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High petite rate of S. uvarum mitotype and its association with ORF1
Saccharomyces yeast strains generate petites spontaneously at a rate of ~1%, and variants in
nuclear genes can affect petite rates (59). We observed an extremely high petite rate in the hybrid
with S. uvarum mitotype (48-61%, sometimes >90%), while the hybrid carrying S. cerevisiae
mtDNA rarely generates petites (fig. S5A). The high petite rate associated with S. uvarum
mtDNA is only seen in the interspecific hybrid, but not pure strains S. uvarum, suggesting a
dominant incompatibility in mtDNA inheritance between hybrid nuclear genomes and S. uvarum
mtDNA. However, we were able to isolate a few S. cerevisiae and S. uvarum hybrids that carried
mostly S. uvarum mitochondrial genes but did not exhibit a high petite rate. These strains arose
at a frequency of 1%, so they are likely spontaneous recombinants. Whole genome sequencing
showed that they all carry S. cerevisiae ORF1, but the rest of their mitochondrial genome is S.
uvarum (fig. S5C). This result suggests a strong link between S. cerevisiae ORF1 and mtDNA
inheritance. In the 90 recombinants generated from mutant crosses, we also observed a strong
correlation between S. cerevisiae ORF1 and low petite rates, although there were exceptions (fig.
S5B).

The possible inheritance phenotype adds to our understanding of the interesting biology
of ORF1. ORF1 (F-Scelll) was suggested to encode a free-standing homing endonuclease (60).
The best-known homing endonuclease is I-Scel (o), which promotes its spread to homing-less
mitochondrial genomes (61). ORF1 (F-Scelll) has been proposed to mediate mitochondrial
recombination based on the high frequency of interspecific mitochondrial recombinants at the
start of ORF1 in wild Saccharomyces species and in a synthetic hybrid of S. cerevisiae x S.
mikatae (24, 62). Although further work will be needed to demonstrate that ORF1 affects
mitochondrial inheritance, this activity would imply co-evolution between a selfish element and
its host (63).
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Fig. S1. Reciprocal hemizygosity test of HFA1 and CUP2. (A) Hemizygotes with either the S.
cerevisiae allele (sc/-) or S. uvarum allele (-/su) and a wild-type hybrid (sc/su) were compared
under the same conditions as the non-complementation screen. Growth is after 5 days. (B) Heat
or copper resistance was measured by colonies sizes normalized to control condition (22°C
YPD), with error bars representing the standard deviation of 6 biological replicates. (C) HFA1
hemizygotes differed in heat sensitivity on glucose but not glycerol medium. Cells were plated at
1:10 dilution. Growth is after 3 days.
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Fig. S2. Fermentative and respiratory growth of interspecific hybrids with reciprocal
mitotypes at different temperatures. Interspecific hybrids between S. cerevisiae (sc), S.
paradoxus (sp), S. kudriavzevii (sk), and S. uvarum (su) with either parental mitotype (o or p"%)
or no mtDNA (p°) were grown on YPD and YPGly plates for 5 days (22°C and 37°C) or 124
days (4°C). Growth of parent species and their petites are shown for comparison. The 4°C
images of S. cerevisiae x S. kudriavzevii hybrid with S. cerevisiae mtDNA (sc x sk o"*) were
replaced with images from a biological replicate plated in the same configuration because the
original colony was contaminated.
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Fig. S3. Rescue of S. cerevisiae (sc) mitochondrial knockouts by recombination with S.
uvarum (su) mitotypes. Upon crossing S. cerevisiae with S. uvarum, hybrids have unstable
heteroplasmy; parental types do not grow at 37°C on glycerol, but recombinants can rescue the S.
cerevisiae deficiency and the S. uvarum temperature sensitivity.
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Fig. S4. continued
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Fig. S4. Recombinant genotypes and examples of recombination breakpoints. (A)
Recombinants were manually classified into 11 genotype groups and breakpoints for 8
representatives were identified by manual inspection. Strains were labeled by the trials (“f” for
initial trial and “S” for second trial) and mutant crosses in which they were generated. Phenotype
panels are shown as in Fig. 2B, with the addition of 22°C colony sizes. (B) Representative
recombinant genomes are shown. Outer circles represent the reference mitochondrial genomes
(red for S. cerevisiae, blue for S. uvarum), and inner circles show coverage of a given
recombinant. Note 15S rRNA and COB are at different positions in the two reference genomes.
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Fig. S5. High petite rate of S. uvarum mitotype and its association with ORF1. (A) Petite rate
in a 22°C overnight culture is high for the hybrid with a S. uvarum mitotype (blue circle), while
the hybrid with a S. cerevisiae mitotype (red circle) rarely generates petites (dotted circle). (B)
Petite rates associate with ORF1 alleles in 90 recombinants generated by knockout crosses. sc, S.
cerevisiae; su, S. uvarum. (C) Four spontaneous recombinants carrying S. cerevisiae ORF1
showed low petite rates; the rest of their mitochondrial genome is S. uvarum.
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Fig. S6. Procedure for mitochondrial allele replacement. (A) Biolistic transformation of the
mitochondrial construct with a LEU2 plasmid. (B) Leu+ colonies were mated to S. cerevisiae
mitochondrial knockouts. (C) The allele of interest was integrated into the mitochondrial genome
via homologous recombination. (D) Integrated alleles were selected by rescue of respiration. (E)
MATa mitochondrial genome transformants were crossed to S. uvarum.



Fig. S7.

25°C 37°C 4°C 4°C
Glycerol Glycerol Glucose Glycerol

scmt [scCOX1]

S. cerevisiae | scmt [suCOX1]

scmt [suCOB]

hybrid scmt [scCOX1]

scmt [suCOX1]

scmt [suCOB]

Fig. S7. Background-dependent allele effects of COXL. S. cerevisiae diploids and hybrids
carrying allele replacements and two wild-type controls were plated with 1:10 serial dilution and
incubated at indicated temperatures. Growth is after 4 days for 25°C and 37°C, 25 days for 4°C
on glucose, and 53 days for 4°C on glycerol. sc, S. cerevisiae; su, S. uvarum; mt, mtDNA.
Alleles in the brackets were integrated into their endogenous loci in S. cerevisiae mtDNA.



Table S1. Aneuploidy in the recombinants.

Increased 37°C

Mitochondrial

Strain growth _compared Cross Duplicated mtera'ctlng genes Reference
to similar chromosome carried on the
genotypes? chromosome?
S. cerevisiae
S29 Yes COX3A chrIX MRS1 (12)
S. cerevisiae
S53 No COX3A chrV/ MRX1 (32)
S. cerevisiae
S54 No COX3A chrIX MRS1 (12)
S. cerevisiae
S61 Yes COX3A chrIX MRS1 (11)
S. uvarum
S97 Yes Ccox1A chrl0 PET309 (32)

1 Only genes with known incompatibilities were listed.
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Table S2. Strains used in this study.

Data file S1. Results of noncomplementation screen.

Data file S2. Recombinant strain genotypes and phenotypes. Allele, petite rate, aneuploidy,
and mito/nuclear read ratio of the 90 mitochondrial recombinants used in the linear model.
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