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Heritability of the human connectome: a connectotyping study 

Supplemental data items  

Supplemental Results 
	

In this section we report the findings obtained after characterized brain connectivity using 

Pearson’s correlation and performing the same experiments done in the main manuscript. 

Comparing consistency within individuals, between siblings, and across unrelated pairs using 

traditional functional connectivity matrices. 

To assess the traditional pearson correlation-based FC approach, we compared how similar the 

connectivity matrices were between groups (Same individual, predicting data in a different scan 

session; Individual predicting a sibling; individual predicting an unrelated participant). Here 

instead of using the model to “predict timecourses” we simply calculated the spatial correlation 

coefficient between matrices (see Supplemental Methods for details) ending up again with as 

many correlations as ROIs for each scan-pair being compared. These spatial correlations were 

then averaged providing 1 mean correlation value for each paired comparison.  The distributions 

of mean average spatial correlations across all pairs are shown in Figure 1-Figure Supplement 4 

panel c (Note: we also compared spatial correlations for the beta weights or connectotypes and 

present the corresponding distributions in Figure 1-Figure Supplement 4 panel b). Then, we used 

a t-test to compare distributions for siblings and unrelated participants. Spatial correlations for 

both connectotyping and traditional correlations showed that sibling pairs were significantly 

more similar than unrelated pairs (p < 1.23×10'(	for	connectotyping	(Figure	1 −

Figure	Supplement	2b)	and	p	 < 	8.96×10'D for correlations (Figure	1 −

Figure	Supplement	2c).   
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Classification of simply pairs in youth utilizing traditional function connectivity matrices.  

For traditional functional connectivity correlations, the average out-of-sample accuracy was 

69%. This finding was significantly higher than null, p < 10-6). Sensitivity was 68% and a 

specificity was 69%.  The classifications were mainly driven by ROIs belonging to the following 

functional networks: cingulo-opercular, dorsal attention, default mode, and ventral attention 

(Figure 3-Figure Supplement 5, panels D-E). As above, we did not observe significant changes 

in accuracy when a different number of features were used for classification (Figure 3-Figure 

Supplement 6 panel A). 

Classification of sibling pairs in adults using Human Connectome Project data using 

traditional correlations 

Classification by traditional functional connectivity correlations rendered significant out-of-

sample classification accuracies, as shown in Figures 4-Figure Supplement 3 and Figure 4-Figure 

Supplement 4 (difference in accuracy for identical versus non-identical twins was also 

significant: p < 10-6 rank-sum test, cohen’s d = 4.07). Overall, these results suggest that kinship 

substantially contributes to individualized patterns of complex brain organization. Furthermore, 

greater accuracy for predicting monozygotic vs dizygotic twins strongly suggests that these 

patterns are partially heritable. 

Classification of sibling pairs using independent datasets 

Our validation approach using one dataset to predict siblings vs unrelated was repeated using 

correlations. As shown in Figure 5-Figure Supplement 2, the overall accuracy with traditional 

correlations was low (56%, p < 10-6 rank-sum test, cohen’s d = 2.07). 
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Quantifying the heritability of the human connectome 

Heritability was also quantified for correlation measures using three-way (shared environment X 

shared genetics X ROI) repeated measures ANOVAs, with ROI as the repeated measure. 

Heritability estimates (shared genetics) were made at the level of each of the 352 individual 

regions (333 cortical + 19 subcortical), each of the 14 networks, the whole brain, and for all 

individual ROI-ROI correlations (Figure 7-Figure Supplement 3). 

Correlations showed significant heritability for 283 of the 352 individual ROIs (h2 < 0.05, p < 

0.05 corrected for multiple comparisons). Figure 7-Figure Supplement 2 plots the heritability of 

the top 100 features of the SVM for correlations. Heritability is also low at the level of individual 

regions.  

Therefore, we examined the heritability across the whole brain and for each network for 

traditional functional connectivity correlations, controlling for the effect of individual ROIs via 

repeated-measures ANOVA. For correlations (Figure 7-Figure Supplement 2A, top; h2 > 0.49, p 

< 1e-6) dorsal attention and frontal parietal systems were among the most heritable, paralleling 

the most used networks for SVM. Thus, the SVM is likely capturing some heritability of 

individual networks. Across the whole brain, heritability was much greater (h2 = 0.53 (upper 

95% CI = 0.57, lower 95% CI = 0.48;  p < 1e-6 ) than at the level of individual regions or 

networks and further suggests that rather than individual connections, groups of functional 

connections are heritable 

Using the same repeated measures ANOVA we found that the shared environment of networks 

was greater for the whole brain than for individual connections (Figure 7-Figure Supplement 3). 

However, these results are difficult to interpret because no-twin sibling pairs represent a large 
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portion of our data, so we are reluctant to interpret these results with too much emphasis. A twin 

design with greater numbers than presented here would be required to properly estimate shared 

environment.  

For traditional correlations, no individual connection showed statistically significant heritability 

after correction for multiple comparisons. Nevertheless, we quantified heritability and 

environment from the generalized linear mixed model for the top 100 features used in SVM, 

which showed little variation in heritability (Figure 7-Figure Supplement 3, black circle) or 

shared environment (Figure 7-Figure Supplement 3; black plus sign).  

Spatial correlations show significant heritability and shared environment in both the 198 

(heritability: Figure 7-Figure Supplement 2; shared environment: Figure 7-Figure Supplement 3, 

red plus sign) and 499 (heritability: Figure 7-Figure Supplement 3, blue circle; shared 

environment: Figure 7-Figure Supplement 3, blue plus sign) datasets. Taken together, the set of 

results suggests that connections between groups but not pairs of brain regions may be heritable. 

Motion familiality:  

Because a prior study reported that the degree of motion in resting-state data may be heritable, 

we used a general linear mixed model to evaluate familiality in the OHSU dataset. As above, the 

“fitlmematrix” function in matlab was used to construct and test the generalized linear mixed 

model. Because the OHSU dataset contained no twins, we could not dissociate shared 

environmental from shared genetic effects. Therefore, the familiality matrix represents the 

familiality between subjects; sibling pairs have a correlation of 1 and non-sibling pairs have a 

correlation of 0. The eigenvalues derived from the familiality matrix were used as the random 

factor, with sex and age as covariates. Point estimates of familiality were calculated by 
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measuring the ratio of the familiality component to the total variance. Pre-censored and post-

censored OHSU datasets were tested for motion familiality. 
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Supplemental Methods 

MRI Data Acquisition: 

Oregon: Structural images were obtained using a T1-weighted MP-RAGE sequence (TR=2.3𝑠, 

TE=3.58𝑚𝑠, flip angle = 10°, TI = 900𝑚𝑠, voxel size = 1mm3, 160 sagittal slices). A T2-

weighted sequences was also acquired (TR = 3.2𝑠, TE = 497𝑚𝑠, voxel size = 1𝑚𝑚, slices = 160) 

as well as magnitude and phase field maps to correct for geometric distortions due to 

susceptibility artifact. Resting-state functional BOLD images were acquired using a gradient-

echo, echo-planar sequence (TR = 2500 𝑚𝑠, TE = 30 𝑚𝑠; FOV = 240 mm; flip angle =  90°; 

3.75x3.75x3.8 𝑚𝑚). Full brain coverage was obtained with 36 contiguous interleaved 3.8 𝑚𝑚 

axial slices acquired parallel to the plane transecting the anterior and posterior commissure. 

HCP: We note that HCP data was acquired on a 3T Siemens Skyra optimized to achieve 100 

mT/m gradient strength. All the data was corrected to account for the non-linearities associated 

with the high gradient and the displacement of the isocenter in this optimized system. For further 

details see the HCP 500 Subjects + MEG2 Data Release: Reference Manual (WU-Minn, 2014) 

and (Glasser et al., 2013). 

Two separate T1-weighted images were acquired and averaged, with a TR=2400 ms, TE=2.14 

ms, TI = 1000 ms, FA = 8°, and ES = 7.6 ms. Two T2-weighted images were acquired and 

averaged with a TR=3200 ms, TE=565 ms. T1-weighted and T2-weighted images were acquired 

with a voxel resolution of 0.7 mm (isotropic). Resting state BOLD data were acquired using a 

gradient echo echo planar imaging sequences with 2mm3 voxels, TR=720ms, TE = 33.1ms, and 

a multiband acceleration factor of 8. 
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MRI Data Preprocessing: 

Oregon: Data were processed using the pipelines from the Human Connectome Project (Glasser 

et al. 2013), which include the use of FSL (Smith et al. 2004; Jenkinson et al. 2012; Woolrich et 

al. 2009) and FreeSurfer tools (Dale et al. 1999; Desikan et al. 2006; Fischl & Dale 2000). 

Briefly, gradient distortion corrected T1-weighted and T2-weighted volumes were first aligned to 

the MNI’s AC-PC axis and then non-linearly normalized to the MNI atlas. Later, the T1w and 

T2w volumes are re-registered using boundary based registration (Greve & Fischl 2009) to 

improve alignment. Then, the brain is segmented using recon-all from FreeSurfer. Segmentations 

are improved by using the enhanced white matter-pial surface contrast of the T2-weighted 

sequence. The BOLD data is corrected for field distortions (using FSL’s TOPUP) and processed 

by doing a preliminary 6 degrees of freedom linear registration to the first frame. After this 

initial alignment, the average frame is calculated and used as final reference. Next, the BOLD 

data is registered to this final reference and to the T1-weighted volume, all in one single step, by 

concatenating all the individual registrations into a single registration.  

Surface registration. The cortical ribbon defined by the structural T1-weighted and T2-weighted 

volumes is used to define a high resolution mesh which will be used for surface registration of 

the BOLD data. This cortical ribbon is also used to quantify the partial contribution of each 

voxel in the BOLD data in surface registration. Timecourses in the cortical mesh are calculated 

by obtaining the weighted average of the voxels neighboring each vertex within the grid, where 

the weights are given by the average number of voxels wholly or partially within the cortical 

ribbon. Voxels with high coefficient of variation, indicating difficulty with tissue assignment or 

containing large blood vessels, are excluded. Next, the resulting timecourses in this mesh are 
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downsampled into a standard space of anchor points (grayordinates), which were defined in the 

brain atlas and mapped uniquely to each participant’s brain after smoothing them with a 2mm 

full-width-half-max Gaussian filter. Subcortical regions are treated and registered as volumes. 

Two thirds of the grayordinates are vertices located in the cortical ribbon while the remaining 

grayordinates are subcortical voxels.  

Nuisance regression. Additional preprocessing consists of regressing out the grey matter, 

ventricle and white matter average signal, and the movement between frames from the six image 

alignment parameters 𝑥, 𝑦, 𝑧, 𝜃K , 𝜃L, and 𝜃M  on the actual and the previous TR and their 

squares, which correspond to the Volterra series expansion of motion (Power et al. 2014; Friston 

et al. 1996; Power et al. 2012). The regression’s coefficients (beta weights) are calculated solely 

based on frames with low movement, but regression is calculated considering all the frames to 

preserve temporal order in the data for filtering in the time domain. Next, timecourses are filtered 

using a first order Butterworth band pass filter to preserve frequencies between 0.009 and 0.080 

Hz.  

HCP: For this analysis, we used the ICA-FIX denoised rfMRI timecourses provided by the HCP. 

These timecourses were minimally processed first by the HCP as described below. Next, they 

applied Independent Component Analysis (ICA) to account for nuisance and covariates with a 

new FSL tool named FIX that automatically removes artifactual or “bad” components. Briefly, 

each voxel’s timecourses from 25 HCP subjects were decomposed into 229 spatial components. 

Of these, on average 24 components were hand-classified as “good” and the remainder as “bad”. 

Next, a classifier was trained to identify “good” and “bad” components. Once the classifier was 

optimized (by leave-one-subject-out cross validation), the resulting classifier was used to identify 
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the “bad” components from each participant. Such components were removed by regressing the 

“bad” components (timecourses) out from the timecourses on each grayordinate.  

Machine learning based identification of siblings 

Classifiers: For each run (out of 𝑁), SVM classifiers with a Gaussian (or Radial Basis Function, 

RBF) were optimized by leave-one-out cross validation (loocv), unless otherwise stated. The 

optimization is calculated using gradient descent to minimize the out of sample classification 

error by optimizing the parameters "Box Constraint" and a "scaling factor" ("Kernel Scale") in 

SVM. For SVM, “Box Constraint” controls the maximum penalty imposed on margin-violating 

observations, and helps in preventing overfitting (regularization) (Abu-Mostafa et al. 2012). This 

parameter is directly related to the number of support vectors used for classification. Increasing 

this number decreases the number of support vectors at the cost of training time. “Kernel Scale” 

is a scaling factor applied to the predictor variables. 

Estimation of single-subject functional organization using traditional functional connectivity 

correlation matrix 

Correlation matrices were calculated for each participant included in this study by calculating the 

Pearson correlation coefficient of the BOLD activity (after motion censoring) for any pair of 

ROIs used on each parcellation schema. The result was a ROI×ROI correlation matrix per 

participant that were used to characterize individual FC. To compare each scan pair, we defined 

the “spatial correlation” per ROI as the correlation between two subjects’ FC vectors, where each 

vector is simply the set of correlations between that ROI and every other ROI. 

Features for SVM using traditional correlations: To extract a comparable feature set using the 

pearson correlation matrices, we defined the “spatial correlation” per ROI as the correlation 
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between two subjects’ FC vectors, where each vector is simply the set of correlations between 

that ROI and every other ROI. 

Heritability Analysis: 

 

Traditional heritability: Because our heritability approach differs from prior studies, it was 

important to estimate the heritability of individual functional connections using traditional 

approaches from the literature as well. Therefore, the heritability of traditional correlations was 

tested using generalized linear mixed models (Visscher and Goddard, 2015) via the 

“fitlmematrix” function in MATLAB, where each functional correlation was used as the 

predicted measure. For comparisons to the SVM model (see: Figure 2), mean ROI heritability 

was calculated for each ROI by taking the average heritability for functional correlations 

between the given ROI and all other ROIs.  Mean network heritability was measured by 

computing the average of the mean ROI heritability for all ROIs within each network. All 

measures were transformed into normally distributed variables using a rank-based transform 

(Glahn et al., 2010). To aid in computation and reduce the dimensionality of the data, 

eigenvectors, derived via singular value decomposition, from the kinship and shared 

environment matrices were random factors. Per matrix, an eigenvector exists per subject and 

represents the shared genetics or environment between that subject and every other subject.  The 

kinship matrix represents the genetic correlation between each pair of subjects; monozygotic 

twins have a genetic correlation of 1, other siblings have a correlation of 0.5, while unrelated 

pairs have no correlation; the kinship matrix is doubled prior to being used as a random factor. 

The shared environment matrix was generated as a binary matrix where a 1 indicated that the 

given pair of subjects lived in the same household and a 0 indicated that the given pair lived in 
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separate households. Sex and age were used as fixed effects in the analysis. Model parameters 

were estimated using restricted maximum likelihood estimation. To determine whether the 

genetic associations significantly explained variance in functional connections, another mixed 

model, called the shared environment model, was tested that excluded the kinship factor. A chi-

squared test of the difference in log likelihood between the two types of models determined 

whether the contribution of the genetic component was statistically significant. We used the false 

discovery rate (FDR) to correct for multiple comparisons (Benjamini and Hochberg, 1995). Point 

estimates of heritability were calculated from the genetic plus shared environment model by 

measuring the ratio of the genetic component variance to the total variance (Visscher and 

Goddard, 2015). 
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Supplemental figures. 

Figure 1- Figure Supplement 1. Visualizing functional networks using connectotyping and 
traditional correlations. Panel a) shows the mean connectotype across individuals; panel b) 
shows a connectoype from 1 individual; and panel c) shows the correlation matrix of that 
individual. The “y” axis correspond to each ROI, sorted per functional network. The number 
shown in the “y” axis corresponds to the network’s index, as coded in the table at the side.  
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Figure 1- Figure Supplement 2. Average correlation prediction when predicting 
timecourses from the same participant but months later. This figure corresponds to the group 
II from the figure I. This group is highlighted here to show in greater detail the low association 
between the average correlation coefficient of predicted timecourses and time between scans for 
connectotyping. This figure highlights the correlation coefficient between the average 
similarities between scans and time between scans following 3 criteria: 1) using all the data; 2) 
time between scans <=1.5 years; and 3) time between scans >1.5 years. 
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Figure 1-Figure Supplement 3. Segregating groups of paired data (same scan, same 
participant, siblings and unrelated) by predicting timecourses and spatial correlations. 
Panels “a” to “e” show the average correlation coefficient between predicted and observed 
timecourses across all participants under different parcellation schemas. Groups are based on the 
dataset used to calculate the model used in the prediction: I) the same scan session, II) the same 
participant but in a different scan session, III) a sibling, and IV) from unrelated individuals. Each 
panel also show the differences in age (measured in years) between each paired-data.  
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Figure 1-Figure Supplement 4. Spatial correlations. Panel a shows the results for 
connectotyping predicting timecourses and is repeated here for reference. Panels b and c show 
the spatial correlations using the Gordon parcellation for connectotyping (b) and traditional 
correlation matrices (c).  
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Figure 3-Figure Supplement 1. Top ROIs per functional network. Panel a) shows their 
location in a cartoon’s brain. Panel b) shows the top features sorted per functional network (as in 
Figure 3). Panel c) shows the same top 100 ROIs sorted as the ratio of the number of ROIs 
identified in the network relative to the given network’s size. 
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Figure 3-Figure Supplement 2. Mapping the 11 ROIs (within the top 100) with no proper 
assignment in Gordon into Yeo. Panel a shows the 11 ROIs within the top 100 with no 
functional assignment on top of the functional communities as defined by Yeo (Yeo et al., 2011) 
(also see tables S2 and S3). Colorcode shown in the bottom. Panel b shows the same information 
into a spherical projection of the brain.  
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Figure 3-Figure Supplement 3. Distributions of ROI’s size for the Gordon (+ subcortical) 
parcellation schema. Panel a) shows the distribution of the top 100 ROIs size (black) and the 
remaining 252 (red), as accounted by their number of grayordinates (see Table S2). Panel b) 
splits such distributions per functional network. 
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Figure 3-Figure Supplement 4. SVM’s out of sample performance for 
CONNECTOTYPING and correlations, N=1000 per feature set. Mean full accuracy (+), 
mean accuracy predicting siblings (•), and mean accuracy predicting unrelated population (□). 
Panel A shows the out of sample performance of the SVM classifiers for connectotyping as a 
function of the number of features (x-axis) used for classification. Left-most panel shows the 
average results as a function of the number of features used for classification. Right-side 
subpanels show the distributions of accuracy, specificity (accuracy predicting siblings), and 
specificity (accuracy predicting unrelated participants) compared with the null hypothesis. Panel 
B show the corresponding results for connectotyping when the features were selected by 
functional network, as defined by Gordon (See Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  A. Connectotyping, per top features, out of sample accuracy. 

  B Connectotyping, per network, out of sample accuracy. 
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Figure 3 –Figure Supplement 5.	Classifying siblings vs unrelated populations when other 
sibling pairs of the same family are included in the training set (sample of youths) 
characterizing brain connectivity using Pearson correlations. Distributions of (A) full 
accuracy, (B) siblings, and (C) unrelated pairs for the SVM when traditional correlations are 
used to characterize brain connectivity. The bottom left panel shows the consensus’ ROI’s per 
functional network (as defined by Gordon) used in the classifier, and the location of such ROIs 
in the surface of the brain. Each distribution highlights the percentiles 2.5 and 97.5 with a thin 
line. Thick lines are used to highlight the percentiles 25 and 75 while the central markers are 
used to show the mean values. Red distributions correspond to the null distributions. 
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Figure 3-Figure Supplement 6. SVM’s out of sample performance for CORRELATIONS, 
N=1000 per feature set. Mean full accuracy (+), mean accuracy predicting siblings (•), and 
mean accuracy predicting unrelated population (□). Panel A shows the out of sample 
performance of the SVM classifiers for correlations as a function of the number of features (x-
axis) used for classification. Left-most panel shows the average results as a function of the 
number of features used for classification. Right-side subpanels show the distributions of 
accuracy, specificity (accuracy predicting siblings), and specificity (accuracy predicting 
unrelated participants) compared with the null hypothesis. Panel B show the corresponding 
results for correlations when the features were selected by functional network, as defined by 
Gordon (See Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  A. Correlations, per top features, out of sample accuracy. 

		B.	Correlations, per network, out of sample accuracy. 
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Figure 4-Figure Supplement 1. Classifying siblings vs unrelated populations (N=100 per 
feature set) using connectotyping and the entire HCP dataset (N=499). Panel A show the 
mean full accuracy (+), mean accuracy predicting siblings (•), and mean accuracy predicting 
unrelated population (□) using the correlation coefficient of model-based connectivity matrices 
(connectotyping) as features. The number of features used for classification were 20, 40, … 340. 
Analysis was repeated 100 times per feature set. (B-G) shows the distributions of (B) full 
accuracy, (C) siblings, (D) unrelated, (E) monozygotic, (F) dizygotic, and (G) non-twin sibling 
pairs for the connectotyping-based SVM classifier.  
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Figure 4-Figure Supplement 2. Classifying siblings vs unrelated populations (N=1000 per 
feature set), when families with twins and other sibling pairs of the same family were NOT 
included in the training set (HCP dataset) using a high quality subsample of N=198 scans, 
using CONNECTOTYPING predicting timecourses. Panel A show the mean full accuracy 
(+), mean accuracy predicting siblings (•), and mean accuracy predicting unrelated population 
(□) using the correlation coefficient of model-based connectivity matrices (connectotyping) as 
features. The number of features used for classification were 20, 40, … 340. Analysis was 
repeated 1,000 times. (B-G) shows the distributions of (B) full accuracy, (C) siblings, (D) 
unrelated, (E) monozygotic, (F) dizygotic, and (G) non-twin sibling pairs for the connectotyping-
based SVM classifier.  
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Figure 4-Figure Supplement 3. Classifying siblings vs unrelated populations, when families 
with twins and other sibling pairs of the same family were NOT included in the training set 
(HCP dataset) using correlations. Distributions of (A) full accuracy, (B) siblings, (C) 
unrelated, (D) monozygotic, (E) dizygotic, and (F) non-twin sibling pairs for the correlations-
based SVM classifier. (G) The consensus’ distribution of ROI’s per functional network used in 
the classifier. (H) The location of such ROIs in the surface of the brain. Each distribution 
highlights the percentiles 2.5 and 97.5 with a thin line. Thick lines are used to highlight the 
percentiles 25 and 75 while the central markers are used to show the mean values. Red 
distributions correspond to the null distributions. 
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Figure 4-Figure Supplement 4. Classifying siblings vs unrelated populations (N=1000 per 
feature set), when families with twins and other sibling pairs of the same family were NOT 
included in the training set (HCP dataset) using a high quality subsample of N=198 scans, 
using traditional CORRELATIONS to characterize brain connectivity. Panel A show the 
mean full accuracy (+), mean accuracy predicting siblings (•), and mean accuracy predicting 
unrelated population (□) using the correlation coefficient of model-based connectivity matrices 
(connectotyping) as features. The number of features used for classification were 20, 40, … 340. 
Analysis was repeated 1,000 times. (B-G) shows the distributions of (B) full accuracy, (C) 
siblings, (D) unrelated, (E) monozygotic, (F) dizygotic, and (G) non-twin sibling pairs for the 
connectotyping-based SVM classifier. 
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Figure 5-Figure Supplement 1. Dataset 1 predicting dataset 2 using connectotyping. 
Distributions of out-of-sample accuracies (N=1000 per feature set) when classifiers were trained 
in one dataset (OHSU, ie youth, or HCP, ie adults) and tested in the other dataset.  
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Figure 5-Figure Supplement 2. Dataset 1 predicting dataset 2 using traditional correlations. 
Distributions of out-of-sample accuracies (N=1000 per feature set) when classifiers were trained 
in one dataset (OHSU, ie youth, or HCP, ie adults) and tested in the other dataset.  
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Figure 6-Figure Supplement 1. Out of sample performance of classifiers using 
connectotyping (green) and different anatomical features (brown) to classify kinship in 
adults when classifiers were trained using data from an independent dataset of youths. 
Green traces correspond to the results of the classification using connectotyping, as shown in 
figures 5 and 6. Same classification procedure was repeated using cortical thickness and sulcal 
depth as features (after removing the effect of head size by normalization of regression), but 
using the top 100 more distinct features according to connectotyping (light brown, labeled as 
“Comb” to indicate “Combined”). Dark brown lines show the performance of the classifiers 
when features and feature selection was based on anatomical features. 
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Figure 7-Figure Supplement 1. Summary of heritability (circle) and shared environment 
(plus sign) analyses conducted on 198 (red) and 499 (blue) participants (connectotyping).  
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Figure 7-Figure Supplement 2. Heritability traditional functional connectivity correlations 

(7A) The Spatial correlation’s heritability of the top 100 regions used in the SVM 
classification for Traditional correlations (see: Figure 3-Figure Supplement 5). (Panel B) 
The spatial correlation heritability for each network. Networks are sorted from most to 
least heritable, and the bar color matches the networks shown in figure 2. 
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Figure 7-Figure Supplement 3. Summary of heritability (circle) and shared environment 
(plus sign) analyses conducted on 198 (red) and 499 (blue) participants  for spatial 
correlations. Traditional heritability (black circle) and shared environment (black plus sign) on 
traditional correlations are also shown. 
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Supplemental tables. 

Table S1. Siblings included in the study 
Family Siblings per 

family 
Scans per 

sibling 
Correlations of 

connectivity 
matrices per family 

Predictions 
 per family 

1 2 2     1 2 4 
2 2 1     1 1 2 
3 2 1     1 1 2 
4 2 2     2 4 8 
5 2 1     3 3 6 
6 2 1     1 1 2 
7 2 1     2 2 4 
8 2 1     1 1 2 
9 2 1     1 1 2 
10 2 1     1 1 2 
11 2 1     1 1 2 
12 2 1     1 1 2 
13 2 1     1 1 2 
14 2 1     1 1 2 
15 2 1     1 1 2 
16 2 1     1 1 2 
  Total 23 46 
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Table S2. Ranking of the individuals ROIs to differentiate between siblings and unrelated. 
Index	 ROI	name	 Network	 Number	of	

grayordinates	
1	 155_L_DorsalAttn	 L	DoA	 72	
2	 200_R_Default	 R	Def	 194	
3	 240_R_FrontoParietal	 R	FrP	 104	
4	 144_L_None	 L	non	 74	
5	 219_R_CinguloOperc	 R	CiO	 218	
6	 PALLIDUM_RIGHT	 Subct	 260	
7	 75_L_VentralAttn	 L	VeA	 104	
8	 74_L_DorsalAttn	 L	DoA	 86	
9	 153_L_CinguloOperc	 L	CiO	 84	
10	 60_L_VentralAttn	 L	VeA	 49	
11	 103_L_CinguloOperc	 L	CiO	 95	
12	 295_R_RetrosplenialTemporal	 R	ReT	 87	
13	 110_L_DorsalAttn	 L	DoA	 85	
14	 113_L_DorsalAttn	 L	DoA	 42	
15	 4_L_Default	 L	Def	 163	
16	 25_L_Default	 L	Def	 84	
17	 146_L_Default	 L	Def	 99	
18	 165_R_Default	 R	Def	 161	
19	 89_L_CinguloParietal	 L	CiP	 54	
20	 281_R_None	 R	non	 76	
21	 122_L_None	 L	non	 57	
22	 44_L_Default	 L	Def	 223	
23	 119_L_None	 L	non	 42	
24	 157_L_Default	 L	Def	 147	
25	 106_L_DorsalAttn	 L	DoA	 239	
26	 222_R_VentralAttn	 R	VeA	 58	
27	 277_R_FrontoParietal	 R	FrP	 104	
28	 290_R_Default	 R	Def	 223	
29	 18_L_None	 L	non	 62	
30	 79_L_VentralAttn	 L	VeA	 50	
31	 158_L_VentralAttn	 L	VeA	 70	
32	 170_R_FrontoParietal	 R	FrP	 116	
33	 331_R_Default	 R	Def	 30	
34	 262_R_DorsalAttn	 R	DoA	 130	
35	 51_L_DorsalAttn	 L	DoA	 231	
36	 HIPPOCAMPUS_LEFT	 Subct	 764	
37	 194_R_SMhand	 R	SMh	 34	
38	 BRAIN_STEM	 Subct	 3472	
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Index	 ROI	name	 Network	 Number	of	
grayordinates	

39	 230_R_Auditory	 R	Aud	 57	
40	 37_L_SMhand	 L	SMh	 70	
41	 174_R_RetrosplenialTemporal	 R	ReT	 257	
42	 23_L_VentralAttn	 L	VeA	 84	
43	 296_R_None	 R	non	 77	
44	 14_L_RetrosplenialTemporal	 L	ReT	 128	
45	 333_R_VentralAttn	 R	VeA	 43	
46	 332_R_VentralAttn	 R	VeA	 44	
47	 154_L_Default	 L	Def	 59	
48	 12_L_CinguloParietal	 L	CiP	 93	
49	 63_L_CinguloOperc	 L	CiO	 226	
50	 220_R_Default	 R	Def	 444	
51	 225_R_Default	 R	Def	 85	
52	 AMYGDALA_LEFT	 Subct	 315	
53	 PUTAMEN_RIGHT	 Subct	 1010	
54	 322_R_Default	 R	Def	 188	
55	 101_L_CinguloOperc	 L	CiO	 85	
56	 2_L_SMhand	 L	SMh	 275	
57	 164_R_SMmouth	 R	SMm	 132	
58	 198_R_CinguloOperc	 R	CiO	 81	
59	 50_L_SMhand	 L	SMh	 119	
60	 108_L_FrontoParietal	 L	FrP	 43	
61	 316_R_Default	 R	Def	 55	
62	 242_R_VentralAttn	 R	VeA	 132	
63	 83_L_Salience	 L	Sal	 32	
64	 80_L_VentralAttn	 L	VeA	 236	
65	 180_R_CinguloOperc	 R	CiO	 459	
66	 112_L_CinguloOperc	 L	CiO	 159	
67	 283_R_None	 R	non	 106	
68	 325_R_Default	 R	Def	 75	
69	 CEREBELLUM_LEFT	 Subct	 8709	
70	 239_R_Auditory	 R	Aud	 82	
71	 238_R_CinguloOperc	 R	CiO	 134	
72	 156_L_Default	 L	Def	 54	
73	 247_R_Salience	 R	Sal	 62	
74	 107_L_DorsalAttn	 L	DoA	 49	
75	 HIPPOCAMPUS_RIGHT	 Subct	 795	
76	 7_L_FrontoParietal	 L	FrP	 35	
77	 317_R_CinguloOperc	 R	CiO	 48	



	

35	
	

Index	 ROI	name	 Network	 Number	of	
grayordinates	

78	 320_R_FrontoParietal	 R	FrP	 44	
79	 160_L_Auditory	 L	Aud	 122	
80	 123_L_None	 L	non	 82	
81	 62_L_VentralAttn	 L	VeA	 645	
82	 136_L_Visual	 L	Vis	 80	
83	 315_R_Default	 R	Def	 115	
84	 297_R_None	 R	non	 44	
85	 274_R_CinguloOperc	 R	CiO	 114	
86	 217_R_SMhand	 R	SMh	 91	
87	 162_R_Default	 R	Def	 674	
88	 105_L_CinguloOperc	 L	CiO	 208	
89	 311_R_Visual	 R	Vis	 35	
90	 147_L_CinguloOperc	 L	CiO	 30	
91	 275_R_DorsalAttn	 R	DoA	 405	
92	 96_L_FrontoParietal	 L	FrP	 181	
93	 PALLIDUM_LEFT	 Subct	 297	
94	 205_R_SMhand	 R	SMh	 103	
95	 142_L_None	 L	non	 71	
96	 201_R_SMhand	 R	SMh	 140	
97	 81_L_CinguloOperc	 L	CiO	 45	
98	 128_L_None	 L	non	 137	
99	 324_R_Default	 R	Def	 66	
100	 1_L_Default	 L	Def	 715	
101	 182_R_FrontoParietal	 R	FrP	 97	
102	 236_R_DorsalAttn	 R	DoA	 104	
103	 54_L_SMhand	 L	SMh	 70	
104	 286_R_None	 R	non	 35	
105	 139_L_Visual	 L	Vis	 148	
106	 30_L_SMhand	 L	SMh	 35	
107	 39_L_SMmouth	 L	SMm	 63	
108	 93_L_CinguloParietal	 L	CiP	 118	
109	 184_R_Default	 R	Def	 132	
110	 280_R_None	 R	non	 66	
111	 138_L_Visual	 L	Vis	 57	
112	 292_R_None	 R	non	 246	
113	 127_L_Default	 L	Def	 295	
114	 73_L_None	 L	non	 129	
115	 78_L_FrontoParietal	 L	FrP	 145	
116	 109_L_FrontoParietal	 L	FrP	 151	
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Index	 ROI	name	 Network	 Number	of	
grayordinates	

117	 234_R_CinguloOperc	 R	CiO	 184	
118	 221_R_VentralAttn	 R	VeA	 61	
119	 DIENCEPHALON_VENTRAL_RIGHT	 Subct	 712	
120	 159_L_None	 L	non	 70	
121	 266_R_DorsalAttn	 R	DoA	 42	
122	 173_R_CinguloParietal	 R	CiP	 90	
123	 199_R_DorsalAttn	 R	DoA	 67	
124	 150_L_Default	 L	Def	 280	
125	 71_L_CinguloOperc	 L	CiO	 152	
126	 43_L_DorsalAttn	 L	DoA	 56	
127	 254_R_CinguloParietal	 R	CiP	 159	
128	 111_L_CinguloOperc	 L	CiO	 102	
129	 91_L_DorsalAttn	 L	DoA	 198	
130	 270_R_SMhand	 R	SMh	 117	
131	 212_R_SMmouth	 R	SMm	 361	
132	 21_L_CinguloOperc	 L	CiO	 326	
133	 318_R_CinguloOperc	 R	CiO	 164	
134	 287_R_None	 R	non	 89	
135	 114_L_Default	 L	Def	 41	
136	 181_R_CinguloOperc	 R	CiO	 44	
137	 90_L_Visual	 L	Vis	 83	
138	 214_R_SMhand	 R	SMh	 128	
139	 243_R_VentralAttn	 R	VeA	 123	
140	 92_L_DorsalAttn	 L	DoA	 52	
141	 THALAMUS_LEFT	 Subct	 1288	
142	 267_R_Visual	 R	Vis	 92	
143	 61_L_VentralAttn	 L	VeA	 42	
144	 206_R_SMhand	 R	SMh	 43	
145	 314_R_None	 R	non	 37	
146	 64_L_Auditory	 L	Aud	 46	
147	 223_R_CinguloOperc	 R	CiO	 829	
148	 ACCUMBENS_LEFT	 Subct	 135	
149	 258_R_Visual	 R	Vis	 81	
150	 185_R_CinguloOperc	 R	CiO	 250	
151	 291_R_None	 R	non	 48	
152	 241_R_VentralAttn	 R	VeA	 32	
153	 276_R_FrontoParietal	 R	FrP	 48	
154	 45_L_SMhand	 L	SMh	 127	
155	 232_R_Auditory	 R	Aud	 36	
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Index	 ROI	name	 Network	 Number	of	
grayordinates	

156	 117_L_Default	 L	Def	 144	
157	 172_R_None	 R	non	 98	
158	 9_L_FrontoParietal	 L	FrP	 49	
159	 121_L_None	 L	non	 49	
160	 268_R_Auditory	 R	Aud	 58	
161	 231_R_VentralAttn	 R	VeA	 96	
162	 CEREBELLUM_RIGHT	 Subct	 9144	
163	 24_L_FrontoParietal	 L	FrP	 111	
164	 140_L_Visual	 L	Vis	 143	
165	 72_L_CinguloOperc	 L	CiO	 179	
166	 132_L_Visual	 L	Vis	 63	
167	 305_R_None	 R	non	 33	
168	 235_R_CinguloOperc	 R	CiO	 163	
169	 265_R_Visual	 R	Vis	 376	
170	 319_R_FrontoParietal	 R	FrP	 89	
171	 272_R_FrontoParietal	 R	FrP	 99	
172	 DIENCEPHALON_VENTRAL_LEFT	 Subct	 706	
173	 328_R_FrontoParietal	 R	FrP	 77	
174	 327_R_FrontoParietal	 R	FrP	 171	
175	 98_L_Visual	 L	Vis	 84	
176	 293_R_Visual	 R	Vis	 32	
177	 207_R_SMhand	 R	SMh	 85	
178	 168_R_FrontoParietal	 R	FrP	 70	
179	 288_R_None	 R	non	 22	
180	 118_L_None	 L	non	 47	
181	 228_R_VentralAttn	 R	VeA	 56	
182	 THALAMUS_RIGHT	 Subct	 1248	
183	 31_L_SMhand	 L	SMh	 153	
184	 104_L_Auditory	 L	Aud	 136	
185	 183_R_Salience	 R	Sal	 40	
186	 49_L_DorsalAttn	 L	DoA	 60	
187	 259_R_Default	 R	Def	 350	
188	 47_L_SMhand	 L	SMh	 183	
189	 56_L_SMhand	 L	SMh	 240	
190	 278_R_Default	 R	Def	 74	
191	 19_L_None	 L	non	 35	
192	 53_L_SMmouth	 L	SMm	 405	
193	 84_L_CinguloOperc	 L	CiO	 244	
194	 13_L_RetrosplenialTemporal	 L	ReT	 134	



	

38	
	

Index	 ROI	name	 Network	 Number	of	
grayordinates	

195	 279_R_Default	 R	Def	 155	
196	 177_R_Visual	 R	Vis	 86	
197	 129_L_None	 L	non	 161	
198	 52_L_DorsalAttn	 L	DoA	 160	
199	 196_R_CinguloOperc	 R	CiO	 126	
200	 209_R_SMhand	 R	SMh	 80	
201	 245_R_CinguloOperc	 R	CiO	 65	
202	 229_R_VentralAttn	 R	VeA	 109	
203	 11_L_None	 L	non	 52	
204	 249_R_CinguloOperc	 R	CiO	 207	
205	 66_L_Auditory	 L	Aud	 155	
206	 76_L_CinguloOperc	 L	CiO	 224	
207	 145_L_Default	 L	Def	 97	
208	 330_R_Auditory	 R	Aud	 142	
209	 257_R_Default	 R	Def	 39	
210	 82_L_CinguloOperc	 L	CiO	 35	
211	 33_L_SMhand	 L	SMh	 30	
212	 289_R_None	 R	non	 34	
213	 273_R_FrontoParietal	 R	FrP	 167	
214	 213_R_SMhand	 R	SMh	 281	
215	 312_R_None	 R	non	 83	
216	 135_L_None	 L	non	 73	
217	 326_R_Default	 R	Def	 46	
218	 22_L_CinguloOperc	 L	CiO	 306	
219	 299_R_Visual	 R	Vis	 152	
220	 252_R_DorsalAttn	 R	DoA	 243	
221	 143_L_RetrosplenialTemporal	 L	ReT	 51	
222	 26_L_Default	 L	Def	 43	
223	 263_R_Visual	 R	Vis	 526	
224	 77_L_Auditory	 L	Aud	 112	
225	 3_L_SMmouth	 L	SMm	 170	
226	 302_R_None	 R	non	 34	
227	 204_R_SMhand	 R	SMh	 35	
228	 PUTAMEN_LEFT	 Subct	 1060	
229	 169_R_Visual	 R	Vis	 38	
230	 125_L_None	 L	non	 31	
231	 163_R_SMhand	 R	SMh	 304	
232	 57_L_SMhand	 L	SMh	 104	
233	 34_L_CinguloOperc	 L	CiO	 137	
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Index	 ROI	name	 Network	 Number	of	
grayordinates	

234	 264_R_Visual	 R	Vis	 235	
235	 179_R_None	 R	non	 45	
236	 269_R_Auditory	 R	Aud	 84	
237	 190_R_SMhand	 R	SMh	 196	
238	 AMYGDALA_RIGHT	 Subct	 332	
239	 100_L_DorsalAttn	 L	DoA	 538	
240	 244_R_Auditory	 R	Aud	 39	
241	 67_L_Auditory	 L	Aud	 59	
242	 253_R_DorsalAttn	 R	DoA	 138	
243	 151_L_Default	 L	Def	 47	
244	 186_R_Default	 R	Def	 30	
245	 260_R_FrontoParietal	 R	FrP	 52	
246	 313_R_RetrosplenialTemporal	 R	ReT	 34	
247	 102_L_Auditory	 L	Aud	 61	
248	 166_R_Visual	 R	Vis	 239	
249	 167_R_FrontoParietal	 R	FrP	 143	
250	 59_L_SMmouth	 L	SMm	 46	
251	 40_L_CinguloOperc	 L	CiO	 45	
252	 29_L_Salience	 L	Sal	 38	
253	 28_L_CinguloOperc	 L	CiO	 31	
254	 116_L_Default	 L	Def	 183	
255	 97_L_Visual	 L	Vis	 255	
256	 178_R_None	 R	non	 57	
257	 202_R_SMhand	 R	SMh	 72	
258	 36_L_SMhand	 L	SMh	 188	
259	 227_R_Auditory	 R	Aud	 143	
260	 187_R_CinguloOperc	 R	CiO	 45	
261	 323_R_Default	 R	Def	 34	
262	 99_L_Visual	 L	Vis	 244	
263	 68_L_Auditory	 L	Aud	 76	
264	 148_L_FrontoParietal	 L	FrP	 68	
265	 197_R_SMmouth	 R	SMm	 105	
266	 85_L_VentralAttn	 L	VeA	 54	
267	 271_R_DorsalAttn	 R	DoA	 115	
268	 188_R_CinguloOperc	 R	CiO	 66	
269	 CAUDATE_LEFT	 Subct	 728	
270	 41_L_DorsalAttn	 L	DoA	 168	
271	 203_R_DorsalAttn	 R	DoA	 128	
272	 133_L_None	 L	non	 70	
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Index	 ROI	name	 Network	 Number	of	
grayordinates	

273	 321_R_Default	 R	Def	 113	
274	 124_L_None	 L	non	 34	
275	 126_L_Default	 L	Def	 51	
276	 195_R_SMhand	 R	SMh	 73	
277	 CAUDATE_RIGHT	 Subct	 755	
278	 38_L_SMhand	 L	SMh	 243	
279	 282_R_None	 R	non	 52	
280	 134_L_None	 L	non	 41	
281	 216_R_SMhand	 R	SMh	 270	
282	 310_R_Visual	 R	Vis	 59	
283	 86_L_VentralAttn	 L	VeA	 56	
284	 246_R_CinguloOperc	 R	CiO	 60	
285	 6_L_Default	 L	Def	 887	
286	 261_R_FrontoParietal	 R	FrP	 37	
287	 137_L_Visual	 L	Vis	 181	
288	 284_R_None	 R	non	 79	
289	 171_R_Auditory	 R	Aud	 129	
290	 46_L_SMhand	 L	SMh	 52	
291	 208_R_DorsalAttn	 R	DoA	 69	
292	 141_L_Visual	 L	Vis	 303	
293	 215_R_SMhand	 R	SMh	 42	
294	 88_L_DorsalAttn	 L	DoA	 139	
295	 192_R_CinguloOperc	 R	CiO	 69	
296	 55_L_DorsalAttn	 L	DoA	 120	
297	 193_R_SMhand	 R	SMh	 111	
298	 5_L_Visual	 L	Vis	 389	
299	 94_L_Default	 L	Def	 247	
300	 152_L_Default	 L	Def	 72	
301	 48_L_SMhand	 L	SMh	 72	
302	 ACCUMBENS_RIGHT	 Subct	 140	
303	 218_R_SMmouth	 R	SMm	 54	
304	 27_L_CinguloOperc	 L	CiO	 138	
305	 304_R_None	 R	non	 79	
306	 20_L_Visual	 L	Vis	 71	
307	 87_L_DorsalAttn	 L	DoA	 315	
308	 251_R_Visual	 R	Vis	 179	
309	 131_L_Visual	 L	Vis	 117	
310	 65_L_Auditory	 L	Aud	 41	
311	 175_R_Visual	 R	Vis	 665	
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Index	 ROI	name	 Network	 Number	of	
grayordinates	

312	 256_R_Visual	 R	Vis	 31	
313	 69_L_Auditory	 L	Aud	 59	
314	 15_L_Visual	 L	Vis	 636	
315	 248_R_CinguloOperc	 R	CiO	 42	
316	 233_R_Auditory	 R	Aud	 117	
317	 294_R_RetrosplenialTemporal	 R	ReT	 36	
318	 250_R_DorsalAttn	 R	DoA	 38	
319	 70_L_Auditory	 L	Aud	 33	
320	 191_R_SMhand	 R	SMh	 256	
321	 8_L_Visual	 L	Vis	 177	
322	 301_R_None	 R	non	 68	
323	 130_L_RetrosplenialTemporal	 L	ReT	 145	
324	 298_R_Visual	 R	Vis	 407	
325	 176_R_Visual	 R	Vis	 139	
326	 115_L_None	 L	non	 34	
327	 307_R_Visual	 R	Vis	 100	
328	 285_R_None	 R	non	 14	
329	 149_L_FrontoParietal	 L	FrP	 48	
330	 224_R_Auditory	 R	Aud	 135	
331	 300_R_None	 R	non	 73	
332	 255_R_Visual	 R	Vis	 67	
333	 226_R_VentralAttn	 R	VeA	 55	
334	 120_L_None	 L	non	 108	
335	 32_L_SMhand	 L	SMh	 58	
336	 309_R_Visual	 R	Vis	 66	
337	 10_L_Auditory	 L	Aud	 106	
338	 42_L_DorsalAttn	 L	DoA	 48	
339	 211_R_DorsalAttn	 R	DoA	 181	
340	 161_L_VentralAttn	 L	VeA	 37	
341	 306_R_None	 R	non	 52	
342	 210_R_SMhand	 R	SMh	 35	
343	 58_L_SMhand	 L	SMh	 119	
344	 189_R_DorsalAttn	 R	DoA	 258	
345	 329_R_Auditory	 R	Aud	 10	
346	 16_L_Visual	 L	Vis	 39	
347	 303_R_None	 R	non	 70	
348	 95_L_DorsalAttn	 L	DoA	 45	
349	 35_L_SMhand	 L	SMh	 134	
350	 308_R_Visual	 R	Vis	 84	
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Index	 ROI	name	 Network	 Number	of	
grayordinates	

351	 237_R_VentralAttn	 R	VeA	 60	
352	 17_L_Visual	 L	Vis	 14	
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Table S3. Mapping of the top 11 unclassified ROIs from Gordon into Yeo, based on 
grayordinates. The grayordinates from each ROI were map into each one of the 7 networks 
proposed by Yeo 
Relative	

importance	
Gordon	ROI	

name	
#	

grayordinates	
in	Gordon	

Yeo-
Limbic	

Yeo-FrP	 Yeo-Def	 Yeo-No	
assignment	

Winner	
take	all	

4	 144_L_None	 74	 8	 0	 35	 31	 Def	
20	 281_R_None	 76	 0	 13	 63	 0	 Def	
21	 122_L_None	 57	 57	 0	 0	 0	 Limbic	
23	 119_L_None	 42	 0	 15	 27	 0	 Def	
29	 18_L_None	 62	 0	 0	 1	 61	 Non	
43	 296_R_None	 77	 46	 0	 24	 7	 Limbic	
67	 283_R_None	 106	 85	 21	 0	 0	 Limbic	
80	 123_L_None	 82	 82	 0	 0	 0	 Limbic	
84	 297_R_None	 44	 44	 0	 0	 0	 Limbic	
95	 142_L_None	 71	 52	 0	 1	 18	 Limbic	
98	 128_L_None	 137	 80	 0	 57	 0	 Limbic	
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Table S4. Sibling status for participants form the Human Connectome Project1.  
# families Descendants 

per family 
Sibling type Total 

Identical twins Non 
identical 

twins 

Siblings no 
twins 

70 1 0 0 0 0 
49 2 5 10 34 49 
10 3 5 1 24 30 

 Total  10 11 58 79 
 

  

																																																													
1	Open	access	and	restricted	data	from	the	Washington	University	in	Saint	Louis-University	of	Minnesota	(WU-
Minn)	HCP	consortium	“500	Subjects	release”	(June	2014)	was	generously	provided	after	registration	and	
agreement	of	the	Open	Access	Data	Use	Terms	and	Restricted	Data	Use	Terms	
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Table S5. Partitions used for classifying siblings from unrelated populations using HCP data and 
SVM. 

Method 

Identical twins Non-identical 
twins 

Siblings-no-
twins Unrelated 

In-
sample 

Out-of-
sample 

In-
sample 

Out-
of-

sample 

In-
sample 

Out-of-
sample 

In-
sample 

Out-of-
sample 

Connectotyping 16 4 18 4 104 12 138 20 
Correlations of 

connectivity 
matrices 

6 4 7 4 54 4 67 12 
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