**Biophysical Journal, Volume 116** 

# **Supplemental Information**

# Molecular Mechanisms of Macular Degeneration Associated with the Complement Factor H Y402H Mutation

**Reed E.S. Harrison and Dimitrios Morikis** 

### Molecular Mechanisms of Macular Degeneration Associated with the Complement Factor H Y402H Mutation

#### Reed E. S. Harrison, Dimitrios Morikis

Department of Bioengineering, University of California, Riverside, California, United States of America

## SUPPLEMENTARY TABLES AND FIGURES

**Table S1:** Significant coevolved pairs in SCR7 with minimum distances between heavy atoms of residues measured from SCR7<sup>Y402</sup> (PDB: 2jgx) and SCR7<sup>H402</sup> (PDB: 2uwn).

| Position<br>1 | Position 2 | DCA<br>Score | Residue<br>1 | Residue<br>2 | p-value | Minimum<br>distance (Å) |
|---------------|------------|--------------|--------------|--------------|---------|-------------------------|
| 24            | 31         | 1.01         | 429          | 438          | 4.0E-08 | 5.53                    |
| 2             | 4          | 0.95         | 394          | 397          | 2.5E-07 | 4.53                    |
| 5             | 9          | 0.91         | 402          | 412          | 8.8E-07 | 9.31                    |
| 27            | 28         | 0.75         | 432          | 434          | 4.8E-05 | 6.43                    |
| 2             | 3          | 0.64         | 394          | 395          | 6.0E-04 | 5.40                    |
| 20            | 21         | 0.64         | 424          | 425          | 6.7E-04 | 5.40                    |
| 1             | 4          | 0.62         | 389          | 397          | 8.4E-04 | 17.14                   |
| 16            | 17         | 0.59         | 419          | 420          | 1.6E-03 | 4.48                    |
| 19            | 21         | 0.57         | 422          | 425          | 2.2E-03 | 5.74                    |
| 8             | 23         | 0.57         | 411          | 427          | 2.3E-03 | 9.60                    |
| 13            | 26         | 0.57         | 416          | 431          | 2.5E-03 | 17.91                   |
| 8             | 25         | 0.57         | 411          | 430          | 2.6E-03 | 5.29                    |
| 10            | 23         | 0.53         | 413          | 427          | 5.0E-03 | 5.36                    |
| 32            | 34         | 0.52         | 440          | 442          | 6.2E-03 | 7.08                    |
| 3             | 4          | 0.51         | 395          | 397          | 7.3E-03 | 5.89                    |
| 13            | 30         | 0.50         | 416          | 436          | 8.7E-03 | 14.47                   |
| 11            | 32         | 0.49         | 414          | 440          | 9.8E-03 | 7.45                    |



**Figure S1**: Joint distribution for DCA scores and minimum distance of separation for heavy atoms between residue pairs. The cutoff distance of 6 Å is shown by a red line, and coevolutionary couplings with scores in the top 1% from a Gaussian distribution are shown with red circles. As shown in the above image, significant coevolved pairs (DCA scores in the top 1%) are more likely to be true contacts in FH SCR7.



**Figure S2**: Structural representations of (A)  $SCR7^{H402}$  from NMR (PDB:2jgx) and (B)  $SCR7^{Y402}$  from X-ray crystallography (PDB: 2uwn) are shown with residues from the V429-P438 coevolved pair displayed. In both structures, a contact is observed between members of this coevolved pair



**Figure S3**: Boxplots for predicted  $C_{\alpha}$  chemical shifts from representative structures from Markov chains for SCR7<sup>Y402</sup> (top) and SCR7<sup>H402</sup> (bottom) are displayed above. Expected chemical shifts from the Markov chains for each SCR7 isoform are marked by blue circles, while predicted shifts for reference structures 2jgx and 2uwn from the PDB are marked by green circles. Known chemical shifts from experiments are annotated by red circles.



**Figure S4**: Boxplots for predicted  $C_{\beta}$  chemical shifts from representative structures from Markov chains for SCR7<sup>Y402</sup> (top) and SCR7<sup>H402</sup> (bottom) are displayed above. Expected chemical shifts from the Markov chains for each SCR7 isoform are marked by blue circles, while predicted shifts for reference structures 2jgx and 2uwn from the PDB are marked by green circles. Known chemical shifts from experiments are annotated by red circles.





**Figure S6**: Free energy landscapes for a two-dimensional representation of sidechain orientations for residues (A) [Y/H]402 and (B) R404 are shown for SCR7 isoforms, where a larger value for the logarithm of the number of observations in a bin indicates a lower free energy. To describe the orientation of sidechains, position vectors are found from coordinates of atom NE2 in H402, OH in Y402, and CZ in R404 and decomposed into two dimensions with principle component analysis. Regions of the landscape are annotated with circles to indicate the side chain orientations in references structures for SCR7<sup>Y402</sup> (2JGX) and SCR7<sup>H402</sup> (2UWN) and for states from each isoform where the maximum rate-constant for association with heparin is observed (Y402 state 47, H402 state 64).



**Figure S7**: Free energy landscapes for a two-dimensional representation of sidechain orientations for residues Y390, K405, F406, K410, S411, I412, D413, and V414 are shown for SCR7 isoforms, where a larger value for the logarithm of the number of observations in a bin indicates a lower free energy. To describe the orientation of sidechains, position vectors are found from coordinates of panel labels and decomposed into two dimensions with principle component analysis. For these residues, free energy landscapes between SCR7 isoforms are nearly identical.



**Figure S8**: Associations between orientations of side chains for residues [Y/H]402 and R404 and predicted association rate constants. The PC distance from  $G_2^{402}$  is the distance (in PC space) from energy minimum 2 for the side-chain orientation of [Y/H]402. The PC distance from  $G_4^{404}$  is the distance (in PC space) from energy minimum 4 for the side-chain orientation of R404. Only the orientation of R404 is strongly correlated with the predicted association rate constant.



**Figure S9**: Dynamic cross-correlation matrices (DCCM) for (A) SCR7<sup>Y402</sup> and (B) SCR7<sup>H402</sup> side-chains. The lower triangle of the DCCM shows the mean values from leave-one out crossvalidation of all trajectories (100 ps time step) for a single SCR7 isoform, while the upper triangle shows mean DCCM differences between isoforms. In comparing DCCM matrices between isoforms, the other isoform is always subtracted from the current isoform being analyzed. For example, the upper triangle in panel A is calculated by subtracting the DCCM for SCR7<sup>H402</sup> from the DCCM for SCR7<sup>Y402</sup>. Note how R404 anti-correlated with H402 but correlated with Y402.



**Figure S10**: Coarse grain (metastable) states with associated probabilities from preliminary Markov models of SCR6-8 conformational dynamics.  $SCR7^{Y402}$  is colored purple, and  $SCR7^{H402}$  is color orange. Only the side chain for position 402 is displayed for multiple samples from each metastable state. Models were based on three 100 ns simulations for each SCR6-8 isoform and constructed similarly to the SCR7 Markov chain. These results suggest that we can recapitulate the behavior of Y402 forming of a coevolved contact with I412 in SCR6-8<sup>Y402</sup> as shown in metastable states 0 and 2 with the red circle. These data were not used in the SCR7 study since we required more data to construct a high quality model.



**Figure S11**: Timescales calculated from the probability transition matrices from Markov chains for SCR7<sup>Y402</sup> (top) and SCR7<sup>H402</sup> (bottom) are plotted versus lag time used to construct the Markov chain. To satisfy the Markov property, a lag time should be selected where the timescale does not change with increasing values of the timescale. Different timescale responses are colored uniquely, and one step corresponds to 100 ps. We selected a lag time of 200 steps (20 ns).



**Figure S12**: Chapman-Kolmogorov validation of Markov chains for SCR7<sup>Y402</sup> (top) and SCR7<sup>H402</sup> (bottom) are show above. These panels suggest the probabilities of transitioning between metastable states by propagation of the Markov chain reproduces (within a 95% confidence interval) probabilities directly calculated from observed data. One step corresponds to 100 ps, and each subpanel describes the probabilities of a particular transition calculated at multiple lag times.

#### **SIMULATION INPUT FILES (Gromacs)**

ion.mdp - solvation constraints = h-bonds cutoff-scheme = Verlet vdwtype = cutoff vdw-modifier = force-switch rlist = 1.2 rvdw = 1.2 rvdw-switch = 1.0 coulombtype = PME rcoulomb = 1.2 DispCorr = no

#### minim.mdp - minimization

; minim.mdp - used as input into grompp to generate em.tpr integrator = steep ; Algorithm (steep = steepest descent minimization) emtol = 1000.0 ; Stop minimization when the maximum force < 1000.0 kJ/mol/nm emstep = 0.01 ; Energy step size nsteps = 50000 ; Maximum number of (minimization) steps to perform

; Parameters describing how to find the neighbors of each atom and how to calculate the interactions constraints = h-bonds cutoff-scheme = Verlet vdwtype = cutoff vdw-modifier = force-switch rlist = 1.2 rvdw = 1.2 rvdw-switch = 1.0 coulombtype = PME rcoulomb = 1.2 DispCorr = no

| nvt | <b>.mdp</b> – NV    | T equili                     | bration   |          |                                                     |  |
|-----|---------------------|------------------------------|-----------|----------|-----------------------------------------------------|--|
|     | title               | = fh ccp7 h402 equilibration |           |          |                                                     |  |
|     | define              |                              | = -DP0    | OSRES    | ; position restrain the protein                     |  |
|     | ; Run paran         | neters                       |           |          |                                                     |  |
|     | integrator          | = md                         |           | ; leap-f | frog integrator                                     |  |
|     | nsteps              |                              | = 5000    | 0        | ; 2 * 50000 = 100 ps                                |  |
|     | dt                  | = 0.002                      | 2         | ; 2 fs   |                                                     |  |
|     | ; Output co         | ntrol                        |           |          |                                                     |  |
|     | nstxout             |                              | = 500     |          | ; save coordinates every 1.0 ps                     |  |
|     | nstvout             |                              | = 500     |          | ; save velocities every 1.0 ps                      |  |
|     | nstenergy           | = 500                        |           | ; save e | energies every 1.0 ps                               |  |
|     | nstlog              |                              | = 500     |          | ; update log file every 1.0 ps                      |  |
|     | ; Bond para         | ameters                      |           |          |                                                     |  |
|     | continuatio         | n                            |           | = no     | ; first dynamics run                                |  |
|     | constraint_         | algorith                     | m =       | lincs    | ; holonomic constraints                             |  |
|     | constraints         |                              | = all-bo  | onds     | ; all bonds (even heavy atom-H bonds) constrained   |  |
|     | lincs_iter          |                              | = 1       |          | ; accuracy of LINCS                                 |  |
|     | lincs_order         |                              | = 4       |          | ; also related to accuracy                          |  |
|     | ; Neighborsearching |                              |           |          |                                                     |  |
|     | cutoff-sche         | me = V                       | /erlet    |          |                                                     |  |
|     | ns_type             |                              | = gr      | id       | ; search neighboring grid cells                     |  |
|     | nstlist             |                              | = 10      | )        | ; 20 fs, largely irrelevant with Verlet             |  |
|     | rlist $= 1.2$       |                              |           |          |                                                     |  |
|     | rcoulomb            | =                            | 1.2       |          | ; short-range electrostatic cutoff (in nm)          |  |
|     | rvdw                |                              | = 1.2     | 2        | ; short-range van der Waals cutoff (in nm)          |  |
|     | rvdw-swite          | h =                          | = 1.0     |          |                                                     |  |
|     | vdwtype             | = (                          | cutoff    |          |                                                     |  |
|     | vdw-modif           | ier =                        | = force-s | switch   |                                                     |  |
|     | ; Electrosta        | tics                         |           |          |                                                     |  |
|     | coulombtyp          | pe                           | = PN      | ЛЕ       | ; Particle Mesh Ewald for long-range electrostatics |  |

| pme_order                      | = 4          |           | ; cubic interpol | ation                                         |
|--------------------------------|--------------|-----------|------------------|-----------------------------------------------|
| fourierspacin                  | g            | = 0.16    | ; grid s         | pacing for FFT                                |
| ; Temperature coupling is on   |              |           |                  |                                               |
| tcoupl                         |              | = V-resc  | ale              | ; modified Berendsen thermostat               |
| tc-grps                        |              | = Protein | n Non-Protein    | ; two coupling groups - more accurate         |
| tau_t                          |              | = 0.1     | 0.1 ; tim        | ne constant, in ps                            |
| ref_t                          |              | = 300     | 300 ; re         | ference temperature, one for each group, in K |
| ; Pressure cou                 | upling       | is off    |                  |                                               |
| pcoupl                         |              | = no      | ; no pre         | essure coupling in NVT                        |
| ; Periodic boundary conditions |              |           |                  |                                               |
| pbc =                          | = xyz        |           | ; <b>3-D</b> PBC |                                               |
| ; Dispersion correction        |              |           |                  |                                               |
| DispCorr =                     | = no         |           | ; account for cu | tt-off vdW scheme                             |
| ; Velocity generation          |              |           |                  |                                               |
| gen_vel                        |              | = yes     | ; assigr         | velocities from Maxwell distribution          |
| gen_temp =                     | = 300        | •         | ; temperature fo | or Maxwell distribution                       |
| gen_seed =                     | = <b>-</b> 1 |           | ; generate a ran | dom seed                                      |

# **npt.mdp** – NPT equilibration

| title             | = fh ccp7 h402 eq | uilibration                         |  |  |  |
|-------------------|-------------------|-------------------------------------|--|--|--|
| define            | = -DPOSF          | RES ; position restrain the protein |  |  |  |
| ; Run parameters  |                   |                                     |  |  |  |
| integrator        | = md ; 1          | eap-frog integrator                 |  |  |  |
| nsteps            | = 50000           | ; 2 * 50000 = 100 ps                |  |  |  |
| dt                | = 0.002 ; 2       | 2 fs                                |  |  |  |
| ; Output control  |                   |                                     |  |  |  |
| nstxout           | = 500             | ; save coordinates every 1.0 ps     |  |  |  |
| nstvout           | = 500             | ; save velocities every 1.0 ps      |  |  |  |
| nstenergy         | = 500 ; s         | ave energies every 1.0 ps           |  |  |  |
| nstlog            | = 500             | ; update log file every 1.0 ps      |  |  |  |
| ; Bond parameters |                   |                                     |  |  |  |

| continuation       | = yes          | ; Restarting after NVT                              |
|--------------------|----------------|-----------------------------------------------------|
| constraint_algorit | hm = lincs     | ; holonomic constraints                             |
| constraints        | = all-bonds    | ; all bonds (even heavy atom-H bonds) constrained   |
| lincs_iter         | = 1            | ; accuracy of LINCS                                 |
| lincs_order        | = 4            | ; also related to accuracy                          |
| ; Neighborsearchi  | ng             |                                                     |
| cutoff-scheme      | = Verlet       |                                                     |
| ns_type            | = grid         | ; search neighboring grid cells                     |
| nstlist            | = 10 ; 2       | 0 fs, largely irrelevant with Verlet scheme         |
| rlist = 1.2        | 2              |                                                     |
| rcoulomb =         | = 1.2          | ; short-range electrostatic cutoff (in nm)          |
| rvdw               | = 1.2          | ; short-range van der Waals cutoff (in nm)          |
| rvdw-switch        | = 1.0          |                                                     |
| vdwtype =          | = cutoff       |                                                     |
| vdw-modifier       | = force-switch |                                                     |
| ; Electrostatics   |                |                                                     |
| coulombtype        | = PME          | ; Particle Mesh Ewald for long-range electrostatics |
| pme_order = 4      | ; c            | ubic interpolation                                  |
| fourierspacing     | = 0.16         | ; grid spacing for FFT                              |
| ; Temperature con  | upling is on   |                                                     |
| tcoupl             | = V-rescale    | ; modified Berendsen thermostat                     |
| tc-grps            | = Protein Not  | n-Protein ; two coupling groups - more accurate     |
| tau_t              | = 0.1 0.1      | ; time constant, in ps                              |
| ref_t              | = 300 300      | ; reference temperature, one for each group, in K   |
| ; Pressure couplin | ig is on       |                                                     |
| pcoupl             | = Parrin       | ello-Rahman ; Pressure coupling on in NPT           |
| pcoupltype         | = isotropic    | ; uniform scaling of box vectors                    |
| tau_p              | = 2.0          | ; time constant, in ps                              |
| ref_p              | = 1.0          | ; reference pressure, in bar                        |
| compressibility    | = 4.5e-5       | ; isothermal compressibility of water, bar^-1       |
| refcoord_scaling   | = com          |                                                     |

```
; Periodic boundary conditions
    pbc
               = xyz
                                ; 3-D PBC
    ; Dispersion correction
    DispCorr = no
                                ; account for cut-off vdW scheme
    ; Velocity generation
                                                   Velocity
                                                                                                     off
    gen vel
                        = no
                                        ;
                                                                     generation
                                                                                          is
md.mdp – NPT production run
               = fh ccp7 h402 production run 1us
    title
    ; Run parameters
    integrator = md
                               ; leap-frog integrator
                                       2 \times 500000 = 1000 \text{ ps} (1 \text{ ns})
                        = 500000000
    nsteps
    dt
                  = 0.002
                                        ; 2 fs
    ; Output control
    nstxout
                            = 5000
                                                ; save coordinates every 10.0 ps
                                                ; save velocities every 10.0 ps
    nstvout
                            = 5000
    nstenergy
                     = 5000
                                        ; save energies every 10.0 ps
                            = 5000
    nstlog
                                                ; update log file every 10.0 ps
    nstxout-compressed
                           = 5000
                                        ; save compressed coordinates every 10.0 ps
                        ; nstxout-compressed replaces nstxtcout
    compressed-x-grps
                          = System
                                        ; replaces xtc-grps
    ; Bond parameters
    continuation
                            = yes
                                                ; Restarting after NPT
    constraint algorithm = lincs
                                                ; holonomic constraints
    constraints
                     = h-bonds ; all bonds (even heavy atom-H bonds) constrained
    lincs iter
                    = 1
                                          ; accuracy of LINCS
    lincs order
                     = 4
                                          ; also related to accuracy
    ; Neighborsearching
    cutoff-scheme
                      = Verlet
                                                ; search neighboring grid cells
    ns type
                          = grid
    nstlist
                          = 10
                                        ; 20 fs, largely irrelevant with Verlet scheme
                = 1.2
    rlist
```

| rcoulomb                                                | = 1.2                               | ; short-range electrostatic cutoff (in nm)          |  |  |  |  |
|---------------------------------------------------------|-------------------------------------|-----------------------------------------------------|--|--|--|--|
| rvdw                                                    | = 1.2                               | ; short-range van der Waals cutoff (in nm)          |  |  |  |  |
| rvdw-switch                                             | = 1.0                               |                                                     |  |  |  |  |
| vdwtype                                                 | = cutoff                            |                                                     |  |  |  |  |
| vdw-modifier                                            | = force-switch                      |                                                     |  |  |  |  |
| ; Electrostatics                                        |                                     |                                                     |  |  |  |  |
| coulombtype                                             | = PME                               | ; Particle Mesh Ewald for long-range electrostatics |  |  |  |  |
| pme_order =                                             | pme_order = 4 ; cubic interpolation |                                                     |  |  |  |  |
| fourierspacing                                          | = 0.16                              | ; grid spacing for FFT                              |  |  |  |  |
| ; Temperature co                                        | oupling is on                       |                                                     |  |  |  |  |
| tcoupl                                                  | = V-rescale                         | ; modified Berendsen thermostat                     |  |  |  |  |
| tc-grps                                                 | = Protein Non-                      | Protein ; two coupling groups - more accurate       |  |  |  |  |
| tau_t                                                   | = 0.1 0.1                           | ; time constant, in ps                              |  |  |  |  |
| ref_t                                                   | = 300 300                           | ; reference temperature, one for each group, in K   |  |  |  |  |
| ; Pressure couplin                                      | ng is on                            |                                                     |  |  |  |  |
| pcoupl                                                  | = Parrinel                          | o-Rahman ; Pressure coupling on in NPT              |  |  |  |  |
| pcoupltype = isotropic ; uniform scaling of box vectors |                                     |                                                     |  |  |  |  |
| tau_p                                                   | = 2.0                               | ; time constant, in ps                              |  |  |  |  |
| ref_p                                                   | = 1.0                               | ; reference pressure, in bar                        |  |  |  |  |
| compressibility                                         | = 4.5e-5                            | ; isothermal compressibility of water, bar^-1       |  |  |  |  |
| ; Periodic boundary conditions                          |                                     |                                                     |  |  |  |  |
| pbc = xy                                                | z ; 3-D P                           | BC                                                  |  |  |  |  |
| ; Dispersion correction                                 |                                     |                                                     |  |  |  |  |
| DispCorr = No                                           | ; accou                             | nt for cut-off vdW scheme                           |  |  |  |  |
| ; Velocity generation                                   |                                     |                                                     |  |  |  |  |
| gen_vel                                                 | = no                                | ; Velocity generation is off                        |  |  |  |  |