Supplementary Information

Crabp2 Promotes Metastasis of Lung Cancer Cells via HuR and Integrin β1/FAK/ERK Signaling

Jun-I Wu^{1, 2, 6}, Yi-Pei Lin^{1, 3, 6}, Chien-Wei Tseng^{1, 4}, Hui-Jane Chen¹ and Lu-Hai Wang^{1, 2, 3, 4, 5*}

¹Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan

² Department of Life Sciences, National Central University, Taoyuan, Taiwan

³Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan

⁴Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan

⁵Chinese Medical Research Center, China Medical University, Taichung, Taiwan

⁶These authors contributed equally to this work

*Correspondence and requests for materials should be addressed to: Dr. Lu-Hai Wang, Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan. E-mail: lu-hai.wang@nhri.org.tw or <u>luhaiwang@mail.cmu.edu.tw</u>. TEL: 886 4-2205 715; FAX: 886 4-2206 0248

Supplementary Figure Legends

Figure S1. Knockdown of Crabp2 inhibited proliferation of C10F4 cells. C10F4 cells expressing control-shRNA (shCon) or Crabp2 shRNA (shCrabp2) were plated onto a 96-well plate at a density of 5,000 cells/well. Cell abundance was detected at 1-4 days by MTS assay. The *p* values were determined using Student's t test **p*<0.05, ****p*<0.001.

Figure S2. The inhibitory effect of retinoic acid on anoikis resistance of C10F4 cells is independent of Crabp2. C10F4 cells expressing empty vector or Crabp2 were plated onto a 96-well anchorage-resistant plate at a density of 10,000 cells/well and treated with dimethyl sulfoxide (DMSO) or retinoic acid (RA, 1/10/50 μ M). Twenty-four hours later, the viability of cells treated with RA versus DMSO was assessed by MTS assay. The *p* values were determined using two-way ANOVA.

Figure S3. Knockdown of HuR expression. Western blot analysis of HuR and β -actin (ACTB, as the loading control) in C10F4 cells expressing control-shRNA (shCon) or HuR-shRNA (shHuR).

Figure S4. C10F4 and H1650 cells are not sensitive to erlotinib. (a-b) C10F4 (a) or H1650 (b) cells were exposed to 10 μ M erlotinib. Cell viability at 48 hours was detected by MTS assay. The *p* values were calculated by Student's t test, and ns for *p*>0.05.

Figure S5. CRABP2 is correlated with cell stress marker CHOP, E2F1, and E2F7. (a) Levels of CRABP2 and cell stress marker CHOP, E2F1, and E2F7 in tumors (T,

n=91) versus normal lungs (N, n=65) are shown using data from Hou lung, and the statistical significance was determined using Kruskal-Wallis test and Dunn's test as post test ***p*<0.01, ****p*<0.001. (b-c) Kaplan-Meier plot of the overall survival of 1926 lung cancer patients (b), or the first progression after surgery of 982 lung cancer patients (c) stratified by expression levels of CHOP using data from Kaplan-Meier Plotter database. The optimal cutoff was derived from Kaplan-Meier Plotter database, and patients with high levels of CHOP (CHOP^{High}) exhibited higher risk than patients with low levels CHOP (CHOP^{Low}). (d) Scatter plots of mRNA levels of CHOP (left), E2F1 (middle), or E2F7 (right) (as X-axes) versus CRABP2 (as Y-axis) in lung tumors and normal lungs using data from Hou lung (n=156). The correlation of expression between CRABP2 and CHOP (Spearman r=0.3109, *p*<0.0001), E2F1 (Spearman r=0.4796, *p*<0.0001), or E2F7 (Spearman r=0.5886, *p*<0.0001) was analyzed by Spearman's correlation test.

Figure S6. Overexpression of Crabp2 promoted proliferation of C10F4 cells. (a) C10F4 cells expressing empty vector (Vector) or Crabp2 were plated onto a 96-well plate at a density of 1,000 cells/well. Cell abundance was detected at 1-4 days by MTS assay. (b) C10F4 cells expressing empty vector (Vector) or Crabp2 were plated onto a 6-well plate at a density of $4*10^5$ cells/well. Cell abundance was detected at 1-3 days by trypan blue exclusion assay using TC20 automated cell counter. The *p* values were determined using Student's t test **p*<0.05, ***p*<0.01.

	n	CRABP2	CRABP2 expression	
	11 _	Low	High	_ ρ
Gender				
Female	45	27	18	0 1310 ^b
Male	74	33	41	0.1510
Age				
≤70	73	40	33	0.2617 ^b
>70	47	20	27	••
Lung Cancer Type				
NSCLC	115	55	60	0.0573 ^b
SCLC	5	5	0	0.0373
NSCLC Subtype				
Adenocarcinoma	48	24	24	
Squamous cell carcinoma	40	16	24	0.60500
Large cell carcinoma	10	6	4	0.0052
Non-small cell	17	9	8	
Stage				
I	43	24	19	
II	37	16	21	0.5334 ^c
III-IV	40	20	20	

 Table S1. Correlation of CRABP2 expression levels with clinicopathologic

 features of lung tumors.

CRABP2 levels in tumor samples (n=120) were detected by real-time PCR. Patients in individual clinical factors were stratified according to low and high CRABP2 levels based on the median value. NSCLC: non-small cell lung cancer; SCLC: small cell lung cancer. ^aHLRT: human lung cancer cDNA array. ^bFisher's exact test was used to calculate *p* values. ^c χ^2 test was used to calculate *p* values.

	Overall survival ^a		First progression ^b	
	<i>p</i> value	HR (95% CI)	<i>p</i> value	HR (95% CI)
Histology	<0.0001	1.44 (1.22-1.7)	0.7332	0.93 (0.63-1.39)
Stage	<0.0001	1.52 (1.33-1.73)	<0.0001	2.21 (1.71-2.86)
Gender	0.0036	1.37 (1.11-1.68)	0.0725	1.35 (0.97-1.88)
CRABP2	0.0306	1.31 (1.03-1.67)	0.0074	1.71 (1.15-2.54)

^aMulti-variate analysis (Cox regression) of the overall survival of 890 lung cancer patients. ^bMulti-variate analysis (Cox regression) of the first progression after surgery of 469 lung cancer patients. The optimal cutoff, *p* values and hazard ratio (HR) were provided by Kaplan-Meier Plotter database.

	Overall survival ^a		First progression ^b	
	<i>p</i> value	HR (95% CI)	<i>p</i> value	HR (95% CI)
Histology	0.0001	1.4 (1.19-1.65)	0.6234	0.9 (0.61-1.35)
Stage	<0.0001	1.56 (1.36-1.78)	<0.0001	2.27 (1.75-2.94)
Gender	0.0086	1.32 (1.07-1.63)	0.1297	1.29 (0.93-1.79)
ERCC1	0.001	1.41 (1.15-1.74)	0.3838	0.85 (0.59-1.22)

Table S3. Multivariate survival analysis of ERCC1 in lung cancer.

^aMulti-variate analysis (Cox regression) of the overall survival of 890 lung cancer patients. ^bMulti-variate analysis (Cox regression) of the first progression after surgery of 469 lung cancer patients. The optimal cutoff, *p* values and hazard ratio (HR) were provided by Kaplan-Meier Plotter database.

	Overall survival ^a		First progression ^b	
	<i>p</i> value	HR (95% CI)	<i>p</i> value	HR (95% CI)
Histology	0.0004	1.35 (1.15-1.6)	0.8263	0.96 (0.64-1.43)
Stage	<0.0001	1.52 (1.34-1.74)	<0.0001	2.29 (1.78-2.96)
Gender	0.0056	1.35 (1.09-1.66)	0.1509	1.27 (0.92-1.77)
p27	<0.0001	1.64 (1.3-2.07)	0.1606	0.79 (0.57-1.1)

Table S4. Multivariate survival analysis of p27 in lung cancer.

^aMulti-variate analysis (Cox regression) of the overall survival of 890 lung cancer patients. ^bMulti-variate analysis (Cox regression) of the first progression after surgery of 469 lung cancer patients. The optimal cutoff, *p* values and hazard ratio (HR) were provided by Kaplan-Meier Plotter database.

	Overall survival ^a		First progression ^b	
	<i>p</i> value	HR (95% CI)	<i>p</i> value	HR (95% CI)
Histology	<0.0001	1.52 (1.29-1.8)	0.3598	0.83 (0.55-1.24)
Stage	<0.0001	1.56 (1.36-1.78)	<0.0001	2.2 (1.68-2.87)
Gender	0.0074	1.33 (1.08-1.64)	0.1359	1.28 (0.92-1.78)
RRM1	0.0001	0.63 (0.5-0.79)	0.0194	1.53 (1.07-2.18)

 Table S5. Multivariate survival analysis of RRM1 in lung cancer.

^aMulti-variate analysis (Cox regression) of the overall survival of 890 lung cancer patients. ^bMulti-variate analysis (Cox regression) of the first progression after surgery of 469 lung cancer patients. The optimal cutoff, *p* values and hazard ratio (HR) were provided by Kaplan-Meier Plotter database.

Table S6.	The list of	f primers	and	oligomers	used in	this	studv.
1 4510 00.			ana	Singointero			olday.

Oligomers	Sequences
18S rRNA primers	Forward: 5'-GCATGGCCGTTCTTAGTTGG-3'
with Taqman	Reverse: 5'-TGCCAGAGTCTCGTTCGTTA-3'
probes ^{*,a}	Probe: 5'-TGGAGCGATTTGTCTGGTTAATTCCGA-3'
GFP primers with	Forward: 5'-ACTACCTGAGCACCCAGTCC-3'
Taqman probes*	Reverse: 5'-CTTGTACAGCTCGTCCATGC-3'
	Probe: 5'-CCCAACGAGAAGCGCGATCA-3'
18S rRNA	Forward: 5'-GTAACCCGTTGAACCCCATT-3'
	Reverse: 5'-CCATCCAATCGGTAGTAGCG-3'
Mouse Crabp2	Forward: 5'-ATGCCTAACTTTTCTGGCAACT-3'
	Reverse: 5'-CCTGTTTGATCTCGACTGCTG-3'
Mouse HuR	Forward: 5'-CATCCCTACCACCCAACACC-3'
	Reverse: 5'-CCAGACAGTGGAGACCACAC-3'
Mouse ITGB1	Forward: 5'-TAGACATGTGGGGAGTGGGT-3'
(integrin β1)	Reverse: 5'-AGTTCTCCAGCATCTAGTAGCC-3'
Human CRABP2	Forward: 5'-GATGCCTCTTGCAGGGTCTT-3'
	Reverse: 5'-GTGAACCCGGAATGGGTGAT-3'
Control shRNA	5'-
(RFP,	CCGGCGCGTGATGAACTTCGAGGACCTCGAGGTCCTCGA
TRCN0000072203)	AGTTCATCACGCGTTTTTG-3'
Mouse Crabp2	5'-
shRNA	CCGGCCACGTCCATCTTACAAACTACTCGAGTAGTTTGTA
(TRCN0000105235)	AGATGGACGTGGTTTTTG-3'
Mouse HuR shRNA	5'-
(TRCN0000308993)	CCGGCATTGGGAGAACGAATTTAATCTCGAGATTAAATTC
	GTTCTCCCAATGTTTTTG-3'

Control siRNA	Sense: 5'-UUCUCCGAACGUGUCACGUTT-3'
	Anti-sense: 3'-TTAAGAGGCUUGCACAGUGCA-5'
Human CRABP2	Sense: 5'-CGGAAAACUUCGAGGAAUU-3'
siRNA	Anti-sense: 3'-TTGCCUUUUGAAGCUCCUUAA-5'
Mouse HuR siRNA	Sense: 5'-GGAGAACGAAUUUAAUUGUTT-3'
(A)	Anti-sense: 3'-TTCCUCUUGCUUAAAUUAACA-5'
Mouse HuR siRNA	Sense: 5'-GCUGGUGCAUCUUCAUCUATT-3'
(B)	Anti-sense: 3'-TTCGACCACGUAGAAGUAGAU-5'
Mouse HuR siRNA	Sense: 5'-GACCAUGACAAACUAUGAATT-3'
(C)	Anti-sense: 3'-TTCUGGUACUGUUUGAUACUU-5'
Mouse Integrin β1	Sense: 5'-GGCUCUCAAACUAUAAAGATT-3'
siRNA (A)	Anti-sense: 3'-TTCCGAGAGUUUGAUAUUUCU-5'
Mouse Integrin β1	Sense: 5'-GGGCUGAAGAUUACCCUAUTT-3'
siRNA (B)	Anti-sense: 3'-TTCCCGACUUCUAAUGGGAUA-5'
Mouse Integrin β1	Sense: 5'-GCGAGUGUGAUAACUUCAATT-3'
siRNA (C)	Anti-sense: 3'-TTCGCUCACACUAUUGAAGUU-5'

*: used for detection of GFP+ cells in mouse tissues. ^a: used for real-time PCR of blood buffy coat samples.

Western blot antibodies	
β-actin	Genetex, GTX109639
CRABP2	Genetex, GTX101551
HuR	Cell signaling, 12582
Integrin β1	Santa cruz, sc-6622
pERK (T202/Y204)	Cell signaling, 9101
ERK	Cell signaling, 9102
pFAK (Y397)	Genetex, GTX61795
FAK	Millipore, 05-537
Immunoprecipitation antibodies	
CRABP2	Proteintech, 10225-1-AP
IHC antibodies	
CRABP2	Genetex, GTX101551
СНОР	Genetex, GTX11419
Chemicals	
Tunicamycin	Sigma, T7765
Gemcitabine	Sigma, G6423
Erlotinib	Selleckchem, S7786
Irinotecan	Selleckchem, S2217
Retinoic acid	Sigma, R2625
ERK inhibitor FR180204	Sigma, SML0320

Table S7. Information of antibodies and reagents used in this study.

FAK inhibitor 14	Sigma, SML0837
------------------	----------------

Figure S2 Anoikis assay

ACTB

HuR

C10F4

а

а

Hou Lung

а

Figure 3a

Figure 4f

Figure 4g

Figure 4h

Figure 4i

Figure 5a-b

Figure 7b

C10F4

