Supplementary Information

Collective radioresistance of T47D breast carcinoma cells is mediated by a

Syncytin-1 homologous protein

Roberto Chignola^{1,*}, Michela Sega¹, Barbara Molesini¹, Anna Baruzzi², Sabrina Stella³, Edoardo Milotti³

¹Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy

²Department of Medicine, University of Verona, Piazzale L. Scuro 10, 37134 Verona, Italy ³Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy

*roberto.chignola@univr.it

Figure A. Cytological analysis of T47D monolayers after irradiation with 8Gy. Typical examples of microphotographs taken at the indicated post-irradiation times. The microphotograph at 0 hours was taken within 15 min from irradiation. A group of cells is clearly visible. After 72 hours post-irradiation these cells showed an enlarged cell volume (black arrow). At 72 hours some of the individual cell bodies were visible but at later times (96 and 128 hours) cell fusion and the formation of giant cells with multiple nuclei was evident (black arrow). At 144 hours (black arrow), however, a division event took place that produced two giant multinucleated cells. One of these giant cells shrank at later times (white arrows) but the other apparently fused again with neighbour giant cells (black arrows) to form a lump of cells (264 hours, black arrow). Expulsion of cell material from the cluster was then observed after 288 hours post-irradiation. In all panels the reference bar is 100 μ m long.

CLUSTAL 0(1.2.4) multiple sequence alignment

T47Dclone Syncytin-1	AGCCCCGCAACAAAAGAGTACCCATTCTTCCTTTGTTACCGGAGCAGGAGTGCTAGGCA AGCCCCGCAACAAAAGAGTACCCATTCTTCCTTTTGTTATAGGAGCAGGAGTGCTAGGTG *********************************	60 60
T47Dclone Syncytin-1	GACTAGGTACTGGCATTGGTGGTATCACAACCTCTACTCAGTTCTACTATAAACTATCTC CACTAGGTACTGGCATTGGCGGTATCACAACCTCTACTAGTTCTACTACAAACTATCTC ********************	120 120
T47Dclone Syncytin-1	AAGAACTAAATGGTGACATGGAATGGGTCGCCAACTCACCAGTCACCTTGCAAGATCAAC AAGAACTAAATGGGGACATGGAACGGGTCGCCGACTCCCTGGTCACCTTGCAAGATCAAC *********************************	180 180
T47Dclone Syncytin-1	TTAACTTCCTAGCAGCAGTAGTCCTTCAAAATCAAAGAGTTTTAGACTTGCTAACTGCCG TTAACTCCCTAGCAGCAGTAGTCCTTCAAAATCGAAGAGCTTTAGACTTGCTAACCGCTG ****** ******************************	240 240
T47Dclone Syncytin-1	AAAGAGGGGAAACCTGTTTATTTTTAGGGGAAGAATGCTCTTATTATGTTAATCAATC	300 300
T47Dclone Syncytin-1	GAATCGTCACCGAGAAAGTTAAAGAAATTCGAGATCGAATACAACGTAGAGCAGAGGAGC GAATCGTCACTGAGAAAGTTAAAGAAATTCGAGATCGAATACAACGTAGAGCAGAGGAGC ********** **************************	360 360
T47Dclone Syncytin-1	TTCAAAACACCAGACCCTGGGACCTCCTCAGCCAATGGGTGTCCTGGATTCTTCCTTTCT TTCGAAACACTGGACCCTGGGGCCTCCTCAGCCAATGGATGCCCTGGATTCTCCCCTTCT *** ****** ********* **********	420 420
T47Dclone Syncytin-1	TAGGACCTCTAGCAGTTATAATATTGTTACTTCTCTTTGGACCCTGCATCTTTAACCTGC TAGGACCTCTAGCAGCTATAATATTGCTACTCCTCTTTGGACCCTGTATCTTTAACCTCC *************************	480 480
T47Dclone Syncytin-1	TTGTTAAGTTTGTCTCTTCCAGAATTGAAGCTGTAAAGCTACAAATGATTCTTCAAATGG TTGTTAACTTTGTCTCTTCCAGAATCGAAGCTGTAAAACTACAAATGG ******* ***********************	540 528
T47Dclone Syncytin-1	AGCCCCAGAGGCAGTCCATGACTAAAATCTACTGCGGACCCTTAGACCGGCCTGCCAGCC AGCCCAAGATGCAGTCCAAGACTAAGATCTACCGCAGACCCCTGGACCGGCCTGCTAGCC ***** *** ******** ****** ****** ** ****	600 588
T47Dclone Syncytin-1	CATGCTCCAATGTTGATGACATCCAAGGTACCCCTCCGGAGGAAATCTCAACTGCACAAC CACGATCTGATGTTAATGACATCAAAGGCACCCCTCCTGAGGAAATCTCAGCTGCACAAC ** * ** ***** ********* **** ****	660 648
T47Dclone Syncytin-1	TCCTACTGTGCCCCAATTCAGCAGGAAGCAGTTAGAGCGGTCATCGACAGACCTCCCCAA CTCTACTACGCCCCAATTCAGCAGGAAGCAGTTAGAGCGGTCGTCGGCCAACCTCCCCAA ***** ***************************	720 708
T47Dclone Syncytin-1	CAGCACTTAGGTTTTCCTGATGAGAGGGGGGAACTGAGAGACGGGACTAGTTGGATTTCCT CAGCACTTAGGTTTTCCTGTTGAGATGGGGGGACTGAGAGACAGGACTAGCTGGATTTCCT ********************************	780 768
T47Dclone Syncytin-1	AGGCCAACTAAGAATCCATAAGCCTAGCTGGGAAGGTGACAGCATCCACCTTTAAACACG AGGCTGACTAAGAATCCCTAAGCCTAGCTGGGAAGGTGACCACATCCACCTTTAAACACG **** ********** *********************	840 828
T47Dclone Syncytin-1	GGGCTTGCAACTTAGCTCACACCAGACCAATCAGGTAGTAAAGAGAGACTCACTAAACTGC GGGCTTGCAACTTAGCTCACACCTGACCAATCAGAGAGCTCACTAAAATGC ************************************	900 879
T47Dclone Syncytin-1	TAACTAGGCTAAAACAGGAGGTAAAGAAATAGCCAATCATCTATCT	960 939
T47Dclone Syncytin-1	GGGAGGGACAATGATCGGGA 980 AGGAGGGACAATGATCGGGA 959	

Figure B. Sequence analysis of the 980 bp-long cDNA fragment amplified by RT-PCR in T47D cell extracts. The amplified DNA fragment encompasses a region of 683 nt of the 3' terminal coding region and a portion 276 nt of the 3'untranslated region of the Syncytin-1 (AF208161) transcript. Alignment between the two DNA sequences was carried out using Clustal Omega software hosted at https://www.ebi.ac.uk.

Figure C. Gel elecrophoresis of the DNA fragment amplified by RT-PCR in extracts of T47D cells. Picture of the full-length gel from which we cropped the image reported in Fig.4A in the main text.

	cells/well											
Gy	1(100 200		00	400		800		1600		3200	
0	25	27	59	48	110	113						
2	10	22	24	27	66	76	110	106				
4	2	3	9	6	22	16	37	32				
6					0	1	3	2	5	5		
8									1	1	2	3

 Table A. Experimental data shown in Fig.1a, main text.
 Number of cell colonies

 surviving radiation treatments
 Surviving radiation treatments

Table B. Experimental data shown in Fig.1b, main text. Limiting dilution assays with non irradiated cells: number of wells with no proliferating cells / total number of seeded wells.

	cells/well								
well geometry	1.25	2.5	5	10	20				
F	53 / 92	48 / 92	21/92	10 / 92	1/88				
V	60 / 96	45 / 92	32 / 92	9 / 92	1/60				

Table C. Experimental data shown in Fig.1c, main text. Number of wells with proliferating cells surviving radiation treatment with 8 Gy. For each condition 96 wells were seeded with the indicated number of cells/well.

			cells/well										
well geom.		39.06	78.12	156.25	312.5	625	1250	2500	5000				
	exp.1	3	5	9	9	34	45	68	84				
F	exp.2	2	3	9	12	39	53	67	85				
	mean	2.5	4	9	10.5	36.5	49	67.5	84.5				
	exp.1	10	22	31	41	66	78	88	93				
V	exp.2	11	29	30	55	66	88	90	96				
	mean	10.5	25.5	30.5	48	66	83	89	94.5				

Table D. Experimental data shown in Fig.2b, main text. Diameters (μ m) of cell rings outgrowing sham-irradiated or irradiated spheroids at specific sampling times. Different cell rings (R) are labelled with a progressive number.

			0 Gy			8 Gy				
Time (hours)	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10
24	120.89	114.83	118.23	122.02	90.55	40.00	72.83	121.51	38.15	107.55
48	227.92	198.44	22061	199.41	164.85	87.02	120.77	173.40	85.94	157.91
120	430.14	363.68	423.89	399.32	351.55	234.30	285.96	344.69	223.01	348.60
144	476.33	428.59	504.61	453.96	417.83	285.48	328.59	377.14	259.68	387.28
168	533.22	489.28	550.24	510.98	476.61	286.81	354.37	394.10	285.16	397.91
192	575.87	523.36	618.09	585.12	541.80	280.27	371.14	400.23	293.57	410.52
216	619.95	567.77	642.82	629.90	583.44	281.96	377.01	398.63	294.59	417.40
288	719.61	669.54	796.83	810.88	746.73	259.58	360.07	347.30	275.76	364.36
312	800.44	732.34	887.47	897.40	820.77	288.84	371.95	360.44	309.78	406.96
336	842.84	775.60	938.16	991.41	884.99	303.10	400.26	345.99	355.78	427.78
360	898.91	811.05	1016.3	1071.3	974.35	323.82	385.81	337.10	361.77	428.17
384	916.77	843.51	1057.9	1122.8	1015.1	287.47	382.31	332.71	347.37	410.52
456	1085.2	940.50	1239.0	1341.3	1211.7	312.35	401.90	365.13	365.80	420.78
504	1174.9	1080.5	1385.7	1494.8	1429.0	316.33	432.10	413.98	360.39	398.23
552	1331.1	1151.2	1508.2	1640.7	1578.8	313.29	438.04	444.92	388.90	458.71
624	1549.3	1283.0	1647.0	1817.6	1700.7	336.21	532.26	545.77	430.59	458.23
672	1591.0	1329.9	1730.4	1980.7	1938.2	341.08	596.84	620.37	455.71	472.45
720	1852.6	1474.1	1889.7	2135.3	2144.9	353.97	659.48	725.15	482.00	532.77
792	2040.0	1567.7	1970.8	2306.7	2376.7	358.59	766.28	847.32	542.85	559.49
888	2391.4	1768.0	2138.8	2480.1	2630.5	357.62	868.53	992.41	638.92	689.54
960	2506.7	1762.3	2088.8	2564.8	2159.1	320.56	949.49	1102.8	717.04	795.10

Table E. Experimental data shown in Fig.5a, main text. Total number of cytoplasmic bridges observed in independent randomly-selected microphotographs (see S4 Fig. below) of cultures of non-irradiated alive cells (A) treated with dead cell bodies (D) from irradiated cultures at different D:A ratios. CT=control samples, i.e. A cells without D dead cell bodies; α HERV=treatment with anti-HERV antibodies.

C	T	D:A	1:1	D:A 4:1		
	αHERV		αHERV		αHERV	
4	3	17	15	25	19	
9	5	20	11	38	16	
3	2	21	14	22	21	
14	3	18	13	20	15	
5	4	17	16	22	21	
9	7	22	17	24	19	
7	3	11	5	14	20	
8	0	12	10	24	6	
6	1	16	6	19	15	
	0					
	1					
	0					
	3					
	0					
	1					
	0					
	0					
	0					

Table F. Experimental data shown in Fig.5b, main text. Total number of cytoplasmic bridges observed in independent randomly-selected microphotographs of cultures of non-irradiated alive cells (A) treated with: dead cell bodies (D) from irradiated cultures at 1:1 D:A ratio or with cell-free supernatants from irradiated cultures (SN). CT=control samples, i.e. A cells without D dead cell bodies. Cytoplasmic bridges in cell cultures irradiated with a dose of 8 Gy are also given (cells 8Gy).

СТ	7	6	3	6	9	6	7	7	8	
D:A 1:1	13	11	12	13	24	10	8	16	17	7
SN	4	7	8	1	4	3	5	1	10	6
cells 8Gy	14	20	20	10	16	11	14	11	16	

Figure D. Microphotographs from cytoplasmic bridges counting experiments. Two representative examples are shown: top D:A 1:1; bottom D:A 4:1 (see the text in S5 Table). Scale bars are 200 μ m long.