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1 Cumulative variability plot

Supplementary Figure 1 plots the amount of variability in the motif scores explained by each of the six
principal components. As stated in the main text, 86% of the motif variability is explained by the first
principal component and 97% is explained by the first two principal components.
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Supplementary Figure 1: Cumulative variability explained by each principal component (%)
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2 Changing the threshold

The motif fingerprint and biplot in the main text are given for networks with 800 edges. Results with 400
edges and 1200 edges are similar, as is the cumulative variability plot, as shown in Supplementary Figures
2 and 3.

The correlations between PCs 1 and 2 and the global metrics and the average Euclidean distance of the
longest 5% of edges are also similar in networks with 400 or 1200 edges, as shown in Supplementary Table 1.
Here both the Pearson correlation coefficients (r) and the p-values for Pearson’s correlation using a Student’s
t distribution are shown. Note that with 1200 edges, the direction of PC2 is reversed with respect to the
underlying motifs, hence the sign of the correlations of global metrics with PC2 are also reversed. However,
since this direction is arbitrary, the change in sign is not important.

Global efficiency Transitivity Assortativity Eucl. distance of longest 5% of edges
400 edges PC1 0.74 (< 0.001) -0.89 (< 0.001) -0.62 (< 0.001) 0.37 (< 0.001)

PC2 0.32 (0.001) -0.36 (< 0.001) -0.64 (< 0.001) 0.13 (0.21)
800 edges PC1 0.82 (< 0.001) -0.94 (< 0.001) -0.36 (< 0.001) 0.50 (< 0.001)

PC2 0.20 (0.04) -0.28 (0.004) -0.81 (< 0.001) 0.16 (0.11)
1200 edges PC1 0.85 (< 0.001) -0.96 (< 0.001) -0.31 (0.002) 0.49 (< 0.001)

PC2 0.00029 (0.998) 0.20 (0.05) 0.80 (< 0.001) -0.20 (0.05)

Supplementary Table 1: The correlations between the PCs and the global metrics and the average Euclidean
distance of the longest 5% of edges are also similar in networks with 400 or 1200 edges. The Pearson
correlation coefficients are shown. The p-values for Pearson’s correlation using a Student’s t distribution are
also shown in brackets.
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Supplementary Figure 2: a) Motif fingerprint, b) Cumulative variability and c) Motif biplot for networks
with 400 edges. The motif fingerprint with 800 edges is also shown for comparison.
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Supplementary Figure 3: a) Motif fingerprint, b) Cumulative variability and c) Motif biplot for networks
with 1200 edges. The motif fingerprint with 800 edges is also shown for comparison.
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3 Changing the parcellation

Throughout the main text, we use the AAL parcellation with 90 regions. Here we show that our results are
robust to changing the parcellation. In particular, we consider the AICHA parcellation [1] with 384 regions.
This parcellation aims to preserve homotopy. In our case, we were interested in testing our results using a
parcellation with a larger number of regions to test the robustness of the motifs extraction.

As before, the networks are thresholded at approximately 20%, with 14689 edges per network in this case.
The motif fingerprint and biplot we obtain are shown in Supplementary Figure 4 and are remarkably similar
to those from our data and parcellation shown in Figure 1 of the main text. We note that an even higher
percentage of variability is explained by the first PC (over 92% of the total variability). As shown in
Supplementary Table 2, the correlations with global metrics and the average Euclidean distance of the
longest 5% of edges are also very similar to our previous results- PC1 correlates positively with global
efficiency and negatively with transitivity. PC2 correlates positively with assortativity- note that the change
in sign with respect to our previous results is explained by the fact that PC2 is ‘flipped’ with respect to the
underlying motifs. This change in sign is unimportant because the direction of PC2 is arbitrary.

Global efficiency Transitivity Assortativity Euclidean distance of longest 5% of edges
PC1 0.94 (< 0.001) -0.98 (< 0.001) -0.27 (0.006) 0.53 (< 0.001)
PC2 0.11 (0.26) 0.13 (0.20) 0.58 (< 0.001) -0.26 (0.01)

Supplementary Table 2: The correlations between the PCs and the global metrics and the average Euclidean
distance of the longest 5% of edges, using the HCP data with the AICHA parcellation. All results are shown
for networks with 14689 edges, which is an approximately 20% threshold.
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Supplementary Figure 4: a) Motif fingerprint, b) Cumulative variability and c) Motif biplot for HCP dataset
with the AICHA parcellation. The motif fingerprint in the AAL parcellation is also shown for comparison.
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4 Re-test dataset

Using a re-test HCP dataset, in which all 100 subjects were scanned a second time with identical acquisition
parameters, we obtain a similar motif fingerprint, cumulative variability plot and motif biplot as before.
Results are shown in Supplementary Figure 5. The correlations with global metrics and with the average
Euclidean distance of the longest 5% of edges are also similar in the re-test HCP dataset, see Supplementary
Table 3. All results are shown for networks with 800 edges, as in the main text.

Global efficiency Transitivity Assortativity Euclidean distance of longest 5% of edges
PC1 0.82 (< 0.001) -0.90 (< 0.001) -0.41 (< 0.001) 0.43 (< 0.001)
PC2 0.25 (0.01) -0.38 (< 0.001) -0.71 (< 0.001) 0.02 (0.82)

Supplementary Table 3: The correlations between the PCs and the global metrics and the average Euclidean
distance of the longest 5% of edges, using the re-test HCP data. All results are shown for networks with 800
edges in the AAL 90 parcellation, which is an approximately 20% threshold.
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Supplementary Figure 5: a) Motif fingerprint, b) Cumulative variability and c) Motif biplot for re-test
dataset. All parts have networks with 800 edges.
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5 Changing the dataset

Above we showed that our results are robust in the HCP re-test dataset. We now test them in an independent
dataset, which we refer to as the ‘Cambridge’ dataset. This dataset has been reported previously in [2] and
includes 26 subjects of varying ages. Resting-state fMRI data was acquired using classical Gradient-echo
planar imaging (EPI) in the Wolfson Brain Imaging Center (Cambridge, UK) (see [1] for the details of the
parameter acquisition). The length of the acquisition was 9.6 minutes with a repetition time equal to 1.1 s.
The same pre-processing procedure was applied as before to obtain time series with 90 anatomical regions
and 512 samples in time. Again as before, the AAL parcellation was used and the networks are thresholded
at 800% edges (approximately 20% cost).

The motif fingerprint and biplot we obtain are shown in Supplementary Figure 6 and are again similar to
those from the HCP dataset shown in Figure 1 of the main text. The correlations with global metrics are
very similar to our previous results, as shown in Supplementary Table 4, PC1 correlates positively with
global efficiency and negatively with transitivity, whilst PC2 correlates negatively with assortativity.

The only result which was significant in the HCP dataset and is no longer significant in this dataset is the
correlation between the average Euclidean distance of the longest 5% of edges. Whilst we still find a positive
correlation in the Cambridge dataset (r=0.30), the p-value is > 0.05 (p=0.14). The reason for this difference
is unclear, but could be due to the smaller number of subjects available in the Cambridge dataset. Further
work is needed to clarify the reason for this difference.

Global efficiency Transitivity Assortativity Euclidean distance of longest 5% of edges
PC1 0.87 (< 0.001) -0.88 (< 0.001) 0.18 (0.37) 0.30 (0.14)
PC2 0.34 (0.09) -0.45 (0.02) -0.84 (< 0.001) 0.16 (0.44)

Supplementary Table 4: The correlations between the PCs and the global metrics and the average Euclidean
distance of the longest 5% of edges in the Cambridge dataset. All results are shown for networks with 800
edges.
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Supplementary Figure 6: a) Motif fingerprint, b) Cumulative variability and c) Motif biplot for the Cambridge
dataset.
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6 5 node motifs

In Figure 1 of the main text, we present the cumulative variability and motif biplot for 4 node motifs. In
Supplementary Figure 7, we show the same plots for 5 node motifs. Again, the first two principal components
explain over 90% of the motif variability, even though there are 21 possible 5 node motifs. Hence there is
significant overlap between the information contained within the motif counts. We note that PC1 explains
slightly less of the variability than it did in the 4 node motif case and PC2 explains slightly more (74%
instead of 86% and 18% instead of 11%). Figure 7 b plots the motif biplot for 5 node motifs, which is similar
to the 4 node biplot; highly clustered motifs have low PC1, whilst ‘chain-like’ motifs have high PC1. PC2
reflects the assortativity of the motifs. The correlations with global metrics are shown in Supplementary
Table 5 and are remarkably similar to those obtained with 4 node motifs.

Global efficiency Transitivity Assortativity Euclidean distance of longest 5% of edges
PC1 0.80 (< 0.001) -0.88 (< 0.001) -0.24 (0.01) 0.49 (< 0.001)
PC2 0.35 (< 0.001) -0.43 (< 0.001) -0.79 (< 0.001) 0.19 (0.05)

Supplementary Table 5: The correlations between the PCs and the global metrics and the average Euclidean
distance of the longest 5% of edges in the HCP data with 5 node motifs. All results are shown for networks
with 800 edges.
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Supplementary Figure 7: a) Cumulative variability of the 5 node motif fingerprints. b) 5 node motif biplot
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with 800 edges, as in Figure 1 of the main text.
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7 Small-worldness coefficient

The small-worldness coefficient [3] correlates with PC1, with r=0.87 (p< 0.001). There is no significant
correlation with PC2 (r=-0.15, p=0.12). The motif morphospace coloured by small-worldness coefficient is
shown in Supplementary Figure 8.

Supplementary Figure 8: Motif morphospace coloured according to the networks’ small-worldness coefficients.

8 Including global metrics in the PCA

Supplementary Figures 9 b and d plot the cumulative variability plot and the biplot with efficiency, tran-
sitivity and assortativity included in the PCA in addition to the motif scores. Note that in order to be
able to compare the motif scores to the global metrics in the PCA we have first taken z-scores of each of
the nine inputs (the six motif scores and the three global metrics). The cumulative variability plot and the
biplot with only the six z-scored motif scores are shown in Supplementary Figures 9 a and c for comparison.
Supplementary Tables 6 and 7 provide the loadings from the PCA with and without the global metrics
included.

PC1 PC2
m1 0.37 -0.24
m2 0.29 0.42
m3 0.30 -0.34
m4 -0.17 0.57
m5 -0.39 0.02
m6 -0.40 -0.08

Efficiency 0.37 0.02
Transitivity -0.41 -0.04

Assortativity -0.21 -0.56

Supplementary Table 6: Loadings for PCA with efficiency, transitivity and assortativity included.

As can be seen from the biplots, the motif directions are similar in both cases (the sign of PC1 is flipped, but
this difference is unimportant since the sign is arbitrary). According to the sign convention in the original
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PC1 PC2
m1 -0.48 -0.13
m2 -0.29 0.61
m3 -0.41 -0.32
m4 0.28 0.65
m5 0.47 -0.15
m6 0.47 -0.26

Supplementary Table 7: Loadings for PCA without global metrics (having calculated z-scores for the motif
scores, see text for details).

plot, efficiency is positively weighted along PC1, whilst transitivity is negatively weighted. Assortativity is
negatively weighted along PC2 as well as PC1. These results are in line with the correlations between the
global metrics and the PCs shown previously. From Supplementary Table 6, when the global metrics are
included in the PCA, the largest loadings for PC1 are for transitivity (-0.41) and m6 (-0.40), whilst the
largest loadings for PC2 are for m4 (0.57) and assortativity (0.56). Hence the global metrics and the motif
scores show similar loadings.
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9 Relationship with Euclidean distance

9.1 Robustness

In the main text, we reported the correlation of the average Euclidean distance of the longest 5% of edges
with PC1 and PC2, for the HCP networks. The choice of 5% was somewhat arbitrary, however similar
results can be obtained with the longest 10% or 1% of edges, as shown in Table 8.

10% 5% 1%
PC1 0.42 (< 0.001) 0.50 (< 0.001) 0.57 (< 0.001)
PC2 0.22 (0.03) 0.16 (0.11) 0.05 (0.61)

Supplementary Table 8: The correlations between PC1 and PC2 and the average Euclidean distance of the
longest 10%, 5% and 1% of edges in our networks.

9.2 Exploring the location of the long-distance edges in the brain

In the main text we compare the distributions of the Euclidean distances of the edges for two example subjects
(Figure 1, parts c and d). In Supplementary Figures 10 and 11 we show the longest 5% of edges from these
two subjects plotted on the brain. We observe that the long distance edges in the subject represented by a
circle (whose longest edges are shorter on average) are more likely to be interhemispheric, whilst the subject
represented by a square (whose longest edges are longer on average) are more likely to be intrahemispheric,
often connecting the front and the back of the brain. Note that this does not mean that the subject denoted
by the circle has more interhemispheric edges in total than the subject denoted by the square, rather that
more of their longest edges are interhemispheric.

Supplementary Figure 10: Longest 5% of edges for the subject represented by the circle in Figure 2 of the
main text, visualised with the BrainNet Viewer [4].
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Supplementary Figure 11: Longest 5% of edges for the subject represented by the square in Figure 2 of the
main text, visualised with the BrainNet Viewer [4].

To explore this finding further in the whole dataset, we counted the number of the longest 5% of edges in
each subject which were interhemispheric. Note that 5% of the edges in the network corresponds to 40 edges
in our networks (since they have 800 edges in total), hence the largest number of these edges which can be
interhemispheric is 40. In other words, for each network we listed its 800 edges by the Euclidean distance
between the two regions they connect, selected the 40 longest edges and then counted how many of these
edges were interhemispheric. Supplementary Figure 12 plots the motif morphospace coloured by the number
of the longest 5% of edges in each subject which were interhemispheric. As expected from Supplementary
Figures 10 and 11, we observe that the results correlate with PC1 (r=-0.44, p< 0.001), in other words the
longest edges in networks with high PC1 scores (which tend to have high global efficiency) are more likely to
be long distance edges within a single hemisphere than the longest edges in networks with low PC1 scores,
which are more likely to be interhemispheric. Importantly, there is no correlation between PC1 or PC2 and
the total number of interhemispheric edges in the network, hence on average networks with low or high PC1
scores still have the same number of interhemispheric edges in total.
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Supplementary Figure 12: Motif morphospace coloured according to the number of the longest 5% of edges
in each subject which are interhemispheric.

10 Generative models

10.1 Economical clustering model

In order to determine η and γ for the generative model, we generated networks with a wide range of η and
γ values and calculated the goodness of fit of the generated networks to the HCP brain networks. The
goodness of fit was determined using the same energy function used by Vertes et al. [5], which optimises the
networks for modularity, mean local clustering efficient, global efficiency and degree distribution. Note that
the networks were not optimised for the motif fingerprint, or assortativity. Supplementary Figure 13 plots
the energy function as a function of η and γ. The lower the energy, the better the fit to the networks. The
minimum is found at γ = 3 and η = −2.5, therefore in the main text we set these values for η and γ. Note
that as η and γ increase, the networks become more clustered, as can be seen from Figure 5 in the main text
and the motif distribution shown in Supplementary Figure 14. Therefore increasing η and γ further is not
expected to give a better approximation to the HCP brain networks.

The correlations between the PCs and the global efficiency, assortativity, transitivity and the average length of
the longest 5% of edges are shown in Table 9. The results for global efficiency, transitivity and assortativity
are similar to those observed in the real data with a single hemisphere only and a 10% threshold. The
correlation between the Euclidean distance of the longest 5% of edges and PC1 is not statistically significant
in the generated networks (p=0.07). This is partly, although not solely, due to the reduced correlation
between the Euclidean distance of the longest 5% of edges and PC1 when only a single hemisphere is
considered, which is unsurprising because there are fewer long distance connections. We also note that
with a single hemisphere only, the global efficiency of both the real networks and the generated networks
shows strong correlation with PC2 as well as with PC1. Interhemispheric connections are known to play
an important role in the brain and further work is needed to fully understand their influence on the motif
morphospace.
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Supplementary Figure 13: The average energy values of networks generated using the economical clustering
model as η and γ are varied (mean of 100 generated networks). The energy values are shown as log10(E),
where E is as defined in [5].

Global efficiency Transitivity Assortativity Eucl. distance of longest 5% of edges
Generated PC1 0.49 (< 0.001) -0.80 (< 0.001) -0.41 (< 0.001) 0.18 (0.07)

PC2 0.53 (< 0.001) -0.50 (< 0.001) -0.74 (< 0.001) 0.07 (0.50)
HCP PC1 0.57 (< 0.001) -0.76 (< 0.001) -0.51 (< 0.001) 0.27 (0.007)

PC2 0.58 (< 0.001) -0.44 (< 0.001) -0.68 (< 0.001) -0.003 (0.97)

Supplementary Table 9: The correlations between the PCs and the global metrics and the average Euclidean
distance of the longest 5% of edges in generated and real fMRI brain networks with a 10% threshold and
a single hemisphere. The Pearson correlation coefficients are shown. The p-values for Pearson’s correlation
using a Student’s t distribution are also shown in brackets.

10.2 Economical preferential attachment model

Whilst the economical clustering model is able to reproduce the motif fingerprints from the real data, other
models are not. For example, here we show results from the economical preferential attachment model, also
described in [5]. As above, in order to determine η and γ we explore the goodness of fit of networks across the
parameter space manually. The energy at different η and γ is shown in Supplementary Figure 15. Note that
the energy is always higher than the optimal energy values obtained from the economical clustering model,
suggesting that networks generated by the economical preferential attachment model are not as close a fit to
the real fMRI brain networks. The solutions with the lowest energy values form a band across the parameter
space. Since it is difficult to ascertain whereabouts in the band the optimal solution is, in Supplementary
Figure 16 we show motif fingerprints for a range of η and γ values within the lower energy band. None of
the motif fingerprints are in agreement with the original networks. For γ = 1 and η = −4, the proportions of
m1 and m2 are higher than in the real brain networks, whilst the proportion of m4 is too low. As γ and |η|
increase, the proportion of m1 decreases and the proportion of m4 increases, however the proportion of m2

increases away from the results for the real brain networks. This trend continues at higher values of η and
γ. Hence the economical preferential attachment model is unable to reproduce the motif fingerprint, unlike
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Supplementary Figure 14: Motif distributions of networks generated using the economical clustering model
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the economical clustering model. This illustrates that it is not trivial to find a model which can reproduce
the motif fingerprint.

10.3 Network similarity measures

An alternative way to compare the results from the generative models to the real fMRI networks is to
use network similarity measures. In Supplementary Table 10 we use three network similarity measures to
measure the differences between 1) the economical clustering model (with η = −3 and γ = 2.5) and the real
fMRI networks, 2) the preferential attachment model (with η = −20 and γ = 6) and the real fMRI networks
and 3) random networks with the same number of nodes and edges as the real fMRI networks (generated
using the Brain Connectivity Toolbox function makerandCIJ und.m [6]) and the real fMRI networks. In
each case we average the measure over all possible pairwise comparisons, using the 100 real networks and
100 generated/random networks. We report the mean average and the standard deviation of the results.
The three measures we use are: 1) the number of edges the networks have in common (out of a possible total
of 99 edges), 2) the Hamming distance and 3) a recently reported network dissimilarity measure, using the
default parameters described in the paper (w1=w2=0.45, w3 = 0.1) [7]. Note that this measure has a range
from zero to one and is equal to zero in the case of identical networks, hence lower numbers mean a higher
similarity.

We find that the differences between the real fMRI networks and the economical clustering model or the
preferential attachment model are within one standard deviation from each other with all three methods,
unlike the differences between the real fMRI networks and the random networks, which are much more
substantial. For example, the number of edges in common with the real fMRI networks is 24.7 ± 4.1 and
26.6±3.8 for the economical clustering model and the preferential attachment model respectively, compared
to only 9.9± 2.9 edges in common between the real fMRI networks and the random networks. Nonetheless,
a two-sided Wilcoxon signed rank test shows that there are statistically significant differences between the
similarity measures comparing the 100 real fMRI networks and the two generative models. In particular,
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Supplementary Figure 15: The average energy values of networks generated using the economical preferential
attachment model as η and γ are varied (mean of 100 generated networks). The energy values are shown as
log10(E), where E is as defined in [5].

the preferential attachment model appears to be closer to the real networks in terms of the number of edges
in common and the Hamming distance, whilst the economical clustering model is closer using the method
proposed by Schieber et al (which was designed to account for topological properties of the networks).

No. of edges in common Hamming distance Schieber et al [7]
Economical clustering model vs fMRI 24.7± 4.1 303.8± 17.1 0.08± 0.04

Preferential attachment model vs fMRI 26.6± 3.8 291.3± 14.6 0.09± 0.04
Random networks vs fMRI 9.9± 2.9 356.4± 11.5 0.20± 0.04

Supplementary Table 10: Comparison of generated and real fMRI brain networks using three network
similarity measures. See text for details.
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Supplementary Figure 16: Motif distributions of networks generated using the economical preferential at-
tachment model with different η and γ values. The generated networks are unable to reproduce the real
brain network’s motif fingerprint.
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