0.1 0.1

k1 (s
�1) 0.02 0.02 0.02 0.02

D (mm2/s) 16.80 9.29 4.29 2.18

The diffusion constants for different particle sizes were estimated from

Einstein-Stokes equation. Parameters n, kr, and k1 were constrained to

have the same values for all particle sizes.
aValues obtained from the fitting. Other values were held fixed.
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ever, a definite conclusion in this regard will require an
investigation of particle-size-specific involvement of
different endocytic pathways.

Note that a slight difference could be seen between our
model and the flow cytometer data in Fig. 8. The data re-
veals considerably larger uptake in a small fraction of cells
that fall outside the range of the theoretical values, as
evident in the scatter plots. This little discrepancy could
also be seen in the lower panels, in which the experimental
peaks are little more stretched to the right compared to the
theoretical peaks. It is possible that some unknown factors
make a small subpopulation significantly more capable.
Nevertheless, the model does not incorporate a mechanism
to account for these outliers and has limited ability to
explain this small discrepancy.
DISCUSSION

In this work, we provided a detailed analysis of nanoparticle
uptake at the single-cell level. In our analysis, we mainly
focused on two cellular attributes that may jointly determine
particle uptake: 1) cell size (r0), and 2) membrane expres-
sion (density) of transporter molecules (n). We have shown
that a simple scatter plot (Fig. 2) can dissect cellular hetero-
geneity in particle uptake arising from the joint contribu-
tions of these two attributes of a cell. The plot itself
reveals how uptake varies with cell size. On the other
hand, the noise in the plot reveals cell-to-cell variability
in n. Importantly, the noise, even though it originates from
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n, is tightly coupled to the diffusion barrier of the extracel-
lular medium (Fig. 6). We postulate that such noise in a flow
cytometer data may provide information about the level of
the transport barrier in the extracellular medium.

Our study shows no noticeable transport effect on particle
uptake in a cell-culture medium with water-like viscosity.
However, in a in vivo tissue or tumor, the transport effect
may be significant. The uptake of nanoparticles by a target
(cancer) cell in the tumor interstitial matrix may be gov-
erned by the poor effective diffusion in the presence of the
nonspecific cells, the dense network of collagen fibers,
and other biological barriers (30–32). In addition, the phys-
iological concentration of nanoparticles in a tissue or tumor
could be very small (33), which may also lead to transport-
controlled uptake.

Using flow cytometer FSC, we have characterized MDA-
MB 231 cell-size distribution, which was further confirmed
by analyzing microscopy images. The general notion is that
FSC-A may provide an unreliable estimate of cell sizes
because the measurement can be influenced by the refractive
index of the fluid, intracellular light-absorbing structures,
and the design of the FSC-measurement device itself
(34,35). Our analysis shows that FSC provides a slight
overestimate of cell size, but it can be pretty accurate in esti-
mating the cell size distribution. A slight shift of the FSC-
based cell-size distribution to the left showed an excellent
agreement with the actual cell-size distribution obtained
from microscopy image analysis (Fig. 1).

Byfitting ourmodel to flowcytometer data, we obtained an
accurate agreement between the model predictions and the
measured particle uptake in MDA-MB 231 cells. Our mea-
surement revealed significant noise in uptake (Fig. 8). The
data indicated almost a linear increase in the uptake rate
with increase in the cell size (radius). Our model-based anal-
ysis of the experimental data suggests that the number of
transporter molecules per unit cell membrane may decrease
with an increase in the cell size. This phenomenon may be
a defining characteristic of cell growth. Cells above a certain
size may struggle to maintain uptake through the plasma
membrane in proportion to their mass ðr30Þ, and this might
manifest itself in a reduction in transporter density (7–9).

In a recent work, Wang et al. (14) reported several find-
ings that are consistent with our experimental data and
analysis. The authors reported an approximately liner
correlation between nanoparticle uptake and cell radius
(Fig. 7, B and C in (14)). In the study, hMSCs were cultured
on micropatterened surfaces. The growth (size) of the cells
were controlled by the patterns of the surfaces. Consistent
with our work, the study also reported that larger cells dis-
played a reduced level of particle uptake per unit area of
the plasma membrane. This observation was attributed to
the difference in the stiffness of the cells. The study showed
that the larger cells were stiffer compared to their smaller
counterparts. Nevertheless, a direct evidence was not estab-
lished that the stiffness was indeed the reason behind the
cell-size-dependent difference in the particle flux across
the cell membrane. Our work provides a new perspective
to explain these observations. A larger micropatterned cell
with an increased surface area may imply a reduced number
of transporter molecules per unit area of the plasma mem-
brane. Therefore, the decrease in particle flux may reflect
a reduced endocytic activity per unit area of a larger cell.
It should be noted that, in our experiments, all cells were
grown in a common identical environment (cell-culture me-
dium) unlike in (14), in which micropatterened surfaces
were used to direct the cell growth. Our cell sizes reflect
the natural heterogeneity in cell growth under a common
growth medium. Therefore, although our observations are
similar, the uptake behaviors of our cells may not be attrib-
utable to their differential stiffness. It would be, however,
interesting to investigate whether the naturally grown cells
also display similar size-dependent stiffness like the micro-
patterned cells reported in (14).

Although it was not our focus to study the physicochem-
ical attributes of nanoparticles, our experiments with MDA-
MB 231 cells involved nanoparticles of four different sizes
(Fig. 8). Our interest in this case was to see if the uptake
characteristics could vary based on the size of the particles.
Our data revealed no significant qualitative differences
among the particles. For all four particle sizes, our experi-
mental data revealed nearly linear correlation between cell
size and the amount of particle uptake. The model was
also able to accurately describe the uptake data associated
with all four particles. However, from the fitting, the
intrinsic rate of particle capture (kf) appeared to be different
depending on the particle size. This could be due to the fact
that particles of different sizes are differentially handled by
the endocytic pathways.

Particle uptake at the cellular level is governed by many
factors associated with the highly complex endocytic and
intracellular trafficking pathways as reviewed in (26). In addi-
tion, the diffusion of the transporter molecule or particle-spe-
cific receptor proteins in the plasma membrane can influence
particle uptake (36). However, in the absence of cell type-spe-
cific quantitative information, incorporation of such details
entails more parameters and associated uncertainties in a
model. Therefore, the net contributions from these individual
factors are often homogenized into an effective rate of uptake
and the entire uptake process can be simplified into a reaction-
diffusion problem (33,37–41). In our study, we also ignored
the individual factors that are associated with distinct path-
ways. Instead, we divided the uptake process into two steps.
The first step is associated with the diffusion of particles
through the external medium, and the second step is particle
uptake by a generic transporter molecule in the cell mem-
brane. Incorporation of the detailed molecular mechanisms
and individual factors associated with various endocytic
mechanisms is beyond the scope of this study.

It should be noted that our model ignores convective
transport of nanoparticles. We consider pure diffusion in
Biophysical Journal 116, 347–359, January 22, 2019 357



FIGURE 9 A possible relationship between cellular uptake of external

resources and cell growth. Top: common perception about how cellular up-

take might be related to cell size. Bottom: a potential regulation of cell size

based on a growing cell’s ability to avail the external resources. An arrow

represents a positive influence, and a blunt arrow indicates a negative

influence.
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our system, which is typical for a cell-culture medium. Also,
in the dense interstitial matrix of a tumor, convection is usu-
ally poor, whereas diffusion serves as the dominant transport
mechanism (32). The single-cell nanoparticle uptake char-
acteristics can be more complex in the presence of an advec-
tive transport in a biological tissue. A more complex model
and experimental investigation are necessary to determine
how reaction, diffusion, and advection together may deter-
mine cell-size-dependent nanoparticle uptake in in vivo tis-
sue conditions.

An interesting extension of our study might be to investi-
gate whether the uptake of other external resources,
including various nutrients, follows similar behavior
described in this study. One of the core findings of this
work, that the particle flux (uptake per unit cell surface
area) might decrease in a growing cell, provides an inter-
esting possibility. If such behavior applies to some other
molecules necessary for cell growth, it may work as a feed-
back mechanism for limiting cell sizes in different growth
environments, as depicted in Fig. 9.
CONCLUSIONS

Our study emphasizes understanding cellular uptake pro-
cesses at the single-cell level. The analysis shows that the
rate of nanoparticle uptake by single cells is tightly coupled
358 Biophysical Journal 116, 347–359, January 22, 2019
to the cell size as well as the transport barrier of the extra-
cellular medium. Using model predictions and quantitative
single-cell analysis, we have shown how the extracellular
diffusion and cellular heterogeneities in cell size and endo-
cytic capacities shape the overall nanoparticle uptake
behavior of single cells. Although the predictions and ana-
lyses provided are in the context of nanoparticle uptake, it
may be possible to extend the findings to the cellular uptake
of different nutrients and biomolecules as well. However,
further investigations are necessary to confirm such a
hypothesis.
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DERIVATION OF THE REACTION-DIFFUSION MODEL
In the model, particles are reversibly captured by a cell-surface transporter. The transporter represents a generic molecule
accounting for all different endocytic structures in the cell plasma membrane. Each transporter can handle one particle at a
time. A particle captured by a transporter may dissociate and return to the solution, or it may be taken inside the cell through
endocytosis. These steps are described by the following reaction scheme:

Particle (solution) + Transporter
k f

kr
Complex

k1 Transporter + Particle (internalized)

In the above scheme, the three reactions are associated with the following three rate constants: k f is associated with the
forward reaction that leads to the formation of the particle-transporter complex, kr is associated with the reverse reaction that
leads to dissociation of the complex, and k1 is associated with the reaction that leads to particle endocytosis and regeneration of
the transporter. The constant Km is the Michaelis-Menten constant and is given by Eq. 1:

Km =
kr + k1

k f
(1)

At steady-state condition, the flux of nanoparticles across the cell membrane can be described by the Michaelis-Menten rate
law:

J = Jm
C0

Km + C0
(2)

Here, C0 represents nanoparticle concentration at the solution-cell membrane interface, and Jm = k1n represents maximum flux
when there are n transporter molecules per unit area of the cell membrane.

For convenience, we rewrite Eq. 2 in dimensionless form:

J∗ =
C∗0

1 + C∗0
(3)

where C∗0 =
C0
Km

and J∗ = J
Jm

. Further, we consider a spherical cell of radius r0 and define dimensionless distance r∗ = r
r0

such
that r∗ = 1 at the cell surface.

The steady state concentration profile around a cell can be given by:

∇ · (D∇C∗) = 0 (4)

where C∗ = C
Km

is the dimensionless nanoparticle concentration at r∗ > 1. For spherical coordinates Eq. 4 becomes:

d
dr∗

(
r∗2

dC∗

dr∗

)
= 0 (5)

where r∗ is the dimensionless radius r∗ = r
r0
. Due to the symmetry of the spherical geometry, we assume no gradient in C∗ in

the θ and φ directions. Applying the two boundary conditions for the system:

C∗ = C∗b at r∗ →∞ (6)

C∗ = C∗0 at r∗ = 1 (7)



where C∗
b
= Cb/Km is the dimensionless bulk nanoparticle concentration, we get the following solution:

C∗
b
− C∗

C∗
b
− C∗0

=
1
r∗

(8)

The particle flux is given Fick’s first law:
J = −D∇C (9)

Thus,
J = −D

∂C
∂r

���
r=r0
=

D
r0
(Cb − C0) (10)

which can be brought back to the dimensionless form:

J∗ =
DKm

Jmr0
(C∗b − C∗0 ) = Ψ(C

∗
b − C∗0 ) (11)

where,
Ψ =

DKm

Jmr0
(12)

From Eq.11 we get the total particle uptake rate by multiplying flux with cell surface area:

Ûm = 4πr2
0 JmΨ(C∗b − C∗0 ) = 4πr0DKm(C∗b − C∗0 ) = k(C∗b − C∗0 ), (13)

where k = 4πr0DKm.
Mass conservation requires that the two fluxes in Eq. 3 and Eq. 11 be equal. Thus by equating the two, we obtain the

following quadratic equation:

C∗0
2
+

( 1
Ψ
+ 1 − C∗b

)
C∗0 − C∗b = 0 (14)

Solving for the nanoparticle concentration at the cell boundary we get:

C∗0 = −
1
2

(
1
Ψ
+ 1 − C∗b

)
+

1
2

√(
1
Ψ
+ 1 − C∗

b

)2
+ 4C∗

b
(15)

We then substitute C∗0 from Eq.15 in Eq.13 to get the total particle uptake rate by the entire cell,

Ûm = k
©



«

C∗b +
1
2

(

1
Ψ
+ 1 − C∗b

)

− 1
2

√

(

1
Ψ
+ 1 − C∗

b

)2
+ 4C∗

b

ª

®

¬

(16)

When considering variation in mean transporter density, ñ, with cell size, we substitute the following equation:

ñ
〈n〉 =

(
r0
〈r0〉

)α
(17)

into Ψ to get:
Ψ =

DKm

Jmr0
=

DKm

k1ñr0
=

DKm

k1〈n〉
(

r0
〈r0 〉

)α
r0

(18)
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PYTHON CODE IMPLEMENTING THE REACTION-DIFFUSION MODEL  

Use the following Python code to create a Python file, such as model.py. Execute the Python file, which 
will generate Fig. 5B of the paper.  

 

#!/usr/bin/python 

import matplotlib 

matplotlib.use("TkAgg") 

import matplotlib.pyplot as plt 

import matplotlib.mlab as mlab 

import matplotlib.ticker as mtick  

import numpy as np 

import random 

import math  

 

from pylab import genfromtxt; 

font = {'family' : 'serif', 

        'weight' : 'normal', 

        'size'   : 20} 

 

matplotlib.rc('font', **font) 

plt.rc('axes', labelsize=22)  

 

#mat0 = genfromtxt("L_molecule_avg_dist7.dat"); 

#mat1 = genfromtxt("L_molecule_avg_dist8.dat"); 

#mat2 = genfromtxt("L_molecule_avg_dist9.dat"); 

 

 

 

Fs = 10000 



f = 1  

sample = Fs 

 

a = 0.05 # particle radius in micron  

w = 10.0 # ug/mL solution; nanoparticle solution on weight-basis  

spg = 1.06 # Polystyrene (nanoparticle material) specific gravity.  

m_particle = (4.0/3)*(np.pi)*((a/10000)**3)*1.00*(10**6) # Mass of a 
nanoparticle in microggram 

Cb = (w/(10**(12)))/m_particle # Bulk particle concentration; number 
of particles per um^3 of the bulk solution    

 

  

r0 = 10.0 # Mean cell size (radius)  

mur = np.log(r0) # Mean cell size (radius) in log scale  

sigmar = 0.5 # Standard deviation for cell size distribution  

 

  

KB = 1.38064852e-23 # Boltzmann constant 

T = 298.15         # Temperature 

nu = 1e-3          # Water viscosity, Pa.s  

  

D = (KB * T / (6 * np.pi * nu * a * 1e-6))*1e12  # particle 
diffusivity micron^2/s 

 

 

kf = 0.1 # Goldstein, intrinsic on rate 

nmu0 = 0.119 # Number of coated pits per unit surface area (150 in a 
cell of 10 micron radius) 

nstd = 0.4 # standard deviation - cell -to cell variability in surface 
density of pit  

kr = 0.1 # Mean residence time of a particle in a pit is 10 second  



k1 = 0.02  # Mean lifetime of a pit is 50 seconds; this is inverse of 
the pit lifetime   

 

#npit = np.exp(np.random.normal(np.log(nmu), nstd, sample))  

  

#y = 4 * np.pi * r * D * r * km / (D + r * km)  

#y = 4 * np.pi * r * r * km  

 

 

 

def evaluate_f2(*vartuple):  

    kf = vartuple[0] 

    kr = vartuple[1] 

    k1 = vartuple[2]   

    n =  vartuple[3] 

    r =  vartuple[4] 

    Cb = vartuple[5] 

    D = vartuple[6]   

 

    Jm = k1 * n 

     

    Km = (kr + k1)/kf  

    Cb = Cb/Km # dimensionless bulk concentration  

 

    Psi = D*Km / (Jm * r) 

    Zet = ((1 / Psi) + 1 - Cb)  

    C0 = -Zet/2 + (math.sqrt(Zet*Zet + 4*Cb))/2 

 

    k = 4 * np.pi * r * D * Km 

 

    m = k * (Cb - C0)  



    return(m);  

     

 

n_elem = 6;  

#z1 = [[0 for x in range(sample)] for y in range(n_elem)]  

 

#z = [[0 for xx in range (sample)] for yy in range(5)]  

 

y = np.empty([n_elem, sample]) 

 

factor = np.array([1, 0.1, 0.03, 0.01, 0.003, 0.001])  

colors = np.array(['k', 'orange', 'g', 'r', 'c', 'b'])   

plots  = np.empty([n_elem])  

alpha = np.array([1, 0.5, 0, -0.5, -1, -2])  

  

marker_size = 0.5 

  

for j in range(n_elem): 

    csize = np.random.normal(mur, sigmar, sample)   

    x = np.exp(csize) 

    for i in range(sample):  

        r = x[i] 

        nmu = nmu0*((r/r0)**(alpha[2]))  

        ntot = np.exp(np.random.normal(np.log(nmu), nstd))  

        val1 = evaluate_f2(kf, kr, k1, ntot, r, Cb, factor[j]*D)   

 

        Dmean = D 

        rmean = r0 

        kmeanCb = 4*(np.pi)*rmean*Dmean*Cb # k*(Cb*) = 
4*(pi)*r_0D*Km*(Cb/Km)  = 4*(pi)*r_0*D*Cb 

         



        y[j,i] = val1/kmeanCb # Normalized by k*Cb*   

     

    plt.scatter(x, y[j,:], color= colors[j], marker= ".", s = 
marker_size) 

    #plt.plot(x, y[j,:], color= colors[j]) 

 

# x-axis label 

plt.xlabel("Cell radius ($\mu$m)") 

# frequency label 

#plt.ylabel("Uptake ($m/\~{k}C_b$)") 

plt.ylabel("Uptake") 

# plot title 

#plt.title('My scatter plot!') 

# showing legend 

leg = plt.legend() 

leg.get_frame().set_alpha(0.0)  

#plt.xscale("log");  

plt.xlim(1,20);  

plt.ylim(0,0.012);  

 

plt.tick_params(direction='in', length=6, width=2, colors='k', 

               grid_color='r', grid_alpha=0.5, pad=10) 

 

plt.gca().yaxis.set_major_formatter(mtick.FormatStrFormatter('%0.1g')) 

plt.tight_layout() 

plt.savefig('Fig5B.png', format='png', dpi=1500)  

# function to show the plot 

plt.show() 
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