Supplementary Material

Raman spectroscopy as a quick tool to assess purity of extracellular vesicle preparations and predict their functionality

Alice Gualerzi^{1§*}, Sander Alexander Antonius Kooijmans^{2§}, Stefania Niada³, Silvia Picciolini^{1,4}, Anna Teresa Brini^{3,5}, Giovanni Camussi⁶ and Marzia Bedoni¹

¹ IRCCS Fondazione Don Carlo Gnocchi, Milano, Italy

² Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy

³ IRCCS Istituto Ortopedico Galeazzi

⁴ Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy

⁵ Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy

⁶ Department of Medical Sciences, Molecular Biotechnology Center, University of Turin, Italy

[§] These authors contributed equally to this study

*corresponding author: Phone: +39 02 403085633. Email: agualerzi@dongnocchi.it

Supplementary Figure 1. Raman spectra of EV samples. Mean Raman spectra obtained on air dried drop of EV samples isolated by 1x UC, 2x UC and SEC protocols from HLSC and MSC supernatants. All spectra were baseline corrected, aligned and normalized before averaging. Dotted lines indicate standard deviation of the signal intensities (at least 60 spectra per sample).

Supplementary Figure 2. Principal Component Analysis (PCA). Loadings of the Principal Component (PC) obtained after multivariate PCA. Left panel: PC1, PC2 and PC3 obtained after PCA analysis of the EV and non-EV Raman spectra non considering the cell source for the analysis, describing the 34.8%, 13.97% and 9.6% of total variance. Right panel: PC1, PC2 and PC3 obtained after PCA analysis of the EV Raman spectra from HLSC and MSC by 1x UC, 2x UC and SEC protocols, describing the 37.1%, 13.4% and 9% of total variance.

cm ⁻¹	HLSC-EV			MSC-EV			
	SEC	2x UC	1x UC	SEC	2x UC	1x UC	Origin
679	Х	Х		х	Х	Х	Nucleic acids
710-713	Х	Х	Х	Х	Х	Х	Phospholipids
788	v	v		v			O-P-O stretching in nucleic
700	Λ	Λ		Λ			acids
825				X			Phosphodiester
855				х			Pro, Tyr
928-940	Х	Х		х	Х	Х	Proteins (Pro; Hydroxy-Pro)
1003	Х	Х	Х	х	Х	Х	Phe
1053-1055	x	Х	X	X	X	X	C-O and C-N stretching in
							proteins and lipids
1065	Х	Х		Х	Х		Chain C-C stretching in lipids
1127-1130	x	x		x	x	x	C-N stretching of proteins and
	~						phospholipids
1200-1300	Х	Х	Х	X	Х	Х	Amide III
1450	x	Х	X	х	Х	х	CH_2 and CH_3 deformations in
							proteins and lipids
1455-1457	Х	Х	Х	X	X	Х	Nucleic acids
1465				X			Lipids
1556.6	X	х	x	x	х	х	Background spectrum: substrate
							impurity
1606	Х	Х	Х	X	X	Х	Phe, Tyr ring vibrations
1615	x			x	X	х	Tyrosine, tryptophan, $C=C$
							(protein)
1600-1690	Х	Х	Х	X	X	Х	Amide I
1728	Х	Х	Х	X	X		Ester $C=O$ stretches (lipids)
2883	x	Х	X	х	X	Х	CH_2 asymmetric stretch in lipids
							and proteins
2908	Х	Х		X	Х		CH ₃ stretching vibrations
2937-2940	x	Х	х	X	х	Х	C-H vibrations in lipids and
							proteins

Supplementary Table 1. Main peak assignments. The assignments of the main peaks that can be identified in the Raman spectra from EV samples are reported (Czamara K. et al., Journal of Raman Spectroscopy (2015); Krafft C. et al., Spectrochimica Acta Part (2005); Movasaghi Z. et al., Applied Spectroscopy Reviews (2007))