Characterization and Synthesis of Eudistidine C, a Bioactive Marine Alkaloid with an Intriguing Molecular Scaffold

Susanna T. S. Chan,[†] Roger R. Nani,[‡] Evan A. Schauer,[‡] Gary E. Martin,[§] R. Thomas Williamson,[§] Josep Saurí,[§] Alexei V. Buevich,[§] Wes A. Schafer,[§] Leo A. Joyce,[§] Andrew K. L. Goey,[¶] William D. Figg,[¶] Tanya T. Ransom,[†] Curtis J. Henrich,^{†, Δ} Tawnya C. McKee,^{†,#} Arvin Moser,[⊥] Scott A. MacDonald,[⊥] Shabana Khan,^o James B. McMahon,[†] Martin J. Schnermann,^{*,‡} Kirk R. Gustafson^{*,†}

Supporting Information:

- S3 Color *in situ* photograph of *Eudistoma* sp. and UV characterization of eudistidine C (1).
- S4 Experimental and DFT calculated 13 C NMR data for eudistidine C (1)
- S5 DFT calculated 4- and 5-bond carbon-proton coupling constants for eudistidine C (1)
- S6,7 Data input for ACD/Structure Elucidator
- S8 Top 8 candidates generated by ACD/Structure Elucidator
- S9 Long-range LR-HSQMBC correlations for eudistidine C (1)
- S10 LR-HSQMBC spectrum of eudistidine C (1)
- S11 ¹³C NMR chemical shift comparison of eudistidine C natural product vs synthetic product
- S12 ¹H NMR chemical shift comparison of eudistidine C natural product vs synthetic product
- S13 Chiral resolution of eudistidine C (1) natural product
- S14 Preparative chiral separation of synthetic eudistidine C (1)
- S15 Experimental ECD spectra for (+)-*R*-eudistidine C (1a) and (-)-*S*-eudistidine C (1b)
- S16 Conformational analysis and ECD calculation for (+)-*R*-eudistidine C (1b)
- S17 p300/HIF-1 α assay and testing results
- S18 Antimalarial screening assay and testing results
- S19,20 Molecular model and atomic coordinates of eudistidine C (1)
- S21 Eudistidine C (1) ¹H NMR spectrum (600 MHz, CD₃OD)
- S22 Eudistidine C (1) ¹³C NMR spectrum (150 MHz, CD₃OD)
- S23 Eudistidine C (1) COSY spectrum (CD₃OD)
- S24 Eudistidine C (1) HSQC spectrum (CD₃OD)
- S25 Eudistidine C (1) HMBC spectrum (CD₃OD)
- S26 Eudistidine C (1) 15 N- 1 H HMBC spectrum (CD₃OD)
- S27 Synthetic eudistidine C (1) free base ¹H NMR spectrum (600 MHz, CD₃OD)

- S28 Synthetic eudistidine C (1) free base ¹³C NMR spectrum (150 MHz, CD₃OD)
- S29 Synthetic eudistidine C (1) TFA salt ¹H NMR spectrum (600 MHz, CD_3OD)
- S30 Synthetic eudistidine C (1) TFA salt ¹³C NMR spectrum (150 MHz, CD₃OD)
- S31 Synthetic eudistidine C (1) free base and TFA salt ¹H NMR spectral comparison (600 MHz, CD₃OD).
- S32 Eudistidine C (1) natural product and synthetic TFA salt ¹H NMR spectral comparison (600 MHz, CD₃OD)
- S33 Eudistidine C (1) natural product and synthetic free base and TFA salt ¹H NMR spectral comparison (600 MHz, CD₃OD)
- S34 Eudistidine C (1) natural product and synthetic free base and TFA salt ¹³C NMR spectral comparison (150 MHz, CD₃OD)
- S35 Synthetic eudistidine C *N*-methylindole analogue (5) 1 H NMR spectrum (600 MHz, CD₃OD)
- S36 Synthetic eudistidine C *N*-methylindole analogue (5) ¹³C NMR spectrum (150 MHz, CD₃OD)
- S37 Synthetic eudistidine C 3-methylindole analogue (6) 1 H NMR spectrum (600 MHz, CD₃OD)
- S38 Synthetic eudistidine C 3-methylindole analogue (6) ¹³C NMR spectrum (150 MHz, CD₃OD)
- S39 Synthetic eudistidine C *N*-methylpyrrole analogue (7) 1 H NMR spectrum (600 MHz, CD₃OD)
- S40 Synthetic eudistidine C *N*-methylpyrrole analogue (7) ¹³C NMR spectrum (150 MHz, CD₃OD)
- S41 Synthetic eudistidine C *p*-phenol analogue (8) ¹H NMR spectrum (600 MHz, CD₃OD)
- S42 Synthetic eudistidine C *p*-phenol analogue (8) ¹³C NMR spectrum (150 MHz, CD₃OD)
- S43 Synthetic eudistidine C resorcinol analogue (9) ¹H NMR spectrum (600 MHz, DMSO- d_6)
- S44 Synthetic eudistidine C resorcinol analogue (9) 13 C NMR spectrum (150 MHz, DMSO- d_6)
- S45 Synthetic eudistidine C phloroglucinol analogue (10) 1 H NMR spectrum (600 MHz, CD₃OD)
- S46 Synthetic eudistidine C phloroglucinol analogue (10) 13 C NMR spectrum (150 MHz, CD₃OD)
- S47 Imidazole 4 ¹H NMR spectrum (600 MHz, DMSO-*d*₆)

Color in situ photograph of Eudistoma sp.

UV/Vis Absorption Profile of Eudistidine C (1)

pH effects on the UV/Vis absorption spectra of eudistidine C (1). Absorbance maxima were observed at 446 and 404 nm with the isobestic point at 420 nm.

	Experimentally	DFT
Desition	measured	calculated
Position	$\delta_{ m C}$	$\delta_{ m C}$
2	167.5	166.1
3	94.3	93.0
3a	147.4	146.5
3b	117.6	117.1
4	126.1	126.2
5	130.2	128.7
6	136.5	136.3
7	129.7	129.2
7a	147.0	146.8
8a	159.5	160.0
8c	157.3	156.2
10	73.7	75.5
11	130.9	134.7
12 & 16	129.8	128.9
13 & 15	115.2	113.3
14	161.7	160.3
14-OMe	55.8	53.5
17	126.1	125.9
19	148.0	143.5
21	127.5	124.9
22	120.0	122.1
23 & 27	131.9	132.8
24 & 26	115.7	113.9
25	159.3	157.5

Fynorima	antal and DFT	Calculated 1	³ C NMR Data	for Fudistidino	C(1) in	CD.OD
Едрини	lital and DF I	Calculation		Ior Equipitation	C (1) III	

DFT Calculated 4- and 5-Bond Carbon-Proton Coupling Constants for Eudistidine C (1)^a

^afour-bond couplings highlighted in green and five-bond couplings in pink

Summary of the Spectroscopic Data Used by ACD/Structure Elucidator

The following input was used in ACD/Structure Elucidator: molecular formula $C_{28}H_{21}O_2N_7$, two *para*disubstituted benzene rings, a 1,2-disubstituted benzene ring, and the chemical shift data below. The software was run on a PC with Windows 7, Dual Core CPU 2.9 GHz and 16 GB RAM.

1H			13C			COSY		
				Shift				
#	Shift (ppm)	Atoms	#	(ppm)	XHn	#	F2(ppm)	F1(ppm)
1	3.75	3	1	55.86	CH3(q)	1	6.29	6.84
2	6.29	2	2	94.31	CH(d)	2	6.84	6.29
3	6.76	1	3	115.22	CH(d)	3	7.57	7.80
4	6.84	2	4	115.66	CH(d)	4	7.57	8.05
5	6.90	2	5	117.64	C(s)	5	7.64	7.80
6	7.57	1	6	120.01	C(s)	6	7.67	6.90
7	7.64	1	7	126.14	CH(d)	7	7.80	7.64
8	7.67	2	8	127.51	C(s)	8	8.05	7.57
9	7.80	1	9	129.75	CH(d)	9	8.43	6.76
10	8.05	1	10	129.78	CH(d)			
11	8.43	1	11	130.15	CH(d)			
			12	130.94	C(s)			
			13	131.89	CH(d)			
			14	136.46	CH(d)			
			15	146.97	C(s)			
			16	147.39	C(s)			
			17	148.04	C(s)			
			18	157.24	C(s)			
			19	159.28	C(s)			
			20	159.47	C(s)			
			21	161.68	C(s)			
			22	167.50	CH(d)			

LR-HSQMBC			HSQC			HMBC		
#	F2(ppm)	F1(ppm)	#	F2(ppm)	F1(ppm)	#	F2(ppm)	F1(ppm)
1	3.69	128.28	1	7.80	136.46	1	6.29	115.66
2	3.69	114.00	2	7.67	129.78	2	6.84	131.89
3	3.69	54.49	3	7.64	129.75	3	8.43	94.31
4	3.69	160.90	4	7.57	130.15	4	7.64	130.15
5	6.32	120.55	5	6.29	115.66	5	7.64	117.64
6	6.32	117.20	6	6.84	131.89	6	7.57	117.64
7	6.32	158.44	7	6.76	94.31	7	6.76	117.64
8	6.32	128.08	8	8.43	167.50	8	6.29	120.01
9	6.32	114.61	9	8.05	126.14	9	6.84	127.51
10	6.80	130.66	10	6.90	115.22	10	7.80	146.97
11	6.80	114.61	11	3.75	55.86	11	8.43	147.39
12	6.80	128.08				12	6.76	147.39
			1H-15C					
13	6.80	114.00	HMBC			13	6.84	159.28
14	6.80	67.84	#	F2(ppm)	F1(ppm)	14	6.29	159.28
15	6.80	160.90	1	7.87	169.83	15	7.67	161.68
16	6.80	120.55	2	8.89	236.56	16	8.43	157.24
17	6.80	158.44	3	7.87	236.56	17	8.05	146.97
18	7.58	160.90	4	8.02	267.63	18	8.05	136.46
19	7.58	128.28				19	6.90	130.94
20	7.58	114.00				20	6.90	115.22
21	7.58	120.55				21	3.75	161.68
22	7.58	125.98				22	6.90	161.68
23	7.58	151.72				23	8.43	117.64
24	7.89	137.18				24	6.84	115.66
25	7.89	146.60				25	7.80	126.14
26	7.89	145.22				26	8.05	117.64
27	7.89	125.78				27	6.29	127.51
28	7.89	116.29				28	6.29	131.89
29	7.89	129.32				29	7.57	136.46
30	8.02	125.78				30	7.64	136.46
31	8.02	116.29				31	6.76	167.50
32	8.02	146.60						
33	8.02	145.22						
34	8.02	137.18						
35	8.11	129.32						
36	8.11	145.22						
37	8.11	116.29						
38	8.56	116.29						
39	8.56	129.32						
40	8.56	137.18						

Top 8 Structural Candidates Generated by ACD/Structure Elucidator Program

Top 8 candidates generated by ACD/Structure Elucidator. Structure ranking is based on the overall differences between experimental and predicted ¹³C chemical shifts. The lower the $d_N(^{13}C)$ value, the better the ranking.

Isomers Generated and Time Difference for ACD/Structure Elucidator With and Without the LR-HSQMBC data.

	With LR- HSQMBC*	W/out LR- HSQMBC*
Isomers Generated	35,928	267,468
Post-filter	335	419
Time (seconds)	35	247
Top Candidate	1	1

*Data also includes: molecular formula + NMR (¹H, ¹³C, HSQC, COSY, ¹H-¹³C HMBC, ¹H-¹⁵N HMBC)

Long-Range LR-HSQMBC Correlations Observed for Eudistidine C (1)

Four-bond (green arrows) and five-bond (red arrows) carbon-proton correlations observed in a 2 Hz optimized LR-HSQMBC experiment digitized with 768 F1 increments.

LR-HSQMBC Spectrum of Eudistidine C (1)

2 Hz LR-HSQMBC on eudistidine C (1) natural product (CD₃OD). Data were acquired using 3072×768 points with 26 transients accumulated per each t₁ increment giving an overall acquisition time of 15 h 30 min. Data were processed by linear prediction to 1536 points in F1. Prior to Fourier transformation, zero-filling to 4096 points in F2 and 2048 points in F1 were applied and a shifted squared sine bell apodization function was used.

Natural Product	Synthetic Free Base	Synthetic TFA
$\delta_{ m C}$ (ppm)		Salt
167.5	167.5	167.4
94.3	94.4	101.8
147.4	147.5	147.8
117.6	117.8	117.6
126.1	126.2	127.2
130.2	130.2	132.0
136.5	136.5	138.4
129.7	129.8	130.7
147.0	147.1	146.7
159.5	159.5	153.6
157.3	157.4	155.0
73.7	73.7	69.6 (hmbc)
130.9	130.8	127.7
129.8	129.8	129.7
115.2	115.2	115.6
161.7	161.7	162.4
55.8	55.8	55.6
126.1	125.8	122.7
148.0	148.1	148.4
127.5	127.5	129.0
120.0	119.9	118.4
131.9	131.9	132.1
115.7	115.7	115.6
159.3	159.3	159.9
	Natural Product $\delta_{\rm C}$ (ppm)167.594.3147.4117.6126.1130.2136.5129.7147.0159.5157.373.7130.9129.8115.2161.755.8126.1148.0127.5120.0131.9115.7159.3	Natural ProductSynthetic Free Base δ_{C} (ppm)167.594.394.394.4147.4147.4147.4147.4147.4126.1126.1126.2130.2130.2136.5129.7129.8147.0147.1159.5157.3157.3157.473.773.7130.9130.8129.8129.8129.8129.8129.8129.8129.8129.8129.8129.8129.8129.8129.8129.8129.8130.9131.9131.9131.9115.7159.3159.3

¹³C NMR Chemical Shift Comparison of Eudistidine C Natural Product vs Synthetic Eudistidine C

position	Natural Product	Synthetic Free	Synthetic TFA
	δ _Н (ppm)	Base	Salt
2	8.45	8.48	8.90
3	6.77	6.83	7.78
4	8.06	8.13	8.55
5	7.58	7.63	7.92
6	7.81	7.85	8.13
7	7.65	7.69	8.03
12/16	7.68	7.69	7.67
13/15	6.91	6.90	6.93
14-OMe	3.76	3.76	3.77
23/27	6.85	6.87	6.86
24/26	6.30	6.32	6.35

¹H NMR Chemical Shift Comparison of Eudistidine C Natural Product vs Synthetic Eudistidine C

Chiral Resolution of Eudistidine C (1) Natural Product

The two enantiomers were separated using a Phenomenex Lux 4 column (5 μ m, 250 x 10 mm) employing an isocratic gradient of 25% MeCN / 75% 150 mM NaClO₄ (0.02% HClO₄) over 53 mins affording (+)-*R*-eudistidine C (**1a**) [7.8 mg, [α]_D +132.6 (c 0.1, MeOH)], and (-)-*S*-eudistidine C (**1b**) [7.7 mg, [α]_D -148.5 (c 0.1, MeOH)].

Experimental ECD Spectra for (+)-R-Eudistidine C (1a) and (-)-S-Eudistidine C (1b)

(-)-S-Eudistidine C (1b)

Conformational Analysis and ECD Calculation for (+)-*R*-Eudistidine C (1b)

Conformational Analysis and ECD Calculation

Chemical Structure of (R)-Eudistidine C:

Global Minimum (R)-Eudistidine C:

ECD Comparison:

Correlation between experimental peak A1 and the calculated (R)-Eudistidine C as a free-base

p300/HIF-1α Assay

Inhibition of HIF-1 α binding to p300 was measured by displacement of GST-p300-CH1 (aa 323–423) from synthetic biotinylated HIF-1 α C-TAD (aa 786–826; Peptide Protein Research Ltd., Fareham, UK) immobilized on 384-well streptavidin-coated plates. Bound GST-CH1 was detected using a Europium-labeled antibody to GST (PerkinElmer Life Sciences). 48.5 nM HIF-1 α C-TAD was used to coat plates for 5 h at room temperature. Plates were washed four times with TBST (50 mM Tris, 150 mM NaCl, 0.05% Tween 20, pH 8.0) buffer. 7.35 nM GST-CH1 was added with along with the test compounds or control (1% DMSO) in TBST with 5% BSA, 0.5 mM DTT, and 10 uM ZnCl₂ and incubated overnight at 24 °C. Plates were washed four times with TBST, and Europium-labeled anti-GST (450 ng/mL) was added to plates in the same buffer used for GST-CH1 addition. After 2 h, plates were washed four times in TBST. DELFIA enhancement solution (PerkinElmer Life Sciences) was added and plates were placed on a rocker for 30 min, before reading with a Victor3 plate reader (PerkinElmer Life Sciences) or a Pherastar Plate Reader (BMG Labtech), using the Europium setting under time-resolved fluorescence. Values were corrected for background and expressed as a percentage of controls (DMSO) to provide the percentage of CH1 binding.

p300/ HIF-1 α assay results

Compound	IC ₅₀ (µM)
1 a	n.a.
1b	276
5	314
6	399
7	356
8	n.a.
9	n.a.
10	141

n.a. = not active (IC₅₀ > 500 μ M)

Antimalarial Screening Assay

The antimalarial activity was determined against chloroquine sensitive (D6) and chloroquine resistant (W2) strains of *Plasmodium falciparum* by measuring plasmodial lactate dehydrogenase (LDH) activity according to the procedure of Makler and Hinrichs.⁵ A suspension of red blood cells infected with the D6 or W2 strain of P. falciparum (200 µL, with 2% parasitemia and 2% hematocrit in RPMI 1640 medium supplemented with 10% human serum and 60 µg/mL Amikacin) was added to the wells of a 96well plate containing 10 μ L of serially diluted test samples. The plate was incubated at 37 °C, for 72 h in in an environment of 90% N₂, 5% O₂, and 5% CO₂. Plasmodial LDH activity was determined by mixing 20 μ L of the incubation mixture with 100 μ L of the Malstat reagent and incubating at room temperature for 30 min. Twenty microliters of a 1:1 mixture of NBT/PES (Sigma, St. Louis, MO) was added and the plate was further incubated in the dark for 1 h. The reaction was then stopped by adding 100 μ L of a 5% acetic acid solution and the absorbance was read at 650 nm. Artemisinin and chloroquine were included as the drug controls. The in vitro cytotoxicity of samples to mammalian cells was also tested in order to determine the selectivity index of the antimalarial activity. Vero cells (monkey kidney fibroblasts) were seeded into a 96-well plate at a density of 25,000 cells/well and grown for 24 h. Test samples at different concentrations were added and cells were further incubated for 48 h. Cell viability was determined by the Neutral Red method.⁶ Doxorubicin was included as the drug control. IC₅₀ values were obtained from the dose response curves.

(5) Makler, M. T.; Hinrichs, D. J. Am. J. Trop. Med. Hyg. 1993, 48, 205-210.

(6) Borenfreund, E.; Babich, H.; Martin-Alguacil, N. In vitro Cell. Dev. Biol. 1990, 26, 1030-1034.

Antimalarial activity	against P.	falciparum and	cytotoxicity	towards	Vero cells

Compound	D6 strain IC ₅₀ (μ M)	W2 strain IC ₅₀ (µM)	Cytotoxicity
1a	2.8	1.5	n.c.
1b	4.2	2.5	n.c.
2	1.4	1.1	n.c.
6	n.a.	7.5	n.c.
7	2.4	1.0	n.c.
8	5.8	3.6	n.c.
9	6.6	5.6	n.c.
10	1.1	0.6	n.c.

n.a. = not active; n.c. = no cytotoxicity

Molecular Model of Eudistidine C (1)

Atomic coordinates of molecular model of eudistidine C (1)

5.78711400	0.53043200	0.08790200
6.41643500	0.91459600	-1.08542500
5.65741200	1.13112500	-2.25189800
4.28240700	0.96097400	-2.23781200
3.61860600	0.56721300	-1.05735500
4.38974800	0.35102700	0.12541300
2.23706200	0.40977600	-1.11346600
3.68586300	-0.03484800	1.33411200
2.33524100	-0.17057000	1.15805100
1.66580000	0.03424900	-0.02226600
1.39466600	-0.50177600	2.18408000
4.14067800	-0.27542700	2.62031300
3.17712000	-0.62072500	3.60893800
1.87300800	-0.73590000	3.44373900
0.18278000	-0.24674900	0.30002600
0.17607600	-0.52219700	1.76231600
-1.08420900	1.87582000	0.94066100
-1.80182500	3.03517200	0.61922600
-2.08898400	3.32107100	-0.71922800
-1.65202900	2.44336800	-1.72390500
-0.94319000	1.29703600	-1.38928700
-0.65393100	0.99236400	-0.04868700
-0.24848500	-1.51187100	-0.42718900
0.71560800	-2.36313100	-0.94575400
0.05901600	-3.38155300	-1.45437900
-1.28672500	-3.23795900	-1.28883700
-1.51279900	-2.04179100	-0.59902200
0.61585700	-4.44845100	-2.15963200
	5.78711400 6.41643500 5.65741200 4.28240700 3.61860600 4.38974800 2.23706200 3.68586300 2.33524100 1.66580000 1.39466600 4.14067800 3.17712000 1.87300800 0.18278000 0.18278000 0.17607600 -1.08420900 -1.08420900 -1.65202900 -0.94319000 -0.65393100 -0.24848500 0.71560800 0.05901600 -1.28672500 -1.51279900 0.61585700	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Н	1.62536300	-4.36048400	-2.18659400
Н	0.35123500	-5.36425700	-1.81139400
С	-2.86810300	-1.65014000	-0.19509400
С	-3.11729600	-1.11435900	1.08034300
С	-4.41113500	-0.76912800	1.46818900
С	-5.48516100	-0.96730200	0.59453700
С	-5.25970600	-1.50579800	-0.67615100
С	-3.96310000	-1.83625200	-1.06151500
0	-6.77874000	-0.65339700	0.92785300
0	-2.78406300	4.41964900	-1.14900600
Н	-6.80521800	-0.28166400	1.81934600
С	-3.25590400	5.34366400	-0.17825100
Н	6.37291300	0.36522900	0.98657600
Н	7.49341500	1.04902500	-1.10422200
Н	6.15407100	1.43338200	-3.16922400
Н	3.67963700	1.12115700	-3.12545200
Н	5.18793100	-0.20133300	2.87863900
Н	3.53463400	-0.81134300	4.62067900
Н	-0.87399500	1.64879700	1.98024100
Н	-2.12875600	3.69151300	1.41715400
Н	-1.88126900	2.67903000	-2.75823900
Н	-0.60825400	0.62955600	-2.17641400
Н	-2.00270400	-3.87859000	-1.59763000
Н	-2.29001400	-0.97917200	1.76966600
Н	-4.58429300	-0.35601200	2.46001800
Н	-6.09907600	-1.64301200	-1.35003500
Н	-3.79766000	-2.21798800	-2.06606400
Н	-3.77342300	6.12500500	-0.73661200
Н	-2.42744200	5.78895000	0.38746800
Н	-3.95829600	4.86884800	0.51875200

Eudistidine C (1) ¹H NMR Spectrum (600 MHz, CD₃OD)

Eudistidine C (1) ¹³C NMR Spectrum (150 MHz, CD₃OD)

Eudistidine C (1) COSY Spectrum (CD₃OD)

Eudistidine C (1) HSQC Spectrum (CD₃OD)

Eudistidine C (1) HMBC Spectrum (CD₃OD)

Eudistidine C (1) ¹⁵N-¹H HMBC Spectrum (CD₃OD)

Synthetic Eudistidine C (1) Free Base ¹H NMR Spectrum (600 MHz, CD₃OD)

Synthetic Eudistidine C (1) Free Base ¹³C NMR Spectrum (150 MHz, CD₃OD)

Synthetic Eudistidine C (1) TFA Salt ¹³C NMR Spectrum (150 MHz, CD₃OD)

Synthetic Eudistidine C (1) Free Base and TFA Salt ¹H NMR Spectral Comparison (600 MHz, CD₃OD)

Eudistidine C (1) Natural Product and Synthetic TFA Salts ¹H NMR Spectral Comparison (600 MHz, CD₃OD)

Eudistidine C (1) Natural Product and Synthetic Free Base and TFA Salt ¹³C NMR Spectral Comparison (150 MHz, CD₃OD)

Synthetic Eudistidine C *N*-Methyl Indole Analogue (5) ¹H NMR Spectrum (600 MHz, CD₃OD)

Synthetic Eudistidine C N-Methyl Indole Analogue (5) ¹³C NMR Spectrum (150 MHz, CD₃OD)

Synthetic Eudistidine C Skatole Analogue (6) ¹H NMR Spectrum (600 MHz, CD₃OD)

Synthetic Eudistidine C Skatole Analogue (6) ¹³C NMR Spectrum (150 MHz, CD₃OD)

Synthetic Eudistidine C *N*-Methyl Pyrrole Analogue (7) ¹H NMR Spectrum (600 MHz, CD₃OD)

Synthetic Eudistidine C *N*-Methyl Pyrrole Analogue (7) ¹³C NMR Spectrum (150 MHz, CD₃OD)

Synthetic Eudistidine C *p*-Phenol Analogue (8) ¹³C NMR Spectrum (150 MHz, CD₃OD)

Synthetic Eudistidine C Resorcinol Analogue (9) ¹H NMR Spectrum (600 MHz, DMSO)

Synthetic Eudistidine C Phloroglucinol Analogue (10) ¹³C NMR Spectrum (150 MHz, CD₃OD)

Imidazole 4 1H NMR spectrum (600 MHz, DMSO-d₆)

