
Sequential infection experiments for quantifying

innate and adaptive immunity during influenza

infection

File S4:
Marginal posterior distributions for the model parameters

This document shows histograms of samples from the marginal posterior dis-
tributions of each parameter. We emphasise that the aim of the study was not to
estimate model parameters, but to quantify the roles of each immune component
in controlling infection. Nonetheless, the marginal posterior distributions pro-
vide a way to gauge the additional information provided by sequential infection
experiments over single infection experiments.

Furthermore, if the parameter values used to generate the synthetic data
can be re-estimated, then fitting the model to real experimental data will reveal
information about the rates at which processes occur in the system, which may
be useful when determining reasonable parameter values for future models. On
the other hand, if the marginal posterior distributions do not reflect the true
parameter values, this cautions against relying on them for accurate parameter
estimates.

Because of the large number of parameters, particular parameters are se-
lected as examples of qualitative behaviours observed; the full set of marginal
posterior distributions is presented in Figs. E–H later in this document.

Some parameters were estimated accurately by the fitted models. Figure A
shows two examples of these parameters: the initial viral load growth rate r
and the total viral decay rate δV tot. To assess whether the data are informative,
the marginal posterior distributions were compared to the prior distributions
(leftmost column). The prior distributions were obtained by sampling from the
joint prior distribution using the Metropolis algorithm as outlined in the main
text, but setting P (y|θ) to a constant.

The remaining columns show the marginal posterior distributions of the same
parameter for the model fitted to the single infection and sequential infection
datasets. The parameter values used to generate the datasets are marked by
the vertical line.

The marginal posterior distributions indicate that the value of r was ac-
curately estimated from each of the datasets, which was perhaps unsurprising
because r is the initial slope of the viral load trajectory. However, the model fit-
ted to the sequential infection data (Fig. Aiii) estimated r much more precisely.
In particular, the model fitted to single infection data only (Fig. Aii) could not
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Figure A: Some parameters were recovered accurately by fitting to sequential in-
fection data. Leftmost column: the marginal prior distribution of the parameter
in the horizontal axis label. Remaining columns: the marginal posterior distri-
butions of the same parameter for the model fitted to the dataset indicated.
The parameter value used to generate the data is marked by the vertical line.

exclude the possibility that r was orders of magnitude larger than its true value.
For the predicted viral load trajectory to fit the data given these large values
of r, its growth rate must have slowed down very early on due to target cell
depletion or innate immunity. The model fitted to sequential infection data was
able to exclude this possibility.

Similarly, the value of the total viral load decay rate, δV tot, was estimated
accurately from the data. The accurate recovery of this parameter value was
because in the absence of infected cells and infectious virions, the total viral
load decayed at rate δV tot, so the steepest negative gradient of the viral load
curve during the resolution phase (on a log scale) provided a lower bound for
δV tot.

In contrast, Figs. Bi–iii show that the marginal posterior distributions for
the antibody decay rate, δA, were the same as the marginal prior distribution.
This non-identifiability occurred because the continued growth of antibodies
after the end of a primary infection did not impact its viral load, and also did
not impact a second infection due to the lack of cross-reactivity in the antibody
response.

However, even if the marginal posterior distribution remained unchanged
from the prior distribution, such that a parameter was not practically identifi-
able by itself, the data may contain information about a combination of param-
eters. Figures Biv–vi show that the marginal posterior distributions for the B
cell decay rate, δB , were also the same as the prior distribution. However, when
the value of δB was changed while holding all other parameters constant, the
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Figure B: Some parameters were poorly estimated by fitting to sequential infec-
tion data. Leftmost column: the marginal prior distribution of the parameter in
the horizontal axis label. Remaining columns: the marginal posterior distribu-
tions of the same parameter for the model fitted to the dataset indicated. The
parameter value used to generate the data is marked by the vertical line.

likelihood changed drastically (Fig. Cii), whereas there was no such change for
δA (Fig. Ci). Hence, one could not determine the identifiability of a parameter
in combination with others by examining the marginal posterior distributions
alone.

To better quantify the practical identifiability of each parameter, one could
use the profile likelihood method [1]. For each parameter, as the value of the
parameter is changed, the likelihood over all remaining parameters would be
maximised. The maximised likelihood would only change if the target param-
eter can be identified from the data independently from all others. However,
maximising over the large number of parameters in this model is extremely
computationally costly.

Despite the lack of information in the marginal posterior distribution of some
parameters (Fig. B as well as many parameters in Figs. E–H), the model fitted
the viral load data well, as shown in the main text. As the estimation of pa-
rameter values was not our ultimate goal, rather than relying on the marginal
posterior distributions only, we used prediction methods in the main text to
directly investigate how each model quantitatively attributed control of an in-
fection to each immune component.

Further reason to use prediction methods, rather than only the marginal
posterior distributions, was the apparent bias in the marginal posterior dis-
tributions for some parameters. Figure D shows that the marginal posterior
distributions for the basic reproduction number R0 were biased towards much
lower values than the value used to construct the synthetic datasets.

3



-2 -1.5 -1

log10 δA

-1160

-1140

L
o
g
li
k
el
ih
o
o
d

(i)

-1 -0.5 0

log10 δB

-1160

-1140

L
o
g
li
k
el
ih
o
o
d

(ii)

Figure C: The log likelihood remained roughly constant as the value of δA was
changed in isolation, but changed drastically when δB was changed. The log
likelihood for the sequential infection dataset given the model parameters as
(i) δA and (ii) δB were varied while the other parameters were kept at the
values used to generate the synthetic data. The vertical line indicates the true
parameter value, and the horizontal line indicates the log likelihood of the data
given the true set of parameter values.

The discrepancy between the value of R0 used to generate the synthetic data
and the estimated values is of interest because previous studies have shown that
R0 can be written as a function of the initial viral growth rate r, the infectious
cell decay rate δI and the infectious virion decay rate δV [2] — each of which are
estimated in an unbiased manner (Fig. E). Moreover, in the simplest population-
scale equivalent of a viral dynamics model — the SIR model — R0 can be
inferred reliably from data [3].

We hypothesise that the estimated value of R0 has a lesser effect in our
model because clearance is driven by the immune response. By contrast, in
a viral dynamics model without a time-dependent immune response, clearance
is driven by target cell depletion. Similarly, in the SIR model, the epidemic
ends through depletion of susceptibles. This difference between the effects of
R0 in different models arises because in the models where resolution is driven
by depletion of susceptibles (cells/individuals), the decay rate towards the end
of the infection curve is either the removal rate of infectious individuals (SIR
model) or a function of the non-specific decay rates of virions and infected cells
(δI and δV ). These quantities appear in R0. On the other hand, if resolution is
driven by the immune response, the decay rate at the end of the infection is a
combination of adaptive immune parameters and non-specific decay of infected
cells and virions, the former of which do not appear in R0. Hence, although
the underlying reason for the bias in the marginal posterior distribution of R0

remains to be investigated, this parameter has less influence on the viral load
than may be expected, and the viral load is nonetheless recovered accurately.
This example again highlights the caution required when interpreting marginal
posterior distributions.

Figures E–H show the posterior distributions for the full set of parameters.
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Figure D: The marginal posterior distributions for R0 were biased towards low
values. Leftmost column: the marginal prior distribution of the parameter in
the horizontal axis label. Remaining columns: the marginal posterior distribu-
tions of the same parameter for the model fitted to the dataset indicated. The
parameter value used to generate the data is marked by the vertical line.
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Figure E: The full set of marginal posterior distributions. Leftmost column:
the marginal prior distribution of the parameter in the horizontal axis label.
Remaining columns: the marginal posterior distributions of the same parameter
for the model fitted to the dataset indicated. The parameter value used to
generate the data is marked by the vertical line.
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Figure F: Marginal distributions (continued from Fig. E).
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Figure G: Marginal distributions (continued from Fig. F).

8



Prior
Single Sequential
infection infection

Figure H: Marginal distributions (continued from Fig. G).
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