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Supplementary Figure 1: Coal production and emissions by province in China. Estimates of
coal production (a) and coal emissions factors (b) for 2010 from Zhu et al. (56). The estimated
CH4 emissions in Supplementary Figure 3b are high in regions with large coal production and
high emissions factors.
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Supplementary Figure 2: Emissions uncertainties at aggregated regions and times. Uncertain-
ties in the estimated emissions at increasingly aggregated time scales (a) and at increasingly
aggregated spatial scales (b). The estimated emissions are highly uncertain for individual model
grid boxes and for 6-month time periods, but those uncertainties decrease for larger regions and
longer time periods. Note that the y-axis is in units of emissions scaling factor, the quantity
estimated by the inverse model (e.g., λ). Furthermore, the uncertainties are 95% confidence
intervals, and the 95% confidence interval (i.e., 1.95σ) on the prior scaling factors is 1.95 for a
single model grid box in Asia.
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Supplementary Figure 3: Prior and posterior CH4 emissions estimates. The emissions inven-
tories used in the inverse model (a), the posterior emissions estimate (b), and the differences
between these two estimates (c). The global maps shown are the averages of all time periods
(2010–2015). We estimate lower emissions in China and regions of Africa and higher emissions
in tropical Asia and South America. This result is broadly consistent with several existing
inverse modeling studies (e.g., 57; 58; 59).
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Supplementary Figure 4: Number of GOSAT observations per season. The number of nadir
GOSAT retrievals without a negative quality control flag across India and China for each season
between 2009 and 2015. The number of observations varies by season but does not show a year-
to-year trend.
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Supplementary Figure 5: Global model–data bias correction. Differences between GOSAT ob-
servations and modeled XCH4 before a latitudinal bias correction (a), the model-data differences
following this correction (b), and the bias plotted as a function of latitude (c). Darker colors
in panel (c) indicate a greater number of observations, and the grey line is a fitted quadratic
regression. The bias is much smaller after the correction (b) than before the correction (a).
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Supplementary Figure 6: The alternate method to correct the latitudinal bias. The two meth-
ods, in combination, provide a measure of uncertainty in the bias correction. In this alternate
method, we average the model–data difference into 10◦ latitude bins and interpolate between
those points, as shown in this figure. The emissions estimated in this study are similar irre-
spective of the correction method employed (Supplementary Note 2).
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Supplementary Figure 7: CH4 emissions from coal in EDGAR v4.2 and v4.3. Coal as a fraction
of total emissions in two different versions of the EDGAR emissions inventory. We compare
the year 2008, the year used in the prior emissions estimate. Each bar indicates the number of
model grid boxes in China with a certain fraction of emissions due to coal. The older inventory
version v4.2 contains more grid boxes with a small fraction of emissions due to coal. It also
contains fewer grid boxes in which a high fraction (>80%) of emissions are due to coal. Note
that the gridded version of v4.3 includes all emissions related to fossil fuel extraction within
a single category (e.g., oil, gas, and coal). EDGAR v4.2, by contrast, has a specific emissions
category for coal mining emissions.
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Supplementary Notes

Supplementary Note 1

This note describes the RemoTeC proxy retrieval. The analysis presented in this paper utilizes
the RemoTeC proxy retrieval (e.g., 60). The proxy method incorporates modeled and observed
CO2. Differences between the CO2 observations and model are used to correct GOSAT total
column methane (XCH4) for light path modifications (e.g., aerosols, clouds) (e.g., 61):

XCH4 =
XCO2

X∗CO2
X∗CH4 (S1)

where X∗CO2 and X∗CH4 are the retrieved CO2 and CH4 mole fractions from GOSAT, XCO2

is the modeled CO2 estimate, and XCH4 is the final estimate. The RemoTeC retrieval uses
atmospheric mixing ratios from CarbonTracker CO2 as the model estimate (62). Any differences
between the model and retrieval are assumed to be due to light path modifications, so this
correction is dependent upon the accuracy of the CarbonTracker product. Also note that both
gases are retrieved under the assumption of a non-scattering atmosphere. Furthermore, the
proxy method can retrieve more data points relative to a full physics method because the
former approach can tolerate greater cloud and aerosol contamination than the latter (e.g., 63).
One study lists precision and accuracy statistics for the proxy method, and they are similar
to the full physics method (60). That study compares the GOSAT proxy retrievals against
TCCON (Total Carbon Column Observing Network). The retrieval bias ranges from -0.312%
to 0.421% (∼ −6 to 8 ppb), and single-sounding precision is ∼17 ppb (standard deviation) (60).

The number of nadir retrievals does not show a trend over the study period (Supplementary
Figure 4). Any multi-year trends in the availability of data could result in spurious trends in
the estimated emissions. The availability of observations does, however, vary by season. The
number of retrievals over India is highest in winter and spring and is lowest in summer during
the monsoon. By contrast, the number of retrievals over China is highest in spring and lowest
in fall.

Note that we do not use GOSAT observations over Antarctica and over high altitude regions
(surface elevation >3000m). The signal-to-noise ratio over Antarctica is small, and any errors or
biases in these observations could substantially bias our inferences for the southern hemisphere.
Observations over high altitude, mountainous regions are also challenging to model.

Supplementary Note 2

This note describes the model–data bias correction. The GOSAT observations show a latitude-
dependent difference when compared to modeled XCH4 (using existing, bottom-up emissions
estimates). Supplementary Figures 5a and 5c illustrate this bias; it has the same shape as the
model–data bias described in two previous studies (64; 57). The observations are an overes-
timate relative to the model in the northern hemisphere tropics and mid-latitudes (centered
around 20◦ N). By contrast, the observations are an underestimate relative to the model at
high latitudes.

The model–data bias could be caused by a number of factors, but circumstantial evidence
points to a model–data differences in the stratosphere. Turner et al. (57) examine and diagnose
this difference in detail relative to existing in situ and TCCON observations. Global GEOS-
Chem simulations show a minimal overall bias (∼4ppb) and no latitudinal bias when compared
to HIPPO (HIAPER Pole-to-Pole Observations) observations. The authors further compare
global GEOS-Chem outputs against TCCON and report an R2 of 0.82 (prior model) and
0.83 (posterior model), and mean biases of 6.4ppb and 8.1ppb, respectively. These biases
are generally smaller than the latitudinal differences between GOSAT and GEOS-Chem (e.g.,
Supplementary Figure 5).
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The Turner et al. (57) analysis, and the fact that the GEOS-Chem–GOSAT bias is largest
in very remote regions like the South Pole, indicates that this bias is unlikely to be due to the
emissions inventories. Rather, Turner et al. (57) speculate that this bias is either due to biases
in GEOS-Chem in the stratosphere or due to a latitude-dependent bias in GOSAT. Fraser et
al. (64) further speculate that the model–GOSAT differences could be due to cirrus clouds,
sensitivity of the satellite to zenith angle, and/or errors in modeled CO2 used in the proxy
retrieval.

We correct the GOSAT observations before running the inverse model to account for this
bias. This correction should not change regional patterns in emissions (e.g., patterns across
India or across China); the correction used here adjusts large-scale, latitudinal gradients, not
regional-scale variability in the GOSAT observations. Specifically, we fit a quadratic regression
to the model–data residuals as a function of latitude (Supplementary Figure 5c). We then add
these fitted values to the GOSAT observations. This approach is the same as that employed
by an earlier study (57). Supplementary Figure 5b displays the model–data residuals after
applying the correction. The resulting residuals exceed 20 ppb in some regions but do not show
a consistent global bias.

We also explore a second, alternate method to correct the latitude-bias; this second method
serves as a check on the robustness or uncertainty in the impact of the first approach described
above. In this alternate correction, we average the bias in latitude bands that are 10◦ in width.
We then interpolate between those bands using linear interpolation, shown in Supplementary
Figure 6. These interpolated values are used as the bias correction. We re-run the inverse
model using observations that have been corrected with this alternate method. The annual
CH4 budget for India varies by up to ±0.1 Tg CH4 depending upon the bias correction used,
and the budget for China varies by up to ±0.6 Tg CH4, small numbers relative to the total
budgets. Thus, the choice of bias correction does not have a noticeable effect on the estimated
trend (less than 0.1 Tg CH4 yr−1 for either India or China).

Supplementary Note 3

This note provides additional detail on the GEOS-Chem model. We employ version v11-01 of
the GEOS-Chem model in this study. This version of GEOS-Chem uses a new emissions module,
the Harvard-NASA Emissions Component or HEMCO, and this module makes it relatively
straightforward to modify the emissions input into GEOS-Chem (65). We run these GEOS-
Chem simulations in a tagged tracer format for the inverse model, discussed in detail in the
next section.

All of the GEOS-Chem simulations here use GEOS meteorology. Furthermore, we use
GEOS meteorology to drive the wetland emissions model (e.g., soil temperature and soil mois-
ture). This setup mirrors that of previous GEOS-Chem studies of CH4 (e.g., 57; 66; 67; 68).
GEOS-Chem uses two different versions of GEOS meteorology. GEOS version 5 simulations are
available through May 31, 2013. By contrast, GEOS version 5 forward processing (GEOS-5 FP)
simulations are available beginning in April 2012. These fields are provided by the Global Mod-
eling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. In this study,
we use GEOS-5 meteorology for model runs from 2009 to 2012 and GEOS-FP meteorology for
model runs from 2013-2015.

We explore uncertainties in the meteorology by comparing the estimated emissions trend
for China during 2010-2012 against the trend during 2013-2015. We use GEOS-5 meteorology
during the former time period and GEOS-FP during the latter. This comparison therefore
indicates the sensitivity of the trend to the meteorology product (GEOS-5 versus GEOS-FP).
The estimated trend is consistent between the two time periods that use different GEOS mete-
orology products; we estimate an emissions trend of 1.4 ± 3.58 Tg CH4 yr−1 for China during
2010-2012 and a trend of 1.5 ± 0.34 Tg CH4 yr−1 for 2013-2015. Note that the overall 6-year
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trend (1.1 ± 0.4) is slightly less than the trend during either three year window – due to a slight
drop in estimated emissions in 2013 at the beginning of the GEOS-FP model runs. In contrast
to China, the estimated 6-year trend in emissions from India is dominated by an anomalously
high emissions estimate during 2014. The estimated trend is therefore highly uncertain, and it is
difficult to compare or contrast the trend from 2010-2012 against that estimated for 2013-2015.

Supplementary Note 4

This note provides an overview of the inverse modeling setup. This section outlines the specific
inverse modeling setup employed in this study. The analysis in this study depends upon atmo-
spheric transport model runs from the GEOS-Chem model, and we use a tagged tracer setup for
these atmospheric model runs. In other words, we run the transport model once for each model
grid box within Asia and each 6-month time period. Outside of Asia, we run the transport
model once for each TransCom region (The Atmospheric Tracer Transport Model Intercompar-
ison Project) (e.g., 69) and each 6-month time period. This setup makes it straightforward to
compute a posterior covariance matrix, which forms the basis of the uncertainty bounds on the
final posterior emissions estimate.

It is important to note that we use anthropogenic emissions from EDGAR (version 4.2) for
the year 2008 as part of the prior emissions model. As a result of this setup, the anthropogenic
emissions inventory used in the inversion is time invariant. This setup ensures that any trend
in the posterior emissions reflects a trend in the observations and is not due to a trend in
the EDGAR emissions inventory. By contrast, the wetland and biomass burning emission
inventories do vary with time – to account for irregular, year-to-year variations in wildfires and
soil freeze/thaw. These sources, however, do not show a notable trend across China and India
for the study period.

These emissions and transport model runs become inputs into the inverse model. We esti-
mate the emissions in the inverse model by minimizing the following cost function:

L =

(
z −

p∑
i

λih(s)i

)T

R−1

(
z −

p∑
i

λih(s)i

)
+ (λ− µ)T Q−1 (λ− µ) (S2)

where z represents the observations (dimensions n×1). Note that we do not average the GOSAT
observations before using them in the inverse model. In addition, the covariance matrices, R
(n×n) and Q (p×p), describe uncertainties in the observations/model and in the prior scaling
factors, respectively. The variable h(s)i (n × 1) represents the modeled XCH4 from emissions
in region and time period i using bottom-up emissions estimates; s represents the bottom-up
emissions and h() the atmospheric transport model, in this case the GEOS-Chem model.

We estimate a set of scaling factors in the inverse model that scale the bottom-up emissions;
the vector λ represents these estimated scaling factors (p × 1). Specifically, λi is the scaling
factor for an individual model grid box or TransCom region for a 6-month time period. The
inverse model implemented here is Bayesian and includes a prior estimate of the scaling factors,
denoted µ (p×1). In the setup here, the prior estimate of the scaling factors is constant for each
6-month time period of the inverse model, unlike the posterior scaling factors (λ) which vary
from one model grid box to another. Furthermore, this prior value is an unknown quantity
in the inverse model implemented here. This setup is different from many Bayesian inverse
models that fix the prior scaling factors at one, and this setup ensures that the prior estimate
is unbiased relative to the posterior estimate, a statistical assumption of the inverse model.
For example, the emissions inventories in the inverse model likely have an overall bias across
China (e.g., 57; 58). We solve for µ as part of the inverse model, thus guaranteeing that the
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prior model is unbiased relative to the GOSAT observations. Hence, we minimize Eq. S2 with
respect to both µ and λ.

In the setup here, we estimate both the emissions and the covariance matrix parameters by
minimizing Eq. S2. We minimize this cost function (Eq. S2) using an expectation maximization
algorithm (e.g., 70; 71). We first make an initial guess for the covariance matrix parameters
and then estimate the emissions by finding the minimum of Eq. S2 with respect to λ and
µ. We then estimate the covariance matrix parameters, using the previously-estimated emis-
sions and the associated posterior covariance matrix (discussed below) (e.g., 70). We alternate
between estimating covariance matrix parameters and the emissions until all of the estimated
values converge on stable estimates. This process usually requires approximately three or four
iterations.

In this particular setup, we further require that the estimated scaling factors (λ) be non-
negative. We therefore subsequently enforce non-negativity using Lagrange multipliers (72).

As a final step, we estimate uncertainties in the estimated scaling factors (λ) and hence
uncertainties in the estimated emissions. To accomplish this task, we estimate a posterior
covariance matrix for λ (denoted Vλ, dimensions p×p). We calculate this matrix by computing
the inverse of the Hessian of Eq. S2. In this case, the Hessian is the second derivative of Eq.
S2 with respect to λ and µ.

Note that we estimate the emissions using an 18-month moving window, and we re-run the
inverse model (including covariance estimation) for each time window. The scaling factors (λ)
estimated by the inversion vary every 6 months, so the 18-month window encapsulates three
sets of scaling factors. We discard the first 6-month period as a spin-up period, save the output
for the middle 6-month period, and discard the last 6-month period. We then shift the moving
window forward by 6-months and run the inverse model again, using the procedure described
above.

Supplementary Note 5

This note describes the covariance matrices used in the inverse model. The inverse model
requires two covariances matrices, one that describes errors in the atmospheric model and ob-
servations (R) and one that describes errors in the prior scaling factors (Q). The diagonal
elements of these matrices describe error variances. By contrast, the off-diagonal elements de-
scribe spatial and temporal covariances among the errors, and we include off-diagonal elements
in both R and Q for the setup here. We model the off-diagonal elements of both covariance ma-
trices using a spherical covariance model with a nugget (e.g., 73). This model, as implemented
here, contains four parameters. The nugget variance of the model represents white noise errors
– errors that are not correlated in space and/or time. The model also contains a sill variance,
and this parameter represents errors that are correlated in space and/or time. Lastly, this
model contains a decorrelation length and a decorrelation time. These parameters indicate the
spatial and temporal scales over which the errors are correlated. Unlike other covariance mod-
els, a spherical model decays to zero beyond the decorrelation length and decorrelation time.
This feature makes it possible to formulate the covariance matrices as sparse matrices, saving
on both memory and computing time.

We structure the R matrix as a block diagonal matrix. R has a large number of rows
and columns (an average of ∼270,000 rows/columns, depending upon the time period), and
it is not computationally feasible to invert a very large, non-sparse R matrix. To make these
calculations computationally tractable, we formulate R as a block diagonal matrix where each
block is a different continent, and each block has an average of ∼45,000 observations. As a result
of this setup, we assume that the model and observational errors are spatially and temporally
correlated within each individual continent but not among different continents.
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We estimate several elements of R using Eq. S2 – both the nugget variance and the sill
variance. We estimate a constant global value for each variance term, but we allow this variance
term to vary among different time periods of the inverse model. We estimate average values of
(8.2 ppb)2 and (17.5 pbb)2, respectively (averaged across all time periods of the inverse model).

Note that some of the covariance matrix parameters are difficult to estimate using Eq. S2;
the value of this cost function is sensitive to the values of certain covariance matrix parameters
but is relatively insensitive to the value of other parameters. As a result, we use expert judge-
ment to estimate the decorrelation length and decorrelation time in R. We estimate 2000 km
for the decorrelation length in R (i.e., the distance at which correlations are assumed to reach
zero) and 30 days for the decorrelation time.

The covariance matrix Q also contains both diagonal and off-diagonal elements. Equation
S2 would not converge on values for Q, so we estimate these values using expert judgement.
We estimate values of (0.75)2 for the sill variance in Q in TransCom regions and (1)2 for the sill
variance in Q for the model grid boxes in Asia (in units of (scaling factor)2). Note that we set
a lower uncertainty for the TransCom regions because these regions are larger in area than the
individual model grid boxes in Asia, and variances typically decrease when averaged over larger
and larger areas. We include off-diagonal elements in Q that account for spatial covariances
among the estimated scaling factors. We estimate a decorrelation length in Q of 500km. This
length is similar to or slightly smaller than the size of coal mining or agricultural provinces in
China. We further assume that uncertainties in the prior scaling factors (µ) are uncorrelated
from one 6-month time period to the next, and we do not include a nugget variance in Q.

Supplementary Note 6

This note provides additional detail on patterns in the estimated emissions. The posterior
emissions have a different magnitude and different patterns relative to existing bottom-up esti-
mates. Supplementary Figure 3a displays the bottom-up emissions estimates used as inputs in
the inverse model, averaged over all years of this study. Supplementary Figures 3b-c, by con-
trast, show the posterior emissions estimate and the differences from the bottom-up estimates
(Note that Supplementary Figure 3b is identical to Figure 3 in the main article.). The inverse
model decreases emissions across northern India and much of China relative to the EDGAR
v4.2 inventory, the anthropogenic inventory used in the inverse model. This result is consistent
with several existing inverse modeling estimates (e.g., 57; 58; 59). Note that the EDGAR v4.3
inventory (discussed in the main manuscript) allocates smaller emissions across much of this
region relative to v4.2 (74). The emissions estimated in this study are also higher across tropical
South America and tropical Asia relative to the bottom-up emissions estimates, a result that
is consistent with previous GOSAT-based inverse models (e.g., 57).

The estimated CH4 emissions for China are highest in regions with large coal production
and regions with high coal CH4 content (e.g., high reported emissions factors). Supplemen-
tary Figure 1a displays coal production in China by province and Supplementary Figure 1b
shows estimated coal mining emissions factors, as reported by Zhu et al. (56). Provinces like
Shanxi, Guizhou, and Anhui have high coal production and high estimated emissions factors.
These regions are also associated with large CH4 emissions in the inverse modeling estimate
(Supplementary Figure 3b).

Supplementary Note 7

This note give additional context on the uncertainties in the estimated emissions. The uncer-
tainties in any single model grid box for any single time period is high (Supplementary Figure
2); the inverse model does not provide a robust constraint on emissions from individual grid
boxes, and differences in the emissions from one grid box to another are usually within the
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range of uncertainties. By contrast, we have much greater confidence in annual or multi-year
emissions totals for entire countries. The GOSAT observations provide a stronger constraint
on emissions at these aggregate space-time scales.

Supplementary Note 8

This note places the results of this study in the context of global observations of methane
isotopes. Existing studies that interpret CH4 isotopes (δ13C) provide a few possible explanations
for global trends in CH4 emissions. Several studies argue that total global fossil fuel CH4

emissions may have remained relatively flat in the last decade and have not not been driving
the global CH4 increase since 2007 (75; 76). Another study, by contrast, argues that biomass
burning CH4 emissions have decreased while fossil fuel emissions have increased (77). The
trends estimated in this study are not inconsistent with either explanation. For example,
Schwietzke et al. (78) argue that decreasing natural gas CH4 emissions at global scale have
been compensated by increasing coal emissions to produce a flat global trend in total fossil fuel
CH4 emissions (Figure S10 in Schwietzke et al. (78)), and these trends are qualitatively valid
even under decreasing biomass burning CH4 emissions. Natural gas operations, they argue,
have become more efficient over time, and leak rates of decreased from a global average of 8%
to 2% over the past 30 years. By contrast, it is more likely that emissions factors from coal
operations have remained unchanged during the same time period, and total coal CH4 emissions
have increased as total natural gas CH4 emissions have declined. Furthermore, the increase in
coal CH4 emissions from China for 2010-2012 estimated in this study is less than the global
coal emissions increase estimated in Schwietzke et al. (78) for the same time period. Hence,
the emissions estimated here for China are not inconsistent with trends in atmospheric δ13C
observations. Furthermore, another study (79) points out that the isotopic signature of coal
CH4 emissions varies widely depending upon the coal type; more isotopic observations of coal
CH4 from diverse regions of the globe would help better constrain the contribution of these
emissions to global trends in δ13C.

Supplementary Note 9

This note describes the effects of possible changes in the hydroxyl radical (OH). We find that
potential changes on global OH are unlikely to have an effect on the overall results of this
study. A handful of recent studies raise the possibility that OH may have changed in recent
years (80; 81) while other studies argue that there is no evidence for recent changes in OH
(82; 83). Possible changes in OH would yield a trend in CH4 observations that is much smaller
than the observed trend across eastern China. As a result, the majority of the XCH4 trend
across China is likely due to emissions, even if OH were changing. Specifically, Figure 1 indicates
a trend in XCH4 of 0.2 ppb per year in eastern and central China relative to sparsely populated
upwind regions of western China and central Asia. One study predicts that the lifetime of CH4

has been reduced by 4 months since the pre-industrial era (84). Air masses likely take less
than 10 days to advect from central Asia to eastern China, and this change in the CH4 lifetime
would result in a net change in CH4 of 0.09 ppb over 10 days for the present time relative to
pre-industrial OH levels. This net change of 0.09ppb would be far smaller than the 0.2ppb
annual trend across eastern China.

Supplementary Note 10

This note provides additional detail on the source attribution of estimated CH4 emissions. We
use several different pieces of information to attribute emissions to different source sectors, and
one key piece of information is the fraction of emissions due to coal within each grid box of the
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EDGAR inventory. We use this information to attribute the emissions estimated in this study
to either coal mining or other source sectors. Any uncertainty in this fraction could propagate
into uncertainty in the source attribution presented in this study. In this section of the SI, we
evaluate the uncertainty in this fraction and discuss what effect this uncertainty may have on
the source attribution presented in this paper.

One way to evaluate this uncertainty is to examine how this fraction (i.e., the fraction of
emissions attributed to coal) differs among different versions of the EDGAR emissions inventory.
Supplementary Figure 7 compares this fraction for EDGAR v4.2 versus v4.3. A large difference
between these two versions would indicate high uncertainty in the source attribution and vice
versa. Note the we use EDGAR v4.2 in the prior estimate of the emissions and use this version
to attribute emissions to different source sectors.

We conclude that the source attribution to coal in this study may be conservative (i.e., too
low); the attribution to coal is unlikely to be too high. Specifically, the fraction of emissions
attributed to coal is similar between the two inventory versions with a few notable exceptions.
Version 4.3 has fewer grid boxes with a low fraction of emissions due to coal (<10%) and has
more boxes with a high fraction of emissions due to coal (>80%). As a result, the source
attribution presented in this study assigns a smaller fraction of emissions to coal than if we had
used EDGAR v4.3.

It is important to note that the gridded version of EDGAR v4.3, unlike v4.2, does not
include separate categories for emissions from coal mining, oil drilling, and gas drilling; they
are combined into a single emissions category (74). However, oil and gas are a small component
of China’s energy portfolio, and oil and gas CH4 emissions in China are on the order of 10% of
coal mining emissions according to EDGAR v4.2. Hence, the comparison between EDGAR v4.2
and v4.3 in Supplementary Figure 7 is not precise, though the different emissions categories are
relatively similar.
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