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ABSTRACT The relation between thermal fluctuations and the mechanical response of a free membrane has been explored in
great detail, both theoretically and experimentally. However, understanding this relationship for membranes locally pinned by
proteins is significantly more challenging. Given that the coupling of the membrane to the cell cytoskeleton, to the extracellular
matrix, and to other internal structures is crucial for the regulation of a number of cellular processes, understanding the role of the
pinning is of great interest. In this manuscript, we consider a single protein (elastic spring of a finite rest length) pinning a mem-
brane modeled in the Monge gauge. First, we determine the Green’s function for the system and complement this approach by
the calculation of the mode-coupling coefficients for the plane wave expansion and the orthonormal fluctuation modes, in turn
building a set of tools for numerical and analytic studies of a pinnedmembrane. Furthermore, we explore static correlations of the
free and the pinned membrane, as well as the membrane shape, showing that all three are mutually interdependent and have an
identical long-range behavior characterized by the correlation length. Interestingly, the latter displays a nonmonotonic behavior
as a function of membrane tension. Importantly, exploiting these relations allows for the experimental determination of the elastic
parameters of the pinning. Last but not least, we calculate the interaction potential between two pinning sites and show that even
in the absence of the membrane deformation, the pinnings will be subject to an attractive force because of changes in membrane
fluctuations.
INTRODUCTION
Most living cells and a number of their internal organelles
are bounded by membranes, which are composed primarily
of phospholipids and proteins. The latter, in selected cases,
are designed to interact with neighboring structures, thereby
pinning the membrane. As such, protein complexes become
spatially coordinated, which has important consequences
for the structural integrity of cells. A typical instance of
such pinning is found in red blood cells, in which the plasma
membrane couples to the underlying spectrin network (1),
although in this case, additional forces associated with the
soft scaffold will play a role. Another example is the pinning
of the membrane to stiffer scaffolds such as actin. This af-
fects a number of cellular functions (2) because it allows
for the transmission of force (3), for example, during cell
adhesion. In this case, proteins such as integrins or cadherins
on the plasma membrane associate into supramolecular
ensembles, binding the membrane to the cytoskeleton in
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the cell interior and, simultaneously, to the extracellular
matrix or another cell (4). Similarly, inside the cell—for
example, on the nuclear envelope—the cytoskeleton again
couples to the external nuclear membrane by nesprins,
whereas toward the interior, protein p58 serves as a mem-
brane attachment site for the nuclear lamina by acting as a
specific receptor for lamin B (5). All these couplings regu-
late the mechanical state of the cell, which in turn affects
the cell motility, division rate, proliferation, mechanosensi-
tivity, and a number of other processes (4). Hence, under-
standing the principles of protein-mediated interactions
between membranes and the surrounding scaffolds is one
of the key problems in mechanobiology.

Modeling pinned membranes—be it the adhesion process
(6–8), in the context of the interactions with the cytoskel-
eton (9), or the nuclear envelope (10)—requires defining
the force response at the single pinning site. Although
different models have been used in the literature (11–13),
the linear relation, in which the protein attachment is
described by a harmonic spring of a finite rest length, seems
to capture a number of biological situations (14–16). In
particular, such models have been used for more than two
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FIGURE 1 Mean shape huðrÞi (gray line) and the spatially dependent

fluctuation amplitude hv2ðrÞi (gray shaded area) of a membrane residing

in a harmonic potential of strength g at h0 separation from a flat substrate

and pinned by an elastic spring of rest length l0.
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decades to study the interplay between the pinning sites and
the forces induced by the cytoskeleton, with the assumption
that the role of the membrane is merely to provide spatial
coordination to the proteins. However, it is becoming
more obvious that the membrane itself is not a simple spec-
tator but can act as a regulatory component (17,18) because
it also produces forces (19). Nonetheless, because the mem-
brane is in principle very soft, the pinning will have appre-
ciable effects on the membrane itself.

Already, in the early theoretical works, it was demon-
strated that protein-mediated attachments of the membrane
affect its shape and fluctuations (11,20,21), a fact that was
used to identify binding sites in cells and vesicles (22–24).
Subsequent simulations and analytical modeling showed
that the mean membrane shape and roughness depend non-
trivially on the instantaneous bond density (15,25–31).
Alternative approaches showed, furthermore, that pinnings
that experience strong frictional coupling in the membrane
introduce corrections to the membrane tension (32). Poly-
meric anchors, on the other hand, were found to be respon-
sible for the rescaling of the bending stiffness of the
composite membrane in a mode-dependent fashion (33).
Another useful strategy relied on finding appropriate ap-
proximations to homogenize the pinning sites. As a result,
a family of effective potentials that predict static properties
of fluctuations were suggested in different regimes of fluctu-
ation strength (34–37).

Many studies showed that membrane fluctuations depend
on the properties of the pinning itself, such as the pinning’s
length and mechanical stiffness (18,21,38–43). However, ef-
forts to understand this coupling theoretically are scarce
(13,15,36,37,44,45). The difficulty lies in the pinning-
induced coupling of plane wave modes or spherical har-
monics (46,47), which are otherwise independent in free
membranes. The need to circumvent these technical prob-
lems led to the development of several computational
approaches, which used the conveniences of Fourier trans-
forms and plane-wave-basis sets (8,28,48) and allowed for
the numerical evaluation of mode-coupling effects (31) or
alternative basis sets (12). Ultimately, these extensive simu-
lations pointed to interesting many-body effects, which,
however, could be distinguished from two-body interactions
only in very limited regimes.

In this manuscript, we provide a full analysis of static
properties of a membrane pinned by an elastic spring
(Fig. 1). We first calculate the static Green’s function for
the pinned membrane (Green’s Function Approach), which
is the working horse of analytic calculations. Given that they
were not previously reported in the literature, we also pro-
vide explicit expressions for the orthonormal modes (Ap-
pendix A) and the mode-coupling amplitudes for the plane
wave expansion (Appendix B), both of which may be partic-
ularly useful for numerical calculations and the develop-
ment of simulations and show that they yield equivalent
description as the Green’s function approach. We use the
284 Biophysical Journal 116, 283–295, January 22, 2019
Green’s function to provide a comprehensive description
of static properties of a pinned membrane in the full param-
eter range (Properties of the Mean Shape and the Correla-
tion Function), focusing on the membrane’s mean shape,
the fluctuation amplitude, and the two-point spatial correla-
tion function. Besides recovering the limits known in the
literature for tensionless membranes and rigid pinning, our
analysis of the correlation length (Effect of the Membrane
Tension on the Long-Range Behavior of the Shape and Cor-
relation Function) elucidates the interplay between the
membrane rigidity and tension, the strength of the nonspe-
cific potential, and the pinning elasticity. In the final Mem-
brane-Mediated Interactions Between Two Pinnings, we
calculate explicitly and then analyze in detail the interaction
potential and the force between two pinning sites.
METHODS

Theoretical setup

The system (Fig. 1) consists of one flexible pinning site (harmonic spring of

an elastic constant l and rest length l0, placed at the lateral position r0) that

confines fluctuations of a tensed membrane (bending rigidity k, tension s).

The membrane resides in the minimum of a harmonic nonspecific potential

(strength g) at a height h0 above the substrate, except near r0, where it could

be displaced by the pinning.

The membrane shape is parametrized in the linearized Monge gauge (49)

such that u(r) denotes deviations from the shape of a flat membrane posi-

tioned in the minimum of the nonspecific potential along the lateral position

r. Because pinnings typically introduce membrane displacements from the

minimum (order of magnitude of 1–10 nm) (18,50) that are small in com-

parison with the correlation length of the membrane (order of 100 nm), we

use the linearized Hamiltonian

H ¼
Z
A

dr

�
k

2

�
V2uðrÞ�2 þ s

2
ðVuðrÞÞ2 þ g

2
ðuðrÞÞ2

þ 1

2
lðuðrÞ � ðl0 � h0ÞÞ2dðr� r0Þ

�
(1)

to describe the system. The first two terms in the integral on the right-hand

side comprise the Helfrich Hamiltonian (51) for a bendable, pretensed
membrane that resides in a nonspecific potential (third term). The energetic

contribution of a harmonic spring for the pinning is represented by the
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fourth term, which includes a d function d(r) positioning the pinning, as

further discussed in Supporting Methods, Section SI. The integration

goes over the projected membrane surface A. Here and throughout the

study, the energy scale kBT (with Boltzmann constant kB and absolute tem-

perature T) is set to unity. The validity of this Hamiltonian has been recently

discussed in detail in (52), in which a reasonable agreement between

numerically calculated and experimentally measured correlations and

shapes has been obtained.

With uðrÞ ¼ huðrÞiþ vðrÞ, minimization of the Hamiltonian (Eq. 1) pro-

vides the equation for the mean shape huðrÞi�
kV4 � sV2 þ gþ ldðr� r0Þ

�huðrÞi ¼ lðl0 � h0Þ
� dðr� r0Þ:

(2)

The fluctuations v(r) can be obtained from diagonalizing the second vari-

ation of the Hamiltonian, which leads to the eigenequation
�
kV4 � sV2 þ gþ ldðr� r0Þ

�
jiðrÞ ¼ EijiðrÞ; (3)

the latter containing the same operator as the shape Eq. 2. By expanding the

fluctuations in these eigenmodes (see Appendix A),
vðrÞ ¼
X
i

aijiðrÞ; (4)

and using the equipartition theorem
�
aiaj
	 ¼ kBT

Ei

dij; (5)

we find the spatial two-point correlation function
hvðrÞvðr0Þi ¼
X
i

jiðrÞj�
i ðr0Þ

Ei

: (6)

We assume that the probability for membrane fluctuations with an ampli-

tude larger than h is small such that these configurations will not contribute
0

significantly to the average properties of the membrane profile. With this

assumption, the details of these configurations, which would involve a non-

permeable boundary at the substrate, are not important, and we can instead

deal with a simpler problem in which the substrate is completely permeable

to the membrane. This approximation is satisfied if the protein that pins the

membrane has a finite size (larger than the fluctuation amplitude of the

membrane but smaller than h0), which is, in experimental systems, satisfied

by the self-adjustment of the effective nonspecific potential. Namely, if the

proteins or the fluctuation amplitude of the membrane were larger than h0,

this would renormalize the nonspecific potential and move the minimum

away from the substrate (hence, h0 would be increased, and the curvature

of the minimum, in our model captured by g, would be changed) such

that the required condition is recovered before the pinning. Practically, in

the calculations, this assumption is implied by having no boundary condi-

tions on the amplitude of the membrane fluctuations.
Green’s function approach

Green’s function for the free membrane

Before addressing the problem of a pinned membrane, it is instructive to

notice that the Green’s function gf(rjr0) for the free membrane (l ¼ 0) is

defined by �
kV4 � sV2 þ g

�
gf ðr j r0Þ ¼ dðr� r0Þ: (7)

It is translationally invariant (gf(rjr0) ¼ gf(r � r0)) and can be

expressed as
gf ðr� r0Þ ¼ 1

ð2pÞ2
Z
R2

dk
eikðr�r0Þ

kk4 þ sk2 þ g
: (8)

The solution of the integral on the right-hand side of Eq. 8 is given in

(53) and is a combination of modified Bessel functions of the second
kind K0

gf ðr� r0Þ ¼ K0ða� j r� r0 j Þ � K0ðaþ j r� r0 j Þ

2ps

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
l0m
4s

�2
s : (9)

Here,
l0m ¼ 8
ffiffiffiffiffiffi
kg

p
(10)

and the coefficients a5 are given in the form
a5 ¼ 1

x0

2
44s
l0m

0
@15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
l0m
4s

�2
s 1

A
3
5

1=2

; (11)

with
x0 ¼
ffiffiffiffiffiffiffiffi
k=g4

p
: (12)

We note that the Green’s function Eq. 9 is real even if a5 are complex
numbers.

As for any quadratic integral kernel, the Green’s functions gf(r� r0) and,
respectively, gf(0) are associated with the spatial correlation function

hvf ðrÞvf ðr0Þi and the mean-square fluctuation amplitude hv2f ðrÞi of the

free membrane, initially calculated by several groups (38,54–56). The later

is commonly denoted by 1/lm (8,18,44). Hence,

gf ð0Þ ¼ 1

lm
¼

arctan

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
l0m
4s

�2

� 1

s !

2ps

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
l0m
4s

�2

� 1

s ; (13)

which, for a tensionless case (57), simplifies to
gf ð0Þjs¼ 0 ¼ 1

l0m
: (14)

Under this condition, Eq. 9 adopts the well-known form (21,56)� �

gf ðr� r0Þjs¼ 0 ¼ � 4

pl0m
kei0

jr� r0 j
x0

; (15)

with kei0 being the Kelvin function and x0 being the lateral correlation

length of the free tensionless membrane given by Eq. 12.
Green’s function for the pinned membrane

The Green’s function g(rjr0) providing the response of a membrane at the

position r because of a disturbance at the position r0 is defined as�
kV4 � sV2 þ gþ ldðr� r0Þ

�
gðr j r0Þ ¼ dðr� r0Þ: (16)

With the use of Eq. 7, Eq. 16 can be recast as
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�
kV4 � sV2 þ g

�h
gðr j r0Þ þ lgf ðr j r0Þgðr0 j r0Þ

� gf ðr j r0Þ
i
¼ 0;

(17)

which can be generally valid only if the second bracket identically vanishes.

Consequently,

gðr j r0Þ ¼ gf ðr j r0Þ � lgf ðr j r0Þgðr0 j r0Þ: (18)

Setting r ¼ r0 in Eq. 18 provides
gðr0 j r0Þ ¼ gf ðr0 j r0Þ
1þ lgf ðr0 j r0Þ ¼ lm

lþ lm
gf ðr0 j r0Þ; (19)

which, upon reinsertion into Eq. 18, gives rise to the Green’s function for

the pinned membrane
gðr j r0Þ ¼ gf ðr� r0Þ � llm

lþ lm
gf ðr� r0Þgf ðr0 � r0Þ: (20)

Although g(rjr0) is comprised of the translationally invariant gf(r� r0), it

itself is not generally translationally invariant.

Representing shape and fluctuations

By construction, g(rjr0) differs only by a prefactor from the solution of the

shape Eq. 2

huðrÞi ¼ lðl0 � h0Þgðr j r0Þ: (21)

Combining Eqs. 19 and 21 gives the mean shape
huðrÞi ¼ llm

lþ lm
ðl0 � h0Þgf ðr� r0Þ: (22)

As shown previously (15,44), in the tensionless case, combining Eqs. 15

and 22 yields
huðrÞijs¼ 0 ¼ �4

p

l

lþ l0m
ðl0 � h0Þkei0

�jr� r0 j
x0

�
; (23)

which is a function of the kei function, as expected for the differential oper-

ator of the shape equation that is bilaplacian plus a constant (58,59). In the
limit of an infinitely stiff pinning l / N, Eq. 23 reproduces the result ob-

tained in (21).

By comparing the bilinear expansion of the Green’s function in the eigen-

functions jj (Eq. 3)

gðr j r0Þ ¼
X
j

jjðrÞj�
j ðr0Þ

Ej

(24)

and Eq. 6, we find
hvðrÞvðr0Þi ¼ gðr j r0Þ; (25)

where the factor kBT ¼ 1 on the right-hand side is implicit. Hence,
hvðrÞvðr0Þi ¼ gf ðr� r0Þ � llm

lþ lm
gf ðr� r0Þgf ðr0 � r0Þ:

(26)

Naturally, by setting r0 ¼ r in Eq. 26, we obtain the fluctuation amplitude
�
v2ðrÞ	 ¼ 1

lm
� llm

lþ lm
g2f ðr� r0Þ; (27)
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with

�
v2ðr0Þ

	 ¼ 1

lþ lm
: (28)

The same result can be obtained by calculating the eigenfunctions jj(r)

for a system with a single pinning (see Appendix A.1)
jmðr; qÞ ¼ imeimfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ dm0ðPðqÞÞ2�q �

JmðqrÞ

þ dm0PðqÞ
�
YmðqrÞ þ 2

p
Km

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ s

k

r
r

���
(29)

and using Eq. 24 to obtain the Green’s function (see Appendix A.2).
RESULTS

Properties of the mean shape and the correlation
function

Although the previous sections reveal the formal framework
describing the effect of the pinning on the fluctuations of the
membrane, several results warrant further discussion. Spe-
cifically, inserting the solution for the mean shape Eq. 22
into the Hamiltonian Eq. 1 determines the total elastic en-
ergy of the average configuration of the system (pinning
and membrane):

H½huðrÞi� ¼ 1

2

llm

lþ lm
ðh0 � l0Þ2h1

2
Kðh0 � l0Þ2: (30)

Equation 30 shows that the deformation energy increases

quadratically with the height separation between the
free membrane and the pinning, whereas it vanishes for
h0 ¼ l0 as described previously (15,60). The prefactor K
is an effective spring constant made up of two ‘‘springs’’
(the membrane and the pinning) connected in series, with
lm being the membrane spring constant. From this point
of view, K can be seen as the effective elastic constant of
the system (8,18,44).

The quadratic nature of Eq. 30 is consistent with the
quadratic form of the Hamiltonian Eq. 1 and the ‘‘local’’ na-
ture of the pinning. A further consequence is the linear rela-
tion between the mean shape and the correlation function
from the pinning site

huðrÞi ¼ �lðh0 � l0ÞhvðrÞvðr0Þi; (31)

which emerges by inspection of Eqs. 21 and 25. Here, the

spatially independent prefactor has a form of a force on a
harmonic spring. As a result, both the shape and the corre-
lation function have the same features, but because of a
minus sign on the left-hand side of Eq. 31, the trends are
opposite. For instance, the well-documented overshoot of
the membrane shape (15,21,59) at distances of a couple of
correlation lengths from the pinning is reflected in the
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anticorrelations in the same range (Fig. 2). Likewise, the
displacement of the mean shape from the minimum of
the nonspecific potential increases with the increased
pinning stiffness l (Fig. 2 a), whereas the amplitude of the
pinning site correlation hvðrÞvðr0Þi decreases (Fig. 2 b).

Interestingly, following Eqs. 19 and 22, the correlation
function and the mean shape can also be expressed in terms
of the correlation function for the free membrane

huðrÞi ¼ �Kðh0 � l0Þ
�
vf ðrÞvf ðr0Þ

	
; (32)

which emerges from the proportionality between the

pinned- and the free-membrane correlation functions
a

b

FIGURE 2 Spatial dependence of the static characteristics of the mem-

brane for varying pinning stiffness l. (a) The mean shape given by Eq. 22

and (b) the correlation function extracted from Eq. 33 show the same prop-

erties. The overshoots in the shape coincide with anticorrelations presented

in the insets. Note that a more conventional parametrization of the mean

shape in terms of height above the substrate is trivially obtained with

hhðrÞi ¼ h0 þ huðrÞi. Parameters: k ¼ 20 kBT, s ¼ 10�20 kBT/nm
2, g ¼

3� 10�7 kBT/nm
4, and h0� l0¼ 1 nm. To see this figure in color, go online.
hvðrÞvðr0Þi�
vf ðrÞvf ðr0Þ

	 ¼ hv2ðr0ÞiD
v2f ðr0Þ

E ¼ lm

lþ lm
: (33)

This result clearly captures the interplay between the

pinning stiffness l and the parameters of the membrane
(s and l0m) which are combined in lm. If l � lm, the
pinning does not affect membrane fluctuations, whereas if
l[ lm, fluctuations at the pinning are completely sup-
pressed, and small changes in l do not affect the system
behavior. However, in the regime l z lm, fluctuations can
change noticeably, even for small changes in the pinning
stiffness (Fig. 3). Low-tensed membranes will show such
sensitivity if lzl0m (large l/s in Fig. 3 b), whereas highly
tensed membranes do so if l[ l0m (small l/s in
Fig. 3 b). Moreover, because the decay of correlations
from the pinning site is independent of h0 and l0 (i.e.,
a

b

FIGURE 3 Effect of the pinning on the membrane fluctuations (Eq. 33)

(a) varying s and l and (b) varying l and l0m. To see this figure in color,

go online.
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from the mean deformation), elastic properties of the
pinning can be extracted directly from the change in the
fluctuation amplitude between the pinned and the free states
of the membrane.

Another interesting relation is the one between the
spatially dependent mean-square fluctuation amplitude and
the square of the membrane shape

�
vðrÞ2	 ¼ 1

lm
� huðrÞi2
Kðh0 � l0Þ2

: (34)

Both of these features can be measured using reflection
interference contrast microscopy with very high accuracy
(61). Using very sparsely distributed pinnings and allowing
for independent measurements of lm and h0� l0, stiffness of
the pinning becomes the only unknown parameter, which
can thus be extracted by comparing the shape and fluctua-
tion profiles. So far, the stiffness of the proteins was typi-
cally measured using atomic force microscopy but outside
of the membrane environment, so this relation opens a pos-
sibility to extract mechanical properties of the pinning pro-
tein in its native environment.

Actually, the existence of such a relation has been in-
ferred in imaging of pinning sites using reflection interfer-
ence contrast microscopy (22,24). In these studies, the
suppression of membrane fluctuations was used to identify
pinning sites that are of a lateral dimension smaller than
the optical resolution of the microscope, which was
possible because the correlation length of the membrane
was similar or larger than the diffraction limit of the setup.
Further development of this approach relies, however, on
the understanding of the dependence of the correlation
length of the pinned membrane on system parameters, as
provided herein.
FIGURE 4 Correlation decay length xðx0;s=l0mÞ in the asymptotic limit

(r / N) (Eq. 36). The dark gray lines mark the value s ¼ ð5=16Þl0m,
beyond which an increase in tension results in longer range correlations

than in the tensionless case. To see this figure in color, go online.
Effect of the membrane tension on the long-range
behavior of the shape and correlation function

Both the mean shape and the correlations from the
pinning site are proportional to the free-membrane correla-
tions. Hence, the decay length of the correlation function
will be that of the free-membrane correlation function,
implying the insensitivity of the correlation length and
the deformation range to the length and stiffness of the
pinning. Accordingly, dependent on various regimes (see
Supporting Methods, Section SV for details), a power
law and an oscillatory behavior are dominated by an expo-
nential decay of a length xðk; s;gÞ ¼ xðx0; s=l0mÞ identified
through

�
vf ðrÞvf ð0Þ

	 ¼ gf ðrÞ �r/N
e�r=xðx0;s=l0mÞ; (35)

where
288 Biophysical Journal 116, 283–295, January 22, 2019
x

x0
¼

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ffiffiffi
2

p
if s ¼ 0;0

@cos
0
@1

2
arctan

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
l0m
4s

�2

�1

s 1
A
1
A
1
A

�1

if 0<s<
l0m
4
;

1 if s ¼ l0m
4
;

2
44s
l0m

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
l0m
4s

�2
s 1

A
3
5

�1=2

if s>
l0m
4
:

(36)

Remarkably, increasing tension does not necessarily in-
crease the range of height correlations. Instead,when bending
dominates, small amounts of tension ðs< ð1=4Þl0mÞ actually
reduce the decay length of correlations (Fig. 4). In this
regime, the membrane shape and correlation function
exhibit an overshoot/anticorrelations of the long-range limit
immediately after the pinning (Fig. 2), followed by an oscil-
latory behavior within an exponentially decaying envelope
(Eq. SI-V.8). Similarly to systems that are governed only by
bending and tension (no nonspecific potential), the tension
here flattens the membrane so that the spatial correlations
decrease because of changes in curvature that decay
faster as the distance from the inclusion increases. Specif-
ically, as the tension increases toward the critical value of
sc ¼ l0m=4, the amplitude of the oscillations decreases.
When the tension reaches sc, the oscillations are completely
flattened, and the system enters a tension-dominated regime.
Now, coupling to the nonspecific potential induces a slow,
purely exponential decay of the shape and the correlations
(Eq. SI-V.7). In this case, the larger the tension, the longer
the range of the deformation and the correlation function
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simply because of the increase in the energy penalty for large
curvatures in a nonspecific potential. However, onlywhen the
tension reaches s ¼ 5l0m=16 does the correlation length
become longer than that of a tensionless free membrane.

Notably, the mean shape and correlations (and their deriv-
atives with respect to the spatial coordinate r) are continuous
functions of s, even at sc, and no actual singularity appears
in the system at the crossover between the bending- and ten-
sion-dominated regimes.
b

Membrane-mediated interactions between two
pinnings

Equations 35 and 36 are significant in the context of interac-
tions between pinnings on the membrane separated by a
relative distance x. Following previous work (15), the inter-
action energy between two pinnings is

V2ðxÞ ¼ Kðl0 � h0Þ2
1þKgf ðxÞ þ

1

2
ln


1�

h
Kgf ðxÞ

i2�
; (37)

where the first term is the deformation energy stored in the
FIGURE 5 Force between two pinnings. (a) The bending-dominated
system with two bonds and the second term is the entropic
cost associated with the suppression of fluctuations (see
Supporting Methods, Section SIV for details of the calcula-
tion). Terms that are independent of the relative distance
between the two pinnings are omitted because they drop
out in the calculation of the force between two pinnings
F 2ðxÞ ¼ � vV2ðxÞ=vx, which becomes

F 2ðxÞ ¼ K2ðl0 � h0Þ2g0f ðxÞh
1þKgf ðxÞ

i2 þK2gf ðxÞg0f ðxÞ
1�K2gf ðxÞ2

: (38)

Thus, the spatial dependence of the force is given by the
regime ðs=l0m < 1=4Þ is shown. For this specific set of parameters, the defor-

mation and the fluctuation contributions to the force are comparable. Both

contributions oscillate around zero (inset), but the fluctuation part decays

two times faster. (b) The tension-dominated regime ðs=l0m > 1=4Þ is shown.
As we increase the tension, the range of the force increases. Parameters:

l ¼ 0.75 � 10�2 kBT/nm
2, k ¼ 20 kBT, g ¼ 3.125 � 10�7 kBT/nm

4,

h0 � l0 ¼ 10 nm. To see this figure in color, go online.
correlation function of a free membrane at the relative dis-
tance x. The first term on the right-hand side of Eq. 38
can be associated with the force that emerges because of
the membrane deformation, whereas the second term is
the force arising from the suppression of membrane fluctu-
ations in a spatially dependent manner. If the pinning de-
forms the membrane ðh0sl0Þ, the deformation term
determines the long-range behavior of the force because it
decays two times slower than the fluctuation term (Fig. 5).
Namely, the deformation term is proportional to g0f(x),
which decays exponentially, and independent of the amount
of the deformation in the system, whereas the fluctuation
term, being proportional to gf(x)g

0
f(x), decays exponentially

but twice as fast (Fig. 5 a). The deformation term typically
dominates closer to the pinning as well (Fig. 5). However, if
h0xl0, fluctuation forces dominate, in which case the decay
length of the force is halved in comparison to the case of a
deformed membrane. This means that even if the protein
does not affect the membrane shape (h0 ¼ l0), a significant
force may emerge and potentially lead to the agglomeration
of pinning sites, as suggested by simulations of a membrane
containing many pinnings, described by the same Hamilto-
nian (8,31,37,48). Although only limited understanding of
the conditions necessary for the formation of domains is
available at the moment, access to Eq. 38 sets the foundation
of the calculation of critical parameters that are necessary
for the process of agglomeration.

Based on the qualitative behavior of the forces, we can
recognize two regimes, namely, the bending-dominated
(s< sc) and the tension-dominated regimes (s> sc). These
regimes correspond to different regimes of the correlation
function (see Supporting Methods, Section SV). In the
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bending-dominated regime, a repulsive barrier appears in
the force at distances of a few membrane correlation lengths
(Fig. 5 a). Increasing tension but staying under sc flattens
the barrier and the oscillating tail of the force (Fig. 5 a,
inset). This is contrasted by the tension-dominated regime,
in which the repulsive barrier and the oscillating tail disap-
pear, and the long-range forces are attractive (Fig. 5 b).
Moreover, the range of the force increases with tension
(Fig. 5 b, inset). In all cases, the range of these weak inter-
actions is of the order of 100 nm, which is nearly two orders
of magnitude more than the direct protein-protein interac-
tions. They are therefore considered long range despite their
universally exponential nature.

This exponential decay is contrasted by a body of work
performed on forces between membrane inclusions in
‘‘bending-only’’ or ‘‘tension-only’’ systems, for which the
differential operator exhibits no scale. In the former case,
the Green’s function behaves as gf(r) � r2logr2 (62–64),
and switching tension affects the power-law nature of the
decay (40,65,66). Because the nonspecific potential intro-
duces a length scale, the pinned membrane clearly delin-
eates from these models for inclusions. However, it was
recently proposed that a Hamiltonian that is mathematically
identical to that in Eq. 1 can be used to model the inclusion
of a protein with hydrophobic mismatch into a membrane
(67). Although the parameter range in which the linearized
theory is valid could be narrower than in the case of pin-
nings, the analogy of formalisms between the two problems,
in principle, allows for the exploitation of the current results.
Consequently, exponential decays should also appear in
forces acting between membrane inclusions. However, these
forces will have very different magnitudes and overall
range.

It is worth mentioning that so far, we have neglected the
finite size of proteins. This is appropriate for sparse or
immobile protein attachments (the size of the attachment
is still smaller than the correlation length of the membrane).
When proteins approach within a few nanometers’ separa-
tion between their surfaces, direct protein interactions will
compete with the typically attractive membrane-mediated
interactions. The result of this competition at short range
is nonuniversal and is most likely dominated by the direct
contributions. Our hope is that the current approaches can
be expanded to account for this case—either using the GF
approach in analytic calculations or using the expansions
into relevant basis set for numerical simulations.
DISCUSSION

In this work, we studied the effect of a pinning on the statics
of a membrane fluctuating in a harmonic nonspecific poten-
tial. We showed that the membrane and the pinning can be
seen as two springs in series in the context of the energetics,
as discussed previously (18). Hence, in the case in which the
length of the pinning does not coincide with the position of
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the undisturbed membrane in an effective potential, the
deformation in the system depends on the effective spring
constants of the pinning and the membrane (the later char-
acterized by the inverse of the fluctuation amplitude in the
absence of pinning). For stiff membranes, the pinning will
extend its shape, whereas for stiff pinnings, membrane
deformation will be considerable. However, because the
lateral correlation length of the membrane is not affected
by the pinning properties, the range of the deformation is in-
dependent of the pinning. This is very different from the ef-
fect of tension, which directly affects the correlation length
in a nonhomogeneous fashion.

The pinning, on the other hand, has a major effect on the
membrane fluctuation amplitude, which is an inverse func-
tion of the pinning stiffness. The correlation length and
the long-range exponential behavior are, however, fully
given by the correlation length of the free membrane. For
small tensions, a pinning may induce short-range anticorre-
lations of fluctuations and an overshoot of the membrane
shape. In this regime, the correlation length decreases
with increasing tension. At high tensions, the correlation
length increases, whereas the shape and the correlations
continuously decay to their long-range limits. These corre-
lations translate into long-range interactions between pin-
nings, which also decay exponentially. The forces
associated with this interaction potential are stronger if the
pinning displaced the membrane; however, even in the
absence of the deformation, the pinnings interact because
of the suppression of fluctuations, analogous to Casimir
forces.

The results presented here open the possibility for differ-
entiating between actively and passively pinned membranes
in experiments just by measuring the shape and fluctuations
around a binding site, which can be either a single protein or
a nanodomain, when the line tension remains small. Viola-
tion of the relationship (Eqs. 31, 32, 33, and 34) between the
correlation functions and the shape provided in Properties of
the Mean Shape and the Correlation Function could be taken
as a notion of activity. Moreover, in passive systems with
small nonlinear effects, exploiting the same relations could
provide the foundation for the measurement of the stiffness
of proteins in their natural membrane environment. The
models proposed here should be suitable for analysis of
data obtained using interferometric methods or in conjunc-
tion with atomic force microscopy of membrane-protein in-
teractions, in which vesicles are used as soft probes.

Given that membranes, locally pinned by proteins or
macromolecular assemblies, are indeed ubiquitous in
nature, a toolbox developed herein consisting of mode-
coupling coefficients, orthonormal modes, and the Green’s
function of the system is highly useful for future theoretical
studies of membranes that aim to elucidate the interplay be-
tween the membrane elasticity and the forces transmitted by
the proteins in the biological context. We may anticipate
that the Green’s function approach may be the method of
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choice for analytic modeling; however, normal modes and
the mode-coupling coefficients for the plane waves may
be particularly useful in the context of numerical calcula-
tions. Of course, the equivalence of all three approaches
can be stated by construction. Nevertheless, in terms of re-
sults presented herein, GF and plane wave approaches
give exactly the same representation of the mean shape
(Eqs. 22 versus 70) and the correlations (Eqs. 26 versus
71), whereas the normal modes give an alternative but
numerically identical representation (Eqs. 58 and 60 for
the mean shape and correlations, respectively).

Besides studies in which membranes are used as probes
for proteins binding during cell-cell and cell-substrate adhe-
sion or in the analysis of the interaction of the cytoskeleton
with the plasma or nuclear membranes, which were in some
cases based on the same Hamiltonian, other systems may
benefit from the tools and relations developed here. In
particular, as pointed out in the recent work of (67), the
same Hamiltonian could be used in studies of the interac-
tions between membrane inclusions (49,68,69). However,
because the energetics and the length scales of characteristic
interactions are very different, nonlinear corrections may
become important. Because there is a wealth of systems in
which protein-mediated pinning is important in the biolog-
ical and biotechnological context, further developing a the-
ory to account for the fluctuation dynamics of a permanently
but also stochastically pinned membrane appears as a natu-
ral and necessary extension of this study, a task that we plan
to undertake in our future work.

All data and computer code for this study are available on
request from the authors.
APPENDIX A: NORMAL MODES EXPANSION

Appendix A.1: Solution of the Eigenmode
Equation

It remains to determine the normal modes jj given by Eq. 3. By placing the

pinning at the origin (r0 ¼ 0), the solution of Eq. 3 obeys radial symmetry

with respect to the pinning site. Hence, the eigenmodes are a product of

axial and radial functions, characterized by relevant mode numbers m

and n, respectively

jnmðrÞ ¼ RnmðrÞeimf; (39)

where (r, f) are polar coordinates of the position r. In this case, Eq. 3 takes

the form
�
kV4 � sV2 þ gþ ldðrÞ�jnmðrÞ ¼ EnmjnmðrÞ; (40)

where Enm are the eigenvalues corresponding to modes {n, m}. The square

brackets on the left-hand side enclose the energy operator, which must be
Hermitian (Supporting Methods, Section SII).

The general solution of Eq. 40 emerges as a sum of Bessel functions

(Supporting Methods, Section SII)

RnmðrÞ ¼ anmJmðqnmrÞ þ bnmYmðqnmrÞ
þ cnmKmðQnmrÞ þ dnmImðQnmrÞ

(41)
with

Qnm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2nm þ s

k

r
: (42)

Here, Jm and Ym are Bessel functions of the first and second kind, Km and

I are the modified Bessel functions of the first and second kind, respec-
m

tively, and anm, bnm, cnm, and dnm are coefficients associated with the n

and m mode numbers.

The corresponding eigenvalues in Eq. 40 are given by

Enm ¼ kq4nm þ sq2nm þ g; (43)

and the general solution Rnm(r) is specified by appropriate boundary

conditions.
Boundary condition 1

Rnm(r) stays finite when r/ 0: the Bessel functions of the first kind, Jm and

Im, inherently fulfill this boundary condition (J0(0)¼ I0(0)¼ 1 and Jm(0)¼
Im(0)¼ 0 form> 0). The remaining Bessel functions Ym and Km diverge for

r / 0. However, for m ¼ 0, both Bessel functions diverge logarithmically

such that the sum b0Y0(qnmr) þ c0K0(Qnmr) stays finite with c0 ¼ 2b0/p,

whereas for m > 0, such cancellation is not possible. Consequently,

RnmðrÞ ¼ anmJmðqnmrÞ þ dnmImðQnmrÞ

þ dm0bnm

�
YmðqnmrÞ þ 2

p
KmðQnmrÞ

�
;

(44)

where dm0 is the Kronecker d. The term multiplied by dm0 is contributing

only for m ¼ 0.
Boundary condition 2

The integral of the eigenvalue Eq. 40 over an infinitesimally small diskD(e)

centered at the pinning has to vanish,Z
DðεÞ

dr
�
kV4 � sV2 þ gþ ldðrÞ�jnmðrÞ ¼ 0: (45)

This boundary condition, often introduced around a d function, is neces-

sary to ensure the finiteness of the membrane profile at the origin. With this
imposed, the integration of the right-hand side of the eigen Eq. 5 vanishes in

the relevant limit, and the limit is well defined. By extension, the integral of

the left-hand side of the eigen Eq. 5 vanishes, too (see Supporting Methods,

Section SII for details).

By solving the integral for each mode, one obtains

bn0 ¼ Pðqn0Þðan0 þ dn0Þ; (46)

where
Pðqn0Þ ¼ l

8k


q2n0 þ

s

2k

�
þ l

p
ln

�
1þ s

kq2n0

� : (47)

Boundary conditions 3 and 4

At the membrane edge, r ¼ P, we have

RnmðPÞ ¼ 0; (48)

DRnmðPÞ ¼ 0; (49)
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whereD denotes the Laplacian operator. These boundary conditions arise in

pairs after imposing hermiticity of the operator in the eigenvalue Eq. 40, as

shown in Supporting Methods, Section SII.

From Eqs. 46, 47, 48, and 49, we obtain the asymptotic form of Rnm(r)

for a large membrane radius P (Supporting Methods, Section SII)

RnmðrÞ � anm

�
JmðqnmrÞ þ dm0

�
Pðqn0Þ

�
YmðqnmrÞ

þ 2

p
KmðQnmrÞ

���
; (50)

with
qnm � n
p

P
: (51)

This asymptotic form of qnm emerges when n / N and membrane

radius P / N as shown in Supporting Methods, Section SII.
Normalization of the solution of the eigenvalue problem (Supporting

Methods, Section SII), requires setting

anm ¼ imffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ dm0ðPðnDqÞÞ2�q : (52)

Finally, by letting P / N, qnm/q˛R, the basis functions become

j (r, q), and are given by (Supporting Methods, Section SIII)
m

jmðr; qÞ ¼ imeimfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ dm0ðPðqÞÞ2�q �

JmðqrÞ

þ dm0PðqÞ
�
YmðqrÞ þ 2

p
Km

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ s

k

r
r

���
:

(53)

Naturally, the orthogonality condition
Z
R2

drjmðr; qÞj�
m0 ðr; q0Þ ¼ dðq� q0Þ

q
2pdm;m0 (54)

is satisfied, and the profile of an infinite pinned membrane can be expanded

in the basis functions jm(r, q) as (Supporting Methods, Section SII)
uðrÞ ¼ 1

2p

XN
m¼�N

Z N

0

dqqUmðqÞjmðr; qÞ; (55)

with
UmðqÞ ¼ 2p

Z N

0

drr umðrÞR�
mðr; qÞ; (56)

where
umðrÞ ¼ 1

2p

Z 2p

0

df uðrÞe�imf: (57)

For vanishing l (Supporting Methods, Section SII), the eigenmodes are
given by the Bessel functions Jm(qr) for all m, which is equivalent to a basis

set constructed from plane waves in radial geometry, as demonstrated for a

free membrane. For a nonvanishing l, on the other hand, the pinning prop-

erties affect explicitly only the eigenmode with m ¼ 0.
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Appendix A.2: Representing Shape and
Fluctuations

Expansion of the mean shape of the membrane pinned at r0 ¼ 0 is given

only by m ¼ 0 modes (Supporting Methods, Section SII):

huðrÞi ¼ lðl0 � h0Þ 1

2p

Z N

0

dqq
R0ðr; qÞR�

0ð0; qÞ
Eq

: (58)

At the pinning site r ¼ 0,
huð0Þi ¼ lðl0 � h0Þ 1

2p

Z N

0

dqq
jj0ð0; qÞ j 2

Eq

¼ l

lþ lm
ðl0 � h0Þ: (59)

The correlation function is given by
hvðr1Þv�ðr2Þi ¼ gðr1 j r2Þ

¼ 1

2p

X
m¼�N

N Z N

0

dqq
jmðr1; qÞj�

mðr2; qÞ
Eq

(60)

and the fluctuation amplitude by
�
v2ðrÞ	 ¼ 1

2p

XN
m¼�N

Z N

0

dqq
jjmðr; qÞ j 2

Eq

: (61)

At the position of the pinning site,
�
v2ð0Þ	 ¼ 1

2p

Z
0

N

dq
q

kq4 þ sq2 þ g

� ð8kq2 þ 4sÞ2

l2 þ
�
8kq2 þ 4sþ l

p
ln
�
1þ s

��
kq2
���2

¼ 1

lþ lm
;

(62)

The last equality, which coincides with Eq. 27, was checked numeri-

cally to the machine precision for an arbitrary tension and analytically
for s ¼ 0.
APPENDIX B: PLANE WAVE EXPANSION

Appendix B.1: Mode Coupling

Relating the shape and the fluctuation amplitude to the properties of the free

membrane should be also possible in the most commonly used plane wave

expansion

uðrÞ ¼ 1

ð2pÞ2
Z
R2

dk uðkÞeikr; (63)

where for the mean shape, we find
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huðrÞi ¼ 1

ð2pÞ2
Z
R2

dkhuðkÞieikr (64)

and for the correlation function,Z Z

hvðrÞvðr0Þi ¼ 1

ð2pÞ4
R2

dk

R2

dk0huðkÞuðk0Þieikreik0r0

� 1

ð2pÞ4
Z
R2

dk

Z
R2

dk0huðkÞihuðk0Þieikreik0r0 :

(65)

The disadvantage of this approach is the coupling of the modes, giving

rise to expansion coefficients huðkÞuðk0Þi that have so far not been calcu-
lated explicitly.

As previously discussed (15), the amplitudes huðkÞi and the mode-

coupling coefficients huðkÞuðk0Þi are defined as

huðkÞih1

Z

Z
D½u� uðkÞexp½�H�;

huðkÞuðk0Þih1

Z

Z
D½u� uðkÞuðk0Þexp½�H�;

(66)

with Z being the partition functionZ

Z ¼ D½u� exp½�H�: (67)

Treating identities in Eq. 66 as Gaussian integrals (Supporting Methods,
Section SIII) gives

huðkÞi ¼ � llm

lþ lm
ðh0 � l0Þ e�ikr0

kk4 þ sk2 þ g
; (68)

0 dðkþ k0Þ 0
huðkÞuðk Þi ¼
kk4 þ sk2 þ g

þ huðkÞihuðk Þi

� llm

lþ lm

e�ikr0

kk4 þ sk2 þ g

e�ik0r0

kk04 þ sk02 þ g
:

(69)

Appendix B.2: Representing Shape and
Fluctuations

Combining Eqs. 64 and 68, we obtain the mean shape for a pinned

membrane

huðrÞi ¼ llm

lþ lm
ðl0 � h0Þgf ðr� r0Þ: (70)

By combining Eqs. 65, 68, and 69, we obtain for the spatial correlations
hvðrÞvðr0Þi ¼ gf ðr� r0Þ � llm

lþ lm
gf ðr� r0Þgf ðr0 � r0Þ

(71)

and for the fluctuation amplitude (r ¼ r0)
�
v2ðrÞ	 ¼ 1

lm
� llm

lþ lm
g2f ðr� r0Þ: (72)

We have therefore independently derived the same result as with the

Green’s function approach (Eqs. 22 and 26).
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I. HAMILTONIAN OF THE SYSTEM

Our model consists of one flexible pinning site (harmonic spring of an elastic constant λ and rest length l0) that
confines fluctuations of a tensed membrane (bending rigidity κ, tension σ). The latter resides in a harmonic non-
specific potential (γ, minimum at h0 above the substrate). Consequently, the membrane adopts a shape profile h(r)

∗ author to whom correspondence should be addressed: smith@physik.uni-erlangen.de



2

along the lateral position r around the pinning at r0, introduced by the delta distribution δ(r− r0). This situation is
captured in a usual way by the energy functional

H =

∫
A

dr

[
κ

2

(
∇2h(r)

)2
+
σ

2
(∇h(r))

2
+
γ

2
(h(r)− h0)

2
+
λ

2
(h(r)− l0)

2
δ(r− r0)

]
, (SI-I.1)

which combines the Helfrich-Hamiltonian for the membrane in the Monge gauge and a harmonic spring for the pinning
site. The integration goes over the membrane surface A. Here and throughout the paper, the energy scale kBT with
Boltzmann constant kB and absolute temperature T is set to unity.

To simplify further calculations we will convert to the coordinate system whose horizontal axes coincide with the
minimum of the non-specific potential. This is done by the vertical translation

h(r) = u(r) + h0. (SI-I.2)

Eq. SI-I.1 then becomes

H =

∫
A

dr

[
κ

2

(
∇2u(r)

)2
+
σ

2
(∇u(r))

2
+
γ

2
(u(r))

2
+
λ

2
(u(r)− (l0 − h0))

2
δ(r− r0)

]
. (SI-I.3)

We can now simplify the Hamiltonian by the integral identities,

∫
A

dr (∇u(r))
2

= −
∫
A

dr
(
u(r)∇2u(r)

)
+

∫
∂A

dl

(
u(r)

∂u(r)

∂n

)
∫
A

dr
(
∇2u(r)

)2
=

∫
A

dr
(
u(r)∇4u(r)

)
+

∫
∂A

dl

(
∇2u(r)

∂u(r)

∂n
− u(r)

∂∇2u(r)

∂n

)
, (SI-I.4)

where
∫
∂A

dl is a line integral over the membrane boundary ∂A and ∂/∂n is a derivative normal to the boundary.

Because the membrane is in the minimum of the non-specific potential far from the pinning site, the boundary terms
in eq. SI-I.4 vanish. Inserting eq. SI-I.4 with vanishing boundary terms into Hamiltonian eq. SI-I.3 gives

H =
1

2

∫
A

dr
[
u(r)

(
κ∇4 − σ∇2 + γ + λδ(r− r0)

)
u(r)− 2u(r) (λ(l0 − h0)δ(r− r0)) + λ(l0 − h0)2δ(r− r0)

]
. (SI-I.5)

Thermalized membrane will fluctuate around the shape that minimizes the Hamiltonian, motivating the notation

u(r) = 〈u(r)〉+ v(r), (SI-I.6)

where 〈u(r)〉 is the thermal equilibrium mean shape, where brackets 〈...〉 indicate the canonical ensemble average, and
v(r) fluctuations around the mean shape. Inserting SI-I.6 into SI-I.5 and collecting the powers of v(r) gives

H = H[〈u(r)〉] +

∫
A

dr
{[
κ∇4 − σ∇2 + γ + λδ(r− r0)

]
〈u(r)〉 − λ(l0 − h0)δ(r− r0)

}
v(r)+

+
1

2

∫
A

dr v(r)
[
κ∇4 − σ∇2 + γ + λδ(r− r0)

]
v(r). (SI-I.7)

Naturally, for vanishing fluctuations v(r) = 0, Hamiltonian SI-I.7 reduces to the energy of the mean shape H[〈u(r)〉].
Demanding that the term linear in fluctuations v(r) (first variation of the Hamiltonian) vanishes, gives the equation
for the mean shape 〈u(r)〉 [

κ∇4 − σ∇2 + γ + λδ(r− r0)
]
〈u(r)〉 = λ(l0 − h0)δ(r− r0). (SI-I.8)

Third term in SI-I.7 gives the energy contained in the fluctuations

Hfluct =
1

2

∫
A

dr v(r)
[
κ∇4 − σ∇2 + γ + λδ(r− r0)

]
v(r). (SI-I.9)
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For fluctuations satisfying the eigenequation[
κ∇4 − σ∇2 + γ + λδ(r− r0)

]
v(r) = Ev(r), (SI-I.10)

where E is the eigenvalue, system Hamiltonian becomes quadratic in fluctuations

Hfluct = H−H[〈u(r)〉] =
1

2

∫
A

dr Ev2(r). (SI-I.11)

A. Two-point correlation function in terms of normal modes

As is shown in the next section, there is in fact a family of functions ψj(r), known as the normal modes of the
system, satisfying eq. SI-I.10 [

κ∇4 − σ∇2 + γ + λδ(r)
]
ψj(r) = Ejψj(r), (SI-I.12)

with eigenvalues Ej . Normal modes ψj(r) form an orthonormal basis on a space of functions representing the profile
of a pinned membrane. Orthonormality implies∫

R2

dr ψi(r)ψj(r) = δij (SI-I.13)

and being a basis implies that the fluctuations v(r) can be expanded in the normal modes as

v(r) =
∑
i

ηiψi(r), (SI-I.14)

where ηi are the coefficients of expansion. Inserting SI-I.14 into the Hamiltonian SI-I.11 and using eqs. SI-I.12 and
SI-I.13 gives

Hfluct =
1

2

∑
i

Eiη
2
i . (SI-I.15)

Using the equipartition theorem 〈
δHfluct

δηi
ηj

〉
= Ei 〈ηiηj〉 = δij , (SI-I.16)

we find the correlation between the normal mode expansion coefficients

〈ηiηj〉 =
δij
Ei
, (SI-I.17)

which can be used to find the spatial two-point correlation function of the system as follows

〈v(r)v(r′)〉 =
∑
i,j

〈ηiηj〉ψi(r)ψj(r
′) =

∑
j

ψj(r)ψ∗j (r′)

Ej
, (SI-I.18)

where we have used eqs. SI-I.14 and SI-I.17. The explicit form of the normal modes ψj is found in the next section.
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II. ORTHOGONAL BASIS OF A MEMBRANE PINNED BY A HARMONIC SPRING

A. Statement of the problem

The aim of this section is to find a complete set of orthogonal functions ψj(r) by solving the eigenequation[
κ∇4 − σ∇2 + γ

]
ψj(r) = Ejψj(r) (SI-II.1)

on R2 with the following boundary conditions:

1.

ψj(r = 0) <∞. (SI-II.2a)

2.

lim
ε→0

∫
D(ε)

dr
[
κ∇4 − σ∇2 + γ

]
ψj(r) + λψj(0) = 0, (SI-II.2b)

where D(ε) = {r ∈ R2||r| ≤ ε} is a disk of radius ε ∈ [0,∞〉.

3.

ψj(r→∞) = 0. (SI-II.2c)

4.

∆ψj(r→∞) = 0. (SI-II.2d)

This is equivalent to solving the eigenequation[
κ∇4 − σ∇2 + γ + λδ(r)

]
ψj(r) = Ejψj(r), (SI-II.3)

with boundary conditions given by eqs. SI-II.2a, SI-II.2c and SI-II.2d. To show this we integrate eq. SI-II.3 over
Ω \D(ε), where Ω ⊆ R2, and over D(ε) to get the following two equations

lim
ε→0

∫
Ω\D(ε)

dr
[
κ∇4 − σ∇2 + γ + λδ(r)

]
ψj(r) = lim

ε→0

∫
Ω\D(ε)

drEj ψj(r), (SI-II.4)

lim
ε→0

∫
D(ε)

dr
[
κ∇4 − σ∇2 + γ + λδ(r)

]
ψj(r) = lim

ε→0

∫
D(ε)

drEj ψj(r). (SI-II.5)

Eq. SI-II.4 gives ∫
Ω\{0}

dr
[
κ∇4 − σ∇2 + γ − Ej

]
ψj(r) = 0, (SI-II.6)

as delta distribution term does not contribute because r = 0 is not included in the domain of integration. Because Ω
is arbitrary, eq. SI-II.6 defines the general solution to eq. SI-II.1. Assuming condition eq. SI-II.2a holds results in

lim
ε→0

∫
D(ε)

drEj ψj(r) = 0 (SI-II.7)

and eq. SI-II.5 gives the boundary condition eq. SI-II.2b. Therefore, we have arrived at the initial problem defined
by eq. SI-II.1 and boundary conditions given by eqs. SI-II.2a-SI-II.2d. Physically, condition eq. SI-II.2a corresponds
to the reasonable requirement that the height of the membrane profile is finite at the origin. Condition eq. SI-II.2b
introduces the effect of the pinning at r = 0. Conditions given by eqs. SI-II.2c and SI-II.2d correspond to the
assumption that the membrane is in the minimum of the non-specific potential far from the pinning and therefore has
vanishing height and curvature there.
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1. Hermiticity of the eigenoperator

We require Hermiticity of the operator
[
κ∇4 − σ∇2 + γ + λδ(r)

]
as eigenvalues Ej in eq. SI-II.3 are connected

with the energy and therefore have to be real. Consequently, the operator has to satisfy the well-known property〈[
κ∇4 − σ∇2 + γ + λδ(r)

]
ψi(r), ψj(r)

〉
=
〈
ψj(r),

[
κ∇4 − σ∇2 + γ + λδ(r)

]
ψi(r)

〉
, (SI-II.8)

where ψi(r) and ψj(r) are two different eigenfunctions of the operator. This leads to conditions∫
∂A

dl

(
ψi(r)

∂ψj(r)

∂n

)
=

∫
∂A

dl

(
ψj(r)

∂ψi(r)

∂n

)
∫
∂A

dl

(
∇2ψi(r)

∂ψj(r)

∂n
− ψj(r)

∂∇2ψi(r)

∂n

)
=

∫
∂A

dl

(
∇2ψj(r)

∂ψi(r)

∂n
− ψi(r)

∂∇2ψj(r)

∂n

)
. (SI-II.9)

Conditions given by eq. SI-II.9 are restricting the set of boundary conditions we can choose from when solving
the eigenequation SI-II.3. Vanishing of the boundary terms in eq. SI-I.4 and boundary conditions given by eqs.
SI-II.2c-SI-II.2d satisfy hermiticity conditions given by eq. SI-II.9.

2. Problem in terms of polar coordinates

Singularity at the origin due to the pinning and the radial symmetry with respect to the pinning make polar
coordinates (r,φ) a natural choice for solving the problem. We will first derive the orthogonal basis ψj(r) defined on a
disk D(P ) = {r ∈ R2||r| ≤ P}, which enables us to take advantage of the radial symmetry in the system. Physically,
disk D(P ) corresponds to a circular membrane of radius P . With the orthogonal basis for a finite system in hand, we
can expand the membrane profile u(r) in a generalized Fourier series

u(r) =
∑
j

〈u(r), ψj(r, P )〉
〈ψj(r, P ), ψj(r, P )〉

ψj(r, P ) (SI-II.10)

where we have emphasized that the basis functions ψj(r, P ) depend on the membrane radius P . 〈u(r), ψj(r, P )〉 are
the projections of u(r) on the basis elements ψj(r, P ), 〈ψj(r, P ), ψj(r, P )〉 are the normalization constants and the
generalized scalar product is defined as

〈x(r), y(r)〉 =

∫
D(P )

dr x(r)y∗(r), (SI-II.11)

where ∗ denotes complex conjugation. As will be shown, taking the limit P → ∞ of eqs. SI-II.10 and SI-II.11 gives
us the expansion of an infinite planar membrane in the corresponding orthogonal basis ψj(r, P →∞) = ψj(r) on R2.

B. Orthogonal series representation of the membrane profile - Solution to the finite radius problem

Motivated by the radial symmetry of the problem, we insert into eq. SI-II.1 the cylindrical wave ansatz ψj(r, P ) =
ψnm(r, P ) = Jm(knm(P )r)eimφ, where n and m are integers and Jm(r) is the m-th order Bessel function of the first
kind, while scale factors knm(P ) contain the P dependence. Using

∇2Jm(knmr)e
imφ = −k2

nmJm(knmr)e
imφ, (SI-II.12)

leads to the eigenvalues

Enm = κk4
nm + σk2

nm + γ. (SI-II.13)

There are three distinct cases:

• Enm < γ, knm ∈ iR,

• Enm = γ, knm = 0 or knm = ±i
√
σ/κ,



6

• Enm > γ, knm ∈ R>0.

With boundary conditions eqs. SI-II.2c and SI-II.2d and Enm ≤ γ, solution is a zero-height, flat profile ψ(r) = 0.
Therefore only the case Enm > γ and knm > 0 is interesting. In this case, solving eq. SI-II.13 for knm gives four
solutions

knm,1 = qnm, knm,2 = −qnm, knm,3 = i

√
q2
nm +

σ

κ
:= iQnm, knm,4 = −i

√
q2
nm +

σ

κ
:= −iQnm, (SI-II.14)

with qnm =

√√√√1

2

(
−σ
κ

+

√(σ
κ

)2

+
4(Enm − γ)

κ

)
. (SI-II.15)

The general solution to eq. SI-II.1 should be a linear combination of four linearly independent terms Jm(knm,ir)e
imφ,

where i = {1, 2, 3, 4}. But as Jm(x) and Jm(−x) are linearly dependent for integer m, solution is a linear combination
of Bessel functions of the first and second kind Jm and Ym and modified Bessel functions of the first and second kind
Km and Im:

ψnm(r, P ) = (anmJm(qnmr) + bnmYm(qnmr) + cnmKm(Qnmr) + dnmIm(Qnmr)) e
imφ

=Rnm(r)eimφ. (SI-II.16)

Rnm(r) is a shorthand notation for the radial part of ψnm(r, P ), where P dependence of Rnm(r) is not shown explicitly,
but is assumed. Hence, expansion eq. SI-II.10 can be written more precisely as

u(r) =

∞∑
m=−∞

∑
n

〈u(r), Rnm(r)eimφ〉
〈Rnm(r)eimφ, Rnm(r)eimφ〉

Rnm(r)eimφ. (SI-II.17)

Coefficients {anm, bnm, cnm, dnm} are specified by boundary conditions. Boundary condition eq. SI-II.2a is given by
requiring

• Rnm(r) stays finite when r → 0.

The Bessel functions of the first kind, Jm and Im, fulfil this condition (J0(0) = I0(0) = 1 and Jm(0) = Im(0) = 0 for
m > 0). The remaining Bessel functions Ym and Km diverge for r → 0. However, for m = 0, both Bessel functions
diverge logarithmically such that the sum bn0Y0(qnmr) + cn0K0(qnmr) stays finite with cn0 = 2bn0/π. Consequently,

Rnm(r) = anmJm(qnmr) + dnmIm(Qnmr) + δm0bnm

(
Ym(qnmr) +

2

π
Km(Qnmr)

)
, (SI-II.18)

where δm0 is the Kronecker delta. Therefore, the term multiplied by δm0 is contributing only for m = 0. Second
boundary condition (eq. SI-II.2b) is given by requiring

•

lim
ε→0

∫
D(ε)

dr
[
κ∇4 − σ∇2 + γ

]
ψj(r) + λψj(0) = 0. (SI-II.19)

By solving the integral, one obtains

bn0 = Πn(an0 + dn0), (SI-II.20)

where

Π(qn0) = Πn =
λ

8κ(q2
n0 + σ

2κ ) + λ
π ln(1 + σ

κq2n0
)
. (SI-II.21)

Inserting eq. SI-II.20 into eq. SI-II.18 leads to

Rnm(r) = anmJm(qnmr) + dnmIm(Qnmr) + δm0Πn(anm + dnm)

(
Ym(qnmr) +

2

π
Km(Qnmr)

)
. (SI-II.22)

At the membrane boundary r = P , conditions are given by
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• vanishing of the membrane profile (eq. SI-II.2c)

Rnm(P ) = 0 (SI-II.23)

and

• vanishing of the Laplacian of the membrane profile (eq. SI-II.2d)

∆Rnm(P ) = 0. (SI-II.24)

Conditions given by eqs.SI-II.23 and SI-II.24 lead to

dnm = −δm0Xnanm, (SI-II.25)

where

X(qn0) = Xn =
Πn

2
πK0(Qn0P )/I0(Qn0P )

1 + Πn
2
πK0(Qn0P )/I0(Qn0P )

. (SI-II.26)

Inserting eq. SI-II.25 into eq. SI-II.22 leads to

Rnm(r) =anm

{
Jm(qnmr)− δm0

[
XnIm(Qnmr) + Πn(Xn − 1)

(
Ym(qnmr) +

2

π
Km(Qnmr)

)]}
. (SI-II.27)

Coefficient anm will be used to normalize the basis functions just before we take the limit P → ∞. Conditions
given by eqs. SI-II.23 and SI-II.24 lead to the condition for the allowed qmn

Ym(qnmP )

Jm(qnmP )
= −

(
1

δm0Πn
+

2

π

Km(QnmP )

Im(QnmP )

)
. (SI-II.28)

To summarize, the series representation of a circular pinned membrane of radius P is given in terms of orthogonal
functions Rnm(r)eimφ as

u(r) =

∞∑
m=−∞

∞∑
n=1

〈u(r), Rnm(r)eimφ〉
〈Rnm(r)eimφ, Rnm(r)eimφ〉

Rnm(r)eimφ, (SI-II.29)

where Rnm(r) is given by eq. SI-II.27, while qnm and eigenvalues Enm are given by equations SI-II.15 and SI-II.28.

C. Integral representation of the membrane profile - Solution to the infinite radius problem

1. Asymptotic behaviour of the series solution for large membrane radius

If the membrane spatial dimension is much larger then the spatial dimension of the pinning effect, system behaves
as if the membrane radius is infinite and the pinning is localized at the origin. To describe this situation we investigate
the asymptotic behavior of the series representation (eq. SI-II.29) for large radius P . As qnm > 0, we use asymptotic
forms of Bessel functions for large P [1]

Jm(qnmP ) ∼
√

2

πqnmP
cos(qnmP −

π

4
−mπ

2
), Ym(qnmP ) ∼

√
2

πqnmP
sin(qnmP −

π

4
−mπ

2
) as qnmP →∞,

(SI-II.30)

Im(QnmP ) ∼ 1√
2π

eQnmP√
QnmP

, Km(QnmP ) ∼
√
π

2

e−QnmP√
QnmP

as QnmP →∞, (SI-II.31)

and find the asymptotic form of (eq. SI-II.28)

qnm ∼
nπ

P
+

1

P

[
π

4
+m

π

2
− arctan

(
1

δm0Πn

)]
, n ∈ N, P →∞. (SI-II.32)
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For any m, we let n→∞ and P →∞ such that the first term in eq. SI-II.32 dominates and we find

qnm ∼
nπ

P
:= n∆q, n→∞ and P →∞. (SI-II.33)

Changing notation from Rnm(r) to Rm(r, n∆q) and defining

um(r) =
1

2π

∫ 2π

0

dφ u(r)e−imφ (SI-II.34)

Um(n∆q, P ) =2π

∫ P

0

dr rum(r)R∗m(r, n∆q), (SI-II.35)

eq. SI-II.29 can be written as

u(r) =

∞∑
m=−∞

∞∑
n=1

Um(n∆q, P )

2π
∫ P

0
drr|Rm(r, n∆q)|2

Rm(r, n∆q)eimφ. (SI-II.36)

Prefactors containing 2π in eqs. SI-II.34-SI-II.36 are distributed in a way to obtain the Fourier transform norm
convention in the limit λ→ 0, as will be shown.

Using asymptotic forms (eq. SI-II.31) for large P and the fact that the Πn is bounded we find

lim
P→∞

XnI0(Qn0r) = 0, lim
P→∞

XnY0(qn0r) = 0, lim
P→∞

XnK0(Qn0r) = 0. (SI-II.37)

Therefore, asymptotic form of eq. SI-II.27 is given by

Rnm(r) ∼ anm
{
Jm(qnmr) + δm0

[
Πn

(
Ym(qnmr) +

2

π
Km(Qnmr)

)]}
, P →∞. (SI-II.38)

2. Normalization

We now calculate the normalization

2π

∫ P

0

drr|Rm(r, n∆q)|2. (SI-II.39)

(m = 0)

1

|an0|2

∫ P

0

drr|R0(r, qn0)|2 =

P 2

2

[
J2

0 (qn0P ) + J2
1 (qn0P ) + Π2

n

[
Y 2

0 (qn0P ) + Y 2
1 (qn0P )

]
+

4Π2
n

π2

[
K2

0 (Qn0P ) +K2
1 (Qn0P )

]
+ 2Πn

[
J0(qn0P )Y0(qn0P ) + J1(qn0P )Y1(qn0P )

]]
+

4

π

Πn

Q2
n0 + q2

n0

[
1 +

2

π
Πn ln

(
qn0

Qn0

)]
+
q2
n −Q2

n0

Q2
nq

2
n0

2Π2
n

π

+
4ΠnP

π(Q2
n0 + q2

n)
[qn0J1(qn0P )K0(Qn0P )−Qn0J0(qn0P )K1(Qn0P ) + Πn [qn0Y1(qn0P )K0(Qn0P )−Qn0Y0(qn0P )K1(Qn0P )]] .

(SI-II.40)

Because qn > 0, we can use asymptotic forms (eqs. SI-II.30 and SI-II.31) as P →∞ and after keeping the highest
order terms of P we find

1

|an0|2

∫ P

0

drr|R0(r, qn0)|2 ∼ P

πqn0
(1 + Π2

n) as P →∞. (SI-II.41)

(m 6= 0)
Eq. SI-II.38 gives

Rnm(r) = anmJm(qnmr), (SI-II.42)
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and eq. SI-II.32 gives

qnm =
1

P

(
nπ +

π

4
+ (m− 1)

π

2

)
. (SI-II.43)

Inserting eq. SI-II.42 into eq. SI-II.39 and solving the integral yields

1

|anm|2

∫ P

0

drr|Rm(r, qnm)|2 =
P

2qnm

(
qnmPJ

2
m−1(qnmP )− 2mJm−1(qnmP )Jm(qnm) + qnmPJ

2
m(qnmP )

)
.

(SI-II.44)

By condition eq. SI-II.23, the second and third terms vanish leaving

1

|anm|2

∫ P

0

drr|Rm(r, qnm)|2 =
P 2

2
J2
m−1(qnmP ). (SI-II.45)

Using the asymptotic form of Jm (eq. SI-II.30) we find

1

|anm|2

∫ P

0

drr|Rm(r, qnm)|2 ∼ P

πqnm
cos2(qnmP −

π

4
− (m− 1)π

2
). (SI-II.46)

Inserting eq. SI-II.43 into eq. SI-II.46 leads to

1

|anm|2

∫ P

0

drr|Rm(r, qnm)|2 ∼ P

πqnm
as P →∞. (SI-II.47)

Therefore, asymptotic behaviour of the normalization as P →∞ is given by

2π

∫ P

0

drr|Rm(r, n∆q)|2 = |anm|2
2P

n∆q
(1 + δm0(Π(n∆q))2) = |anm|2

2π

∆q(n∆q)
(1 + δm0(Π(n∆q))2), (SI-II.48)

where Π(n∆q) is given by eq. SI-II.21.

3. Infinite radius limit of the series

Inserting eq. SI-II.48 into eq. SI-II.36 we find

u(r) =

∞∑
m=−∞

∞∑
n=1

∆q(n∆q)
Um(n∆q, P )

2π|anm|2(1 + δm0(Π(n∆q))2)
Rm(r, n∆q)eimφ. (SI-II.49)

We now set

anm =
im√(

1 + δm0 (Π(n∆q))
2
) (SI-II.50)

in eqs. SI-II.27 and SI-II.49, where factor im in eq. SI-II.50 was chosen to obtain the conventional form of the Fourier
transform in polar coordinates [2] in the limit λ→ 0. With the use of eq. SI-II.50, eq. SI-II.49 simplifies to

u(r) =
1

2π

∞∑
m=−∞

∞∑
n=1

∆q(n∆q)Um(n∆q, P )Rm(r, n∆q)eimφ, (SI-II.51)

where

Rnm(r, n∆q) =
im√(

1 + δm0 (Π(n∆q))
2
)×

×
{
Jm(n∆qr)− δm0

[
X(n∆q)Im

(√
(n∆q)2 +

σ

κ
r

)
+ Π(n∆q)(1−X(n∆q))

(
Ym(n∆qr) +

2

π
Km

(√
(n∆q)2 +

σ

κ
r

))]}
.

(SI-II.52)
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By letting P →∞, ∆q → dq and n∆q → q, we find

u(r) =
1

2π

∞∑
m=−∞

∫ ∞
0

dqqUm(q)Rm(r, q)eimφ, (SI-II.53)

where

Um(q) =2π

∫ ∞
0

drr um(r)R∗m(r, q) (SI-II.54)

and Rm(r, q) is given by

Rm(r, q) =
im√(

1 + δm0 (Π(q))
2
) [Jm(qr) + δm0Π(q)

(
Ym(qr) +

2

π
Km(Qr)

)]
. (SI-II.55)

4. Summary of the solution

To summarize, a profile of a pinned membrane can be expanded in the basis functions ψm(r, q) = Rm(r, q)eimφ as

u(r) =

∞∑
m=−∞

um(r)eimφ =
1

2π

∞∑
m=−∞

∫ ∞
0

dqqUm(q)Rm(r, q)eimφ =
1

(2π)2

∞∑
m=−∞

∫
R2

dq U(q)e−imθψm(r, q),

(SI-II.56)

where q = (q, θ) and ψm(r, q) satisfy the orthogonality condition∫
R2

drψm(r, q)ψ∗m′(r, q
′) =

δ(q − q′)
q

2πδm,m′ (SI-II.57)

and the eigenequation [
κ∇4 − σ∇2 + γ + λδ(r)

]
ψm(r, q) = Eqψm(r, q), (SI-II.58)

where continuous eigenvalues Eq are given by

Eq = κq4 + σq2 + γ. (SI-II.59)

Multiplying eq. SI-II.54 with eimθ, where θ is the angle coordinate of a vector q = (q, θ), and summing over m gives
the q-space transform U(q) = U(q, θ) of u(r)

U(q) =

∞∑
m=−∞

Um(q)eimθ =2π
∞∑

m=−∞

∫ ∞
0

drr um(r)R∗m(r, q)eimθ =

∞∑
m=−∞

∫
R2

dr u(r)eimθψ∗m(r, q). (SI-II.60)

Eqs. SI-II.56 and SI-II.60 make a transform pair that enables us to switch between the r and q spaces during
calculations.

5. Free membrane limit

For pinning stifness λ→ 0, we have Π(q)→ 0 and Rm(r, q)→ imJm(qr) and eqs. SI-II.56 and SI-II.60 reduce to

U(q) =

∞∑
m=−∞

2πi−meimθ
∫ ∞

0

drr um(r)Jm(qr) (SI-II.61)

u(r) =

∞∑
m=−∞

im

2π
eimφ

∫ ∞
0

dqqUm(q)Jm(qr), (SI-II.62)
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with

Um(q) = 2πi−m
∫ ∞

0

drr um(r)Jm(qr) (SI-II.63)

um(r) =
im

2π

∫ ∞
0

dqqUm(q)Jm(qr), (SI-II.64)

which is a 2D Fourier transform pair expresed in polar coordinates [2], which is in agreement with the fact that
plane waves satisfy eigenequation SI-II.3 with λ = 0.

D. Static properties at the pinning position

1. Fluctuations

We now show a few calculations that verify that the found orthonormal functions ψm(r, q) satisfy

〈v(r1)v∗(r2)〉 = g(r1|r2) =
1

2π

∞∑
m=−∞

∫ ∞
0

dqq
ψm(r1, q)ψ

∗
m(r2, q)

Eq
. (SI-II.65)

For λ→ 0, eq. SI-II.65 becomes

〈vf (r1)v∗f (r2)〉 = gf (r1|r2) =
1

2π

∞∑
m=−∞

∫ ∞
0

dqq
Jm(qr1)Jm(qr2)eim(φ1−φ2)

Eq

=
1

2π

∫ ∞
0

dqq
J0(q|r1 − r2|)

Eq
, (SI-II.66)

where we used the Graf/Neumman addition formula

J0(|r1 − r2|) = J0(
√
r2
1 + r2

2 − 2r1r2 cos(φ1 − φ2)) =

∞∑
m=−∞

Jm(r1)Jm(r2)eim(φ1−φ2). (SI-II.67)

We have therefore successfully reproduced the result for the free membrane two-point correlation function. Setting
r1 = r2 = r in eq. SI-II.65 we find the fluctuation amplitude

〈v2(r)〉 =
1

2π

∞∑
m=−∞

∫ ∞
0

dqq
|ψm(r, q)|2

Eq
. (SI-II.68)

At the pinning site r = 0

〈v2(0)〉 =
1

2π

∞∫
0

dq
q

κq4 + σq2 + γ

(
8κq2 + 4σ

)2
λ2 +

[
8κq2 + 4σ + λ

π ln (1 + σ/(κq2))
]2 =

1

λ+ λm
. (SI-II.69)

2. Mean shape

Expanding the mean shape in ψm(r, q) = Rm(r, q)eimφ gives

〈u(r)〉 =
1

2π

∞∑
m=−∞

∫ ∞
0

dqq〈Um(q)〉ψm(r, q), (SI-II.70)

where 〈Um(q)〉 are the coefficients of the expansion yet to be determined. Inserting eq. SI-II.70 into the equation
SI-I.8 for the mean shape with r0 = 0, and using eq. SI-II.58 we find

1

2π

∞∑
m=−∞

∫ ∞
0

dqq〈Um(q)〉Eqψm(r, q) = λ(l0 − h0)δ(r). (SI-II.71)
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Multiplying by ψm′(r, q
′), integrating over r, using the orthonormality eq. SI-II.57 between different basis functions

and δ(r) = δ(r)/(2πr) leads to the coefficients of expansion

〈Um(q)〉 = λ(l0 − h0)
δm0R

∗
m(0, q)

Eq
. (SI-II.72)

Expansion of the mean membrane shape is, therefore, given only by m = 0 modes:

〈u(r)〉 = λ(l0 − h0)
1

2π

∫ ∞
0

dqq
R0(r, q)R∗0(0, q)

Eq
. (SI-II.73)

At the pinning site r = 0

〈u(0)〉 =λ(l0 − h0)
1

2π

∫ ∞
0

dqq
|ψ0(0, q)|2

Eq

=
λ

λ+ λm
(l0 − h0), (SI-II.74)

where last equality follows from eq. SI-II.69.
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III. PLANE WAVE MODE COUPLING

A. Gaussian integrals

For a symmetric n× n-dimensional matrix A, with inverse A−1, n-dimensional vector B and n-dimensional vector
x, Gaussian integral is given by

∞∫
−∞

dnx exp

[
−1

2
xTAx + BT ·x

]
=

 ∞∫
−∞

dnx exp

[
−1

2
xTAx

] exp

[
1

2
BTA−1B

]
=

√
(2π)n

detA
exp

[
1

2
BTA−1B

]
,

(SI-III.1)

where T denotes the matrix transpose. First moment of xi is given by

〈xi〉 ≡
1

Z

∞∫
−∞

dnxxi exp

[
−1

2
xTAx + BT ·x

]
=
∑
k

A−1
ik Bk (SI-III.2)

and the second moment is given by

〈xixj〉 ≡
1

Z

∞∫
−∞

dnxxixj exp

[
−1

2
xTAx + BT ·x

]
= A−1

ij +
∑
kl

A−1
ik BkA

−1
jl Bl. (SI-III.3)

Here, the partition function Z is used,

Z ≡
∞∫
−∞

dnx exp

[
−1

2
xTAx + BT ·x

]
. (SI-III.4)

Hubbard-Stratonovich transformation is given by

exp
{
−a

2
x2
}

=

√
1

2πa

∞∫
−∞

dy exp

[
−y

2

2a
− ixy

]
. (SI-III.5)

B. Plane wave expansion of the Hamiltonian

Expanding the membrane profile into Fourier series

u(r) =
∑
k

ukeikr, (SI-III.6)

and taking into account that u(r) ∈ R, uk = u∗−k and thus |uk|2 = u∗kuk = u−kuk, the Hamiltonian (eq. SI-I.3) writes

H =
A

2

∑
k

(κk4 + σk2 + γ)|uk|2 +
λ

2

(∑
k

ukeikr0 + (h0 − l0)

)2

. (SI-III.7)
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Exponential of the Hamiltonian becomes

exp[−H] = exp

−A
2

∑
k

(κk4 + σk2 + γ)|uk|2 −
λ

2

(∑
k

ukeikr0 + (h0 − l0)

)2


eq.SI−III.5
=

∫ ∞
−∞

dφ

(2πλ)1/2
exp

[
−A

2

∑
k

(κk4 + σk2 + γ)|uk|2 −

(
φ2

2λ
− iφ

(∑
k

ukeikr0 + (h0 − l0)

))]

=

∫ ∞
−∞

dφ

(2πλ)1/2
exp

[
−1

2
uDu + J · u− 1

2

φ2

λ
+Kφ

]
. (SI-III.8)

Here, we use the definitions

Dk,k′ := A(κk4 + σk2 + γ)δ(k + k′), (SI-III.9)

Jk := iφeikr0 , (SI-III.10)

K := i(h0 − l0) (SI-III.11)

and we omitted the matrix transpose notation, but it is assumed where necessary.

C. Mean mode amplitude

In reality, membrane’s motion is restricted inside some interval uk ∈ (s−, s+), where s− could be the position of
a substrate or another cell and s+ the position of internal cell structures that block further membrane motion. The
mean Fourier amplitude is thus given by

〈uk〉 =

∫ s+
s−

du uk exp[−H]∫ s+
s−

du exp[−H]
, (SI-III.12)

But when the system’s parameters (κ, σ, γ, λ) are such that exp[−H] ≈ 0 for |uk| > s−, s+ (regime of small fluctua-
tions), we can extend the limits of integration in eq. SI-III.12 to infinity with the aim of obtaining Gaussian integrals.
Therefore, with this approximation we obtain

〈uk〉 =

∫∞
−∞ du uk exp[−H]∫∞
−∞ du exp[−H]

eq.SI−III.8
=

1∫∞
−∞ du exp[−H]

∫ ∞
−∞

dφ

(2πλ)1/2
exp

[
−1

2

φ2

λ
+Kφ

] ∫ ∞
−∞

du uk exp

[
−1

2
uDu + J · u

]
eq.SI−III.1,SI−III.2

=
1∫∞

−∞ du exp[−H]

∫ ∞
−∞

dφ

(2πλ)1/2
exp

[
−1

2

φ2

λ
+Kφ

] ∫ ∞
−∞

du exp

[
−1

2
uDu

]
exp

[
1

2
JD−1J

]∑
k

D−1
k,k′Jk′

=

∫∞
−∞ du exp

[
− 1

2uDu
]∫∞

−∞ du exp[−H]

∫ ∞
−∞

dφ

(2πλ)1/2
exp

[
−1

2

φ2

λ
+Kφ

]
exp

[
−1

2

∑
k

φ2

A(κk4 + σk2 + γ)

](
ie−ikr0φ

A(κk4 + σk2 + γ)

)

=

∫∞
−∞ du exp

[
− 1

2uDu
]∫∞

−∞ du exp[−H]

ie−ikr0

A(κk4 + σk2 + γ)

∫ ∞
−∞

dφ

(2πλ)1/2
φ exp

[
−1

2

(
1

λ
+
∑
k

1

A(κk4 + σk2 + γ)

)
φ2 +Kφ

]
eq.SI−III.2

=

∫∞
−∞ du exp

[
− 1

2uDu
]∫∞

−∞ du exp[−H]

ie−ikr0

A(κk4 + σk2 + γ)

∫ ∞
−∞

dφ

(2πλ)1/2
exp

[
−1

2

(
1

λ
+
∑
k

1

A(κk4 + σk2 + γ)

)
φ2 +Kφ

]
×

×K

(
1

λ
+
∑
k

1

A(κk4 + σk2 + γ)

)−1

= −(h0 − l0)
e−ikr0

A(κk4 + σk2 + γ)

(
1

λ
+
∑
k

1

A(κk4 + σk2 + γ)

)−1

, (SI-III.13)

where in the last step we used
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∫ ∞
−∞

du exp[−H]
eq.SI−III.8

=

∫ ∞
−∞

dφ

(2πλ)1/2
exp

[
−1

2

φ2

λ
+Kφ

] ∫ ∞
−∞

du exp

[
−1

2
uDu + J · u

]
eq.SI−III.1

=

∫ ∞
−∞

dφ

(2πλ)1/2
exp

[
−1

2

φ2

λ
+Kφ

] ∫ ∞
−∞

du exp

[
−1

2
uDu

]
exp

[
1

2
JD−1J

]
=

∫ ∞
−∞

du exp

[
−1

2
uDu

] ∫ ∞
−∞

dφ

(2πλ)1/2
exp

[
−1

2

(
1

λ
+
∑
k

1

A(κk4 + σk2 + γ)

)
φ2 +Kφ

]
(SI-III.14)

and inserted eq. SI-III.11.

D. Mean shape

For the mean shape we find from eq. SI-III.6

〈u(r)〉 =
∑
k

〈uk〉eikr. (SI-III.15)

Combining eqs. SI-III.15 and SI-III.12 we obtain the mean shape for a pinned membrane of surface A

〈u(r)〉 =(l0 − h0)

(
1

λ
+

1

A

∑
k

1

(κk4 + σk2 + γ)

)−1
1

A

∑
k

eik(r−r0)

κk4 + σk2 + γ
. (SI-III.16)

In the limit of an infinite membrane (A→∞), k becomes continuous and sums transforms to corresponding integrals,
namely Fourier series (eq. SI-III.15) becomes a Fourier transform

〈u(r)〉A→∞ =
1

(2π)2

∫
R2

dk〈u(k)〉eikr, (SI-III.17)

and mean shape eq. SI-III.16 becomes

〈u(r)〉A→∞ =(l0 − h0)

(
1

λ
+

1

λm

)−1
1

(2π)2

∫
R2

dk
eik(r−r0)

κk4 + σk2 + γ

=(l0 − h0)
λλm
λ+ λm

G(r− r0), (SI-III.18)

where we used the notation

G(r− r′) := lim
A→∞

1

A

∑
k

eik(r−r′)

κk4 + σk2 + γ
=

1

(2π)2

∫
R2

dk
eik(r−r′)

κk4 + σk2 + γ
, 1/λm := G(0). (SI-III.19)

From eqs. SI-III.17 and SI-III.18 we find the mean Fourier amplitude for an infinite membrane

〈u(k)〉 =
λλm
λ+ λm

(l0 − h0)
e−ikr0

κk4 + σk2 + γ
. (SI-III.20)
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E. Mode coupling

In the regime of small fluctuations, mode coupling coefficients are given by

〈ukuk′〉A =

∫∞
−∞ du ukuk′ exp[−H]∫∞
−∞ du exp[−H]

=
1∫∞

−∞ du exp[−H]

∫ ∞
−∞

dφ

(2πλ)1/2
exp

[
−1

2

φ2

λ
+Kφ

] ∫ ∞
−∞

du ukuk′ exp

[
−1

2
uDu + J · u

]
eq.SI−III.1,SI−III.3

=

∫∞
−∞ du exp

[
− 1

2uDu
]∫∞

−∞ du exp[−H]

∫ ∞
−∞

dφ

(2πλ)1/2
exp

[
−1

2

φ2

λ
+Kφ

]
exp

[
1

2
JD−1J

]D−1
k,k′ +

∑
l,m

D−1
k,lJlD

−1
k′,mJm


=

∫∞
−∞ du exp

[
− 1

2uDu
]∫∞

−∞ du exp[−H]

∫ ∞
−∞

dφ

(2πλ)1/2
exp

[
−1

2

(
1

λ
+
∑
k

1

A(κk4 + σk2 + γ)

)
φ2 +Kφ

]
×

×

(
δ(k + k′)

A(κk4 + σk2 + γ)
− e−ikr0

A(κk4 + σk2 + γ)

e−ik
′r0

A(κk′4 + σk′2 + γ)
φ2

)

=

∫∞
−∞ du exp

[
− 1

2uDu
]∫∞

−∞ du exp[−H]

∫ ∞
−∞

dφ

(2πλ)1/2
exp

[
−1

2

(
1

λ
+
∑
k

1

A(κk4 + σk2 + γ)

)
φ2 +Kφ

]
×

×

(
δ(k + k′)

A(κk4 + σk2 + γ)
− e−ikr0

A(κk4 + σk2 + γ)

e−ik
′r0

A(κk′4 + σk′2 + γ)
×

×

( 1

λ
+
∑
k

1

A(κk4 + σk2 + γ)

)−1

+K2

(
1

λ
+
∑
k

1

A(κk4 + σk2 + γ)

)−2


=
δ(k + k′)

A(κk4 + σk2 + γ)
− e−ikr0

A(κk4 + σk2 + γ)

e−ik
′r0

A(κk′4 + σk′2 + γ)

(
1

λ
+
∑
k

1

A(κk4 + σk2 + γ)

)−1

−

− e−ikr0

A(κk4 + σk2 + γ)

e−ik
′r0

A(κk′4 + σk′2 + γ)
K2

(
1

λ
+
∑
k

1

A(κk4 + σk2 + γ)

)−2

=
δ(k + k′)

A(κk4 + σk2 + γ)
− e−ikr0

A(κk4 + σk2 + γ)

e−ik
′r0

A(κk′4 + σk′2 + γ)

(
1

λ
+
∑
k

1

A(κk4 + σk2 + γ)

)−1

+

+ 〈uk〉〈uk′〉. (SI-III.21)

F. Correlation function

For the correlations we find from eq. SI-III.6

〈v(r)v(r′)〉 =
∑
k,k′

〈ukuk′〉Aeikreik
′r′ −

∑
k

〈uk〉Aeikr
∑
k′

〈uk′〉Aeik
′r′ . (SI-III.22)

Combining eqs. SI-III.21 and SI-III.22 we obtain the correlation function for a pinned membrane of surface A

〈v(r)v(r′)〉 =
∑
k

eik(r−r′)

κk4 + σk2 + γ
−

(
1

λ
+
∑
k

1

A(κk4 + σk2 + γ)

)−1∑
k

eik(r−r0)

κk4 + σk2 + γ

∑
k

eik(r′−r0)

κk4 + σk2 + γ
.

(SI-III.23)

In the limit of an infinite membrane (A→∞), eq. SI-III.22 becomes

〈v(r)v(r′)〉A→∞ =
1

(2π)4

∫
R2

dk

∫
R2

dk′〈u(k)u(k′)〉eikreik
′r′ − 1

(2π)4

∫
R2

dk

∫
R2

dk′〈u(k)〉〈u(k′)〉eikreik
′r′ .

(SI-III.24)
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and eq. SI-III.23 becomes

〈v(r)v(r′)〉A→∞ = G(r− r′)− λλm
λ+ λm

G(r− r0)G(r0 − r′), (SI-III.25)

where we have used notation from eq. SI-III.19. From eqs. SI-III.24 and SI-III.25 we find the mode coupling
coefficients for an infinite membrane

〈u(k)u(k′)〉 =
δ(k + k′)

κk4 + σk2 + γ
+ 〈u(k)〉〈u(k′)〉 − λλm

λ+ λm

e−ikr0

κk4 + σk2 + γ

e−ik
′r0

κk′4 + σk′2 + γ
. (SI-III.26)

IV. FREE ENERGY OF A MEMBRANE WITH TWO EQUAL PINNINGS

Using the k space representation of the Hamiltonian (eq. SI-III.8) the partition function for a membrane with two
equal pinnings is

Z =

∫ ∞
−∞

du exp [−H]

=

∫ ∞
−∞

duk exp

−A
2

∑
k

(κk4 + σk2 + γ)|uk|2 −
2∑
j=1

λ

2

(∑
k

ukeikrj + (h0 − l0)

)2


eq.SI−III.5
=

∫ ∞
−∞

duk

∫ ∞
−∞

dφ1

(2πλ)1/2

∫ ∞
−∞

dφ2

(2πλ)1/2
exp

−A
2

∑
k

(κk4 + σk2 + γ)|uk|2 −
2∑
j=1

(
φ2
j

2λ
− iφj

(∑
k

ukeikrj + (h0 − l0)

))
= N

∫ ∞
−∞

dφ1

(2πλ)1/2

∫ ∞
−∞

dφ2

(2πλ)1/2
exp

 2∑
j=1

(
−
φ2
j

2λ
− iφj(h0 − l0)

) exp

− 1

2A

∑
k

2∑
i,j=1

φi
eik(ri−rj)

κk4 + σk2 + γ
φj


= N

∫ ∞
−∞

dφ1

(2πλ)1/2

∫ ∞
−∞

dφ2

(2πλ)1/2
exp

 2∑
j=1

(
−
φ2
j

2λ
− iφj(h0 − l0)

) exp

−1

2

2∑
i,j=1

φigf (ri − rj)φj


= N

∫ ∞
−∞

dφ1

(2πλ)1/2

∫ ∞
−∞

dφ2

(2πλ)1/2
exp

−1

2

2∑
i,j=1

φi

(
δij
λ

+ gf (ri − rj)

)
φj − i

2∑
j=1

φj(h0 − l0)


= N 1

λ
√

detM
exp

−1

2

2∑
i,j=1

(h0 − l0)2M−1
ij

 , (SI-IV.1)

where

Mij =
δij
λ

+ gf (ri − rj) (SI-IV.2)

and N is the partition function of a membrane without pinnings. Dividing Z with the partition function Zf of the
free membrane and unrestrained pinnings, given by

Zf =

∫ ∞
−∞

du

∫ ∞
−∞

dl1

∫ ∞
−∞

dl2 exp [−H] exp

− 2∑
j=1

λ

2
l2j

 = N
(

2π

λ

)
, (SI-IV.3)

we find the free energy of the membrane with two pinnings

F = − ln

(
Z
Zf

)
=

1

2
(h0 − l0)2

2∑
i,j=1

M−1
ij +

1

2
ln detM

=
1

2
(h0 − l0)2 2K

1 +Kgf (r1 − r2)
+

1

2
ln
(
1/K2 − g2

f (r1 − r2)
)

=
K(h0 − l0)2

1 +Kgf (r1 − r2)
+

1

2
ln
(
1−K2g2

f (r1 − r2)
)
− 1

2
lnK2, (SI-IV.4)
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which is, without the constant term, the interaction potential between two equal pinnings used in the manuscript.

V. ASYMPTOTIC BEHAVIOUR

Using r = |r− r′|, the correlation function of the free membrane is

gf (r) =
K0(a−r)−K0(a+r)

2πσ

√
1−

(
λ0
m

4σ

)2
, (SI-V.1)

with

a± =

 σ

2κ

1±

√
1−

(
λ0
m

4σ

)2
1/2

. (SI-V.2)

For the special values σ = 0 and σ = 1
4λ

0
m, the formula can be written by the Kelvin function

gf (r)|σ=0 = − 4

πλ0
m

kei0

(
r

ξ‖

)
, (SI-V.3)

or the Bessel function

gf (r)|σ= 1
4λ

0
m

= r
ξ‖

4πκ
K1

(
r

ξ‖

)
, (SI-V.4)

which can both be obtained from eq. SI-V.1 as limiting behaviour.
In the case of σ > 1

4λ
0
m, both a+ and a− are real, so we can immediately use the asymptotic expansion of the Bessel

functions [3]. Using its property

Kν(z) ∼
( π

2z

) 1
2

e−z
∞∑
k=0

ak(ν)

zk
(SI-V.5)

for |ph z| ≤ 3
2π − δ and

ak(ν) =
(4ν2 − 12)(4ν2 − 32) . . . (4ν2 − (2k − 1)2)

k!8k
, (SI-V.6)

with a0(ν) = 1 and only looking at the slowest decaying term, one arrives at

gf (r)|σ> 1
4λ

0
m
∼ 1

2πσ

√
1−

(
λ0
m

4σ

)2

√
π

2a−r
e−a−r

(
1−

√
a−
a+

e−(a+−a−)r

)(
1 +O

(
1

r

))
. (SI-V.7)

In the case of 0 < σ < 1
4λ

0
m, a+ and a− are imaginary, so we will rewrite the terms to form the real valued expansion.

One can rewrite the parameters to a± = 1
ξ‖
e±

i
2ψ with ψ = arctan

(√(
λ0
m

4σ

)2

− 1

)
. Plugging this into the asymptotic

expansion yields

gf (r)|0<σ< 1
4λ

0
m
∼ 1

πσ

√(
λ0
m

4σ

)2

− 1

√
πξ‖

2r
sin

(
ψ

4
+

r

ξ‖
sin

(
ψ

2

))
e
− r
ξ‖

cos(ψ2 )
(

1 +O
(

1

r

))
, (SI-V.8)

where all the terms are real valued. For vanishing surface tension, the asymptotic decay needs the asymptotics of the
Kelvin function [3], which are

keiν(x) ∼ −e−
x√
2

( π
2x

) 1
2
∞∑
k=0

ak(ν)

xk
sin

(
x√
2

+

(
ν

2
+
k

4
+

1

8

)
π

)
, (SI-V.9)
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where ak(ν) is the same as in eq. SI-V.6. This allows to check the asymptotics for σ = 0,

gf (r)|σ=0 ∼
4

πλ0
m

√
πξ‖

2r
e
− r√

2ξ‖

(
sin

(
r√
2ξ‖

+
π

8

)
+O

(
1

r

))
. (SI-V.10)

For the case σ = 1
4λ

0
m, the asymptotics are given by

gf (r)|σ= 1
4λ

0
m
∼
ξ‖

4κ

√
ξ‖r

2π
e
− r
ξ‖

(
1 +O

(
1

r

))
. (SI-V.11)

The derivatives can all be calculated from the asymptotics of the Bessel and Kelvin functions. The leading order
of the derivatives is the same as the correlation function itself, as the argument of exponential and sine function are
linear in r.
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