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Text S1:
More details on the model fitting procedure

Determining the number of iterations for which
to run the chains

The three MCMC chains were truncated at k iterations, starting at k = 104.
The first half of the chains were discarded as burn-in [1], and the 95% confidence
interval for the potential scale reduction factor (PSRF) [2] for each parameter
was calculated using the gelman.diag function in the coda package version 0.18-
1 [3] in R version 3.3.2 [4]. If the upper bound of the 95% confidence interval
for the PSRF was below 1.1 for all parameters, the chains were declared to
have converged, and the process ended. All iterations of the three chains from
k/2 + 1 onwards were then taken as draws from the joint posterior distribution.
Otherwise, k was increased by 104, and the process was repeated (with the
original chains starting from the end of the calibrating stage). If the full number
of iterations in the chain was reached and convergence still had not occurred,
the chains were run for more iterations.

Tuning of the proposal distributions

A calibration period was introduced where the widths of the proposal distribu-
tions were adjusted. Initially, the proposal distribution for each parameter was
set to be a uniform distribution centred at the current value of the parameter, of
width equal to the bounds of the marginal prior distribution for that parameter.
During calibration, the proposal distribution remained centred at the most cur-
rent value of the parameter; only the width of each distribution changed. Every
100 iterations, the proportion of acceptance events during those 100 iterations
for each parameter was checked. If the acceptance proportion was too low (a
threshold was set at 0.3), the width of the proposal distribution was multiplied
by 0.75; if the acceptance proportion was too high (above 0.5), the width of the
proposal distribution was multiplied by 1.5. These thresholds were chosen be-
cause when each parameter is sampled in turn, for specific classes of likelihood
functions, the optimal acceptance rate has been shown to be 0.44 [5]. However,
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we emphasise that tuning the acceptance rate merely enabled convergence to
occur within fewer iterations; attaining the optimal acceptance rate precisely
was not essential. The calibration stage lasted for 104 iterations. The widths of
the proposal distributions then stayed fixed, and the initial 104 iterations were
discarded.

Calibration of temperatures for parallel temper-
ing

For each simulation, w = 7 parallel chains were used, with temperatures between
1 and 50 evenly spread in log space. Every 100 iterations, for each pair of chains
k, k + 1 for k = m,m + 2, . . . , w − 1, the proportion of proposed swaps during
those 100 iterations which were accepted was checked. (m alternated between
1 and 2 every 100 iterations.) If the acceptance proportion was too low (below
0.1), the difference in temperatures Tk and Tk+1 was multiplied by a factor of
0.75 (the temperatures for chains k + 1, . . . , w are shifted along), and if the
acceptance proportion was too high (above 0.4), the difference in temperatures
was multiplied by a factor of 1.5. This procedure was based on an optimal
acceptance proportion of 20–23% [6, 7].
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