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Supplementary methods 
 

i. Rationale for intervention categories 

We compiled a list of both plausible and recognised interventions based on factors considered to play a role in 
oral vaccine underperformance. Much of this scientific rationale was based upon a detailed review by one of the 
authors considering the causes of impaired oral vaccine efficacy in developing countries1. Below we list the 
rationale for each of these intervention categories. 

 

a. Micronutrients 

Vitamin A encompasses a group of retinoid compounds (biological activity all-trans-retinol) which play an 
essential role in a number of physiological functions including immunity. Vitamin A is essential for healthy 
immune responses at mucosal surfaces and deficiency results in increased mortality and morbidity from measles, 
diarrhoea, blindness and anaemia2. Vitamin A deficiency is prevalent in regions where oral vaccines underperform 
and Vitamin A supplementation (VAS) is widely accepted and considered to be among the most important tools 
to reduce childhood mortality in children aged 6-59 months3. Animal studies have shown that Vitamin A 
deficiency impairs vaccine-elicited gastrointestinal immunity and that replacement with Vitamin A or its 
metabolite retinoic acid fully restores the mucosal immune response4,5. Vitamin A derivatives have also shown 
adjuvant potential in humans when given alongside oral and parenteral vaccines6,7. Zinc is an essential mineral 
involved in multiple aspects of cellular metabolism. Deficiency in zinc leads to growth retardation, loss of appetite 
and impaired immune function and is strongly correlated with increased diarrhoeal morbidity and mortality8. 
Several studies describe clear benefits of both supplemental and therapeutic zinc in protecting children from 
diarrhoeal disease9. Like Vitamin A, zinc deficiency is more prevalent in regions where oral vaccines 
underperform. Given its integral role in gut health both through intestinal epithelial repair and regulation of 
mucosal immune responses, it is plausible that deficiency may attenuate seroconversion to oral vaccines and that 
supplementation may improve immune responses to oral vaccines.   

 

b. Antibiotics 

Many children in developing countries have frequent, early and recurrent exposure to enteric pathogens from early 
life10, which could impair the efficacy of an oral vaccine in several ways. First, enteropathogen exposure can 
cause diarrhoea, which reduces intestinal transit time, thereby lessening vaccine exposure. Second, 
enteropathogen exposure can accentuate mucosal innate immune responses, thereby impairing vaccine 
replication. For example, in children infected with non-polio enteroviruses or having diarrhoea at the time of 
vaccination, immunogenicity to oral poliovirus vaccine is significantly reduced11. Third, induction of innate and 
adaptive immune responses at the intestinal mucosa can cause perturbations to the gut microbiota12, which might 
in turn interfere with oral vaccine responses (see Probiotics below). Fourth, pathogens scavenge and compete for 
energy sources which may interfere with the action and replication of live vaccine virus. Finally, repeated 
exposure to intestinal pathogens can contribute to chronic alterations in gut structure and function, characterised 
by increased permeability, reduced absorptive capacity and chronic inflammation, which together have been 
termed environmental enteric dysfunction (EED)13. Biomarkers of EED have been associated with reduced 
immune responses to oral poliovirus and rotavirus vaccines in some studies14,15, though not in others. Given the 
potentially deleterious effect of enteric infection or colonisation on the mucosal immune response, a course of 
antibiotic therapy given around the time of vaccine administration may reduce enteropathogen carriage and 
improve oral vaccine performance.  

 

c. Anthelminthics 

Helminth infestation is prevalent among children in developing countries16 and their geographical distribution has 
extensive overlap with areas in which oral vaccines underperform. Intestinal helminth infection is associated with 
substantial childhood morbidity including anaemia, malabsorption and stunting17, as well as altered immune 
function18. As a result, geohelminths inhabiting the small intestine may interfere with the uptake of oral vaccines 
in the intestinal lumen. Anti-helminthics, a group of anti-parasitic drugs, are recommended by the WHO for 
periodic deworming to reduce morbidity among children living in endemic areas19. Treating helminth infections 
may enhance immune responses to oral vaccines. However, helminth infestation is rare in early infancy when 
routine oral vaccines are administered, so the benefits of this intervention may be limited to vaccines administered 
to older children.  



	 3	

d. Probiotics or prebiotics 

The role of the intestinal microbiota on health and immunity is garnering increasing interest. Experiments in germ-
free animal models have helped explain mechanisms by which the microbiota influences early immune 
development and responses20. In humans, a recent study described differences in the microbiota composition, 
including a decreased abundance of Batceroidetes, among Ghanaian infants who failed to respond to oral rotavirus 
vaccine21. Moreover, the microbiota of the Ghanaian infants who responded to oral rotavirus vaccine was more 
similar than non-responders to that of rotavirus-unvaccinated Dutch infants of matched age. However, a study in 
India found no significant association between microbiota composition and rotavirus vaccine immunogenicity22. 
Despite these conflicting data, it remains plausible that alterations to the intestinal microbiota can modulate 
response to oral vaccines. Probiotics are live microorganisms intended to have health benefits, which have been 
linked to actions that may directly or indirectly influence immune function. In principle, they have the capacity 
to alter the composition of the gut microbiota and communicate with many cell types, thereby enhancing barrier 
function, increasing mucin production and promoting IgA secretion. The same is true to a lesser extent with 
prebiotics, which are non-digestible fibre compounds designed to stimulate the growth and activity of 
advantageous commensal bacteria in the gut. As a result, well-chosen probiotics or prebiotics, or synbiotics (a 
combination of prebiotics and probiotics) may modify the intestinal environment in favour of robust mucosal 
responses to oral vaccines.  

 

e. Withholding breastfeeding 

It has been postulated that breastfeeding may attenuate immune responses to oral vaccines. Breast milk contains 
secretory IgA antibodies as well as innate immune factors such as lactoferrin which can inhibit the replication of 
live viruses23. There are also geographical differences in the composition of breast milk. Rotavirus neutralising 
titres in breast milk are higher in Bangladeshi mothers compared to mothers from the U.S.A24, mirroring the 
geographical patterns of oral vaccine underperformance. It is therefore possible that withholding breastfeeding 
around the time of administration of an oral vaccine may enhance the mucosal immune response. 

 

f. Dosing or schedule changes 

The endgame to eradicate poliomyelitis has been challenged by oral vaccine underperformance and exemplifies 
strategies used to close immunity gaps. In some areas, despite high coverage and intensive use of OPV, polio 
eradication has remained challenging. There are probably several contributing factors (listed above) including a 
high force of infection. One approach to addressing these polio ‘hotspots’ has been to use higher potency vaccines 
and supplemental doses. In Uttar Pradesh, India, high potency mOPV1 and supplemental IPV has been shown to 
enhance OPV-induced mucosal immunity25. More recently, with the global elimination of Sabin 2, strategies have 
involved adjustments to the valence of the oral vaccine with bivalent and monovalent preparations being used in 
place of the traditional trivalent OPV. 
  
Research tackling the underperformance of rotavirus vaccines has also explored dose adjustments (delayed dosing 
and or increased number of doses)26-28. Rotavirus vaccine is currently recommended at 6 and 10 weeks of age; 
however, in developing countries, doses at younger ages generally yield lower rotavirus vaccine responses. A 
post-hoc exploratory analysis of vaccine trial data showed that African children receiving the first dose of 
pentavalent rotavirus vaccine at <8 weeks had lower efficacy (23.7%; 95%CI: -8.2, 46.3) than those vaccinated 
at >8 weeks (59.1%; 95%CI: 34.0, 74.6)29. Reasons for this may include the interference of concomitantly 
administered OPV and maternally acquired antibodies. IgA seroconversion was reduced among participants with 
higher levels of pre-vaccination maternally-derived IgG26,30.  A delayed or additional dose of rotavirus vaccine, 
given after 10 weeks, may limit interference from circulating maternal antibodies and live oral polio vaccine virus 
as well as benefiting from a more mature infant immune system. Additional rotavirus vaccine doses however must 
be weighed up against the increased risk of intussusception when rotavirus vaccine is given later in childhood.  

 

g. WASH (water, sanitation & hygiene) interventions 

Safe drinking water, access to sanitation and hygiene have long been viewed as key determinants of population 
health. The term WASH captures several interventions, including access to and treatment of drinking water, safe 
disposal of faeces (including infant and animal faeces) and hand-washing with soap. In many developing 
countries, children grow up in conditions of poor WASH. It is possible that this leads to increased subclinical 
carriage of enteric pathogens, diarrhoea and EED, altering the intestinal environment and reducing 
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immunogenicity of oral vaccines. If this hypothesis is correct, it is logical that interventions to improve WASH 
may prevent pathogen carriage, diarrhoea and EED and thereby enhance responses to oral vaccines.  

 

h. Other plausible interventions 

Given the numerous factors that have been linked to the underperformance of oral vaccines, it is possible that 
other interventions have been tested outside of those listed above. One example would be nutritional interventions 
beyond zinc and Vitamin A supplementation. Malnutrition underlies 45% of deaths in children under 5 years in 
developing countries and there is high degree of overlap between regions affected by malnutrition and oral vaccine 
failure31. Although data regarding the association between nutritional status and oral vaccine response are 
conflicting1, it is possible that other interventions to improve nutritional status in undernourished children may 
also improve responses to oral vaccines. For this reason, macronutrients as well as micronutrients have been 
included in our list of interventions. 

 

Another potential window of opportunity is prenatal interventions. The first 1000 days (from conception to a 
child’s second birthday) is increasingly recognized as a critical period of child growth and development, including 
dynamic intestinal adaptation and immune ontogeny. Environmental factors and maternal health from early 
pregnancy can also shape epigenetic changes in the developing fetus32 and impact on later health and immunity. 
There is evidence, for example, that prenatal exposure to maternal helminth infections may modulate infant 
responses to vaccination and infectious pathogens33,34. It is therefore conceivable that a maternal anthelminthic 
intervention could boost immune responses to infant oral vaccines. Results of a large randomised controlled trial 
have shown that neither albendazole nor praziquantel given during pregnancy affect infant immune responses to 
BCG, tetanus and measles immunisations35. In this trial, oral vaccine responses were not examined; however, 
another study in Ecuador evaluated oral vaccine responses in the context of maternal helminth infection in 
pregnancy and paradoxically showed a protective effect, with maternal infection associated with higher infant 
IgA titres to oral polio and rotavirus vaccine antigens36. 
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ii. Complete search strategy for Ovid Medline 
 
The Ovid Medline search was first conducted on the 30th March 2017 and then refreshed on the 23rd October 2017. 
 
 

# Searches 
1 exp Vaccination/ 
2 Vaccin*.mp. 
3 1 or 2 
4 Poliovirus/ 
5 Poliovirus:.mp. 
6 Polio.mp. 
7 Rotavirus/ 
8 Rotavirus:.mp. 
9 Cholera/ 
10 Cholera:.mp. 
11 Typhoid Fever/ 
12 Typhoid:.mp. 
13 Salmonella typhi/ 
14 Salmonella typhi:.mp. 
15 Shigella/ 
16 Shigella:.mp. 
17 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 
18 3 and 17 
19 Poliovirus Vaccine, Oral/ 
20 Poliovirus Vaccines/ 
21 Rotavirus Vaccines/ 
22 Cholera Vaccines/ 
23 Typhoid-Paratyphoid Vaccines/ 
24 Shigella Vaccines/ 
25 19 or 20 or 21 or 22 or 23 or 24 
26 18 or 25 
27 Immunogenicity.mp. 
28 Immunogenicity, Vaccine/ 
29 Response.mp. 
30 Seroresponse.mp. 
31 Seroconversion.mp. 
32 Shedding.mp. 
33 Virus shedding/ 
34 Efficacy.mp. 
35 Titre.mp. 
36 Titer.mp. 
37 Antibodies, Viral/ 
38 Antibodies, Bacterial/ 
39 Performance.mp. 
40 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 37 or 38 or 39 
41 26 and 40 
42 Zinc.mp. 
43 41 and 42 
44 Vitamin A.mp. 
45 41 and 44 
46 Micronutrient.mp. 
47 Micronutrients/ 
48 46 or 47 
49 41 and 48 
50 Macronutrient.mp. 
51 41 and 50 
52 Anti-bacterial agents.sh. 
53 Antibiotic.mp. 
54 52 or 53 
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55 41 and 54 
56 Anthelmintics.sh. 
57 Anthelmintic.mp. 
58 Albendazole.mp. 
59 Praziquantel.mp. 
60 56 or 57 or 58 or 59 
61 41 and 60 
62 Prebiotic.mp. 
63 Probiotics.sh. 
64 Probiotic.mp. 
65 LGG.mp. 
66 62 or 63 or 64 or 65 
67 41 and 66 
68 Breast Feeding.sh. 
69 Breastfeed:.mp. 
70 68 or 69 
71 41 and 70 
72 Dosing.mp. 
73 Schedule.mp. 
74 Ad.fs. 
75 72 or 73 or 74 
76 41 and 75 
77 limit 76 to (clinical trial, all or meta analysis or multicenter study or observational study or systematic reviews) 
78 Buffer.mp. 
79 41 and 78 
80 (hand*1 adj3 (wash* or clean* or disinfect*)).mp. 
81 (hand*1 adj3 hygien*).mp. 
82 Hand washing.sh. 
83 (handwashing or hand washing).mp. 
84 Hygiene/ 
85 (hygiene adj2 educat*).mp. 
86 Sanita*.mp. 
87 Water Supply/ 
88 Water Purification/ 
89 (Soaps/ or soap.mp.) adj3 (water* or hygien* or educat* or wash*).mp. 
90 Sanitation/ 
91 (latrine*1 or toilet*1 or water closet*1 or privy).mp. 
92 80 or 81 or 82 or 83 or 84 or 85 or 86 or 87 or 88 or 89 or 90 or 91 
93 41 and 92 
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iii. List of experts in the field contacted 

- Joe Brown (Georgia Tech); joe.brown@ce.gatech.edu 

- Roma Chilengi (Centre for Infectious Disease Research in Zambia); Roma.Chilengi@cidrz.org 

- Oliver Cumming (London School of Hygiene & Tropical Medicine); Oliver.Cumming@lshtm.ac.uk 

- Roger Glass (Fogarty International Center); rglass@emory.edu 

- Paul Kelly (Queen Mary University of London); m.p.kelly@qmul.ac.uk 

- Margaret Kosek (Johns Hopkins University); mkosek@jhu.edu 

- Bill Petri (University of Virginia); wap3g@virginia.eduv 

- Duncan Steele (Bill & Melinda Gates Foundation); duncan.steele@gatesfoundation.org� 

- Anita Zaidi (Bill & Melinda Gates Foundation); Anita.zaidi@aku.edu 

- Gagandeep Kang (Christian Medical College, India); gkang@cmcvellore.ac.in 

- Beate Kampmann (Imperial College London & MRC Gambia); b.kampmann@imperial.ac.uk 

- Nigel Cunliffe (University of Liverpool); N.A.Cunliffe@liverpool.ac.uk 
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iv. Table S1: Preferred measures of immunogenicity for different oral vaccine types. 
 

Vaccine 

Measures of immunogenicity 

Preferred measure1 
(definition) Timing Alternative measure 

Oral poliovirus 
vaccine 

Seroconversion (serum 
neutralizing AB titres ³ 
1:8 post vaccine)  

21-28 days 
post last dose 

Serum neutralizing AB titres 
Polio virus shedding (‘take’) 2 
Anti-polio specific IgA or IgG 
(serum or stool) 

Oral rotavirus 
vaccine 

Seroconversion (³3-fold 
rise or ³20U/ml (if pre- 
vaccine titre <20U/mL) 
serum RV IgA AB titres 
post vaccine) 

14-28 days 
post last dose 

Serum RV IgA titres 
RV complement-fixing AB 
RV-sIgA or Copro IgA 
Serum NAs3 to different 
serotypes 

Oral cholera 
vaccine 

Seroconversion (³4-fold 
rise serum vibriocidal AB 
titres post vaccine) 

7-14 days post 
dose 

Vibriocidal AB titres 
Vibriocidal sIgA 
Cholera LPS IgA or IgG 
CTB IgA or IgG 

Oral typhoid 
vaccine 

Seroconversion (³4-fold 
rise serum anti-LPS IgG 
or IgA AB post vaccine) 

7-14 days post 
dose 

Serum anti-LPS IgG or IgG 
Intestinal sIgA 
IgG and IgA ASC 

 
 
  

                                                
1 Deviations from these definitions were permitted provided that they did not breach our inclusion/exclusion criteria 

2 OPV shedding had to be measured between 1 and 4 weeks after vaccination  

3 NA = neutralising antibody, sIgA = secretory IgA, LPS = lipopolysaccharide, CTB = cholera toxin subunit B, ASC = antibody 
secreting cell	



	 9	

v. Assessment of evidence quality 

The quality of evidence was assessed for each study using GRADE criteria, which evaluates type of evidence, 
risk of bias, consistency with other studies, directness to the research question and effect size.  

Since observational studies were excluded from this review, all included studies were given an initial score of +4 
for type of evidence. Risk of bias was assessed based on several quality areas including the allocation process, 
blinding, follow-up, withdrawal rate and sparse data. A problem with one of these factors incurred one negative 
point, a problem with two elements incurred two negative points up to a maximum of three negative points. Sub-
studies nested within trials incurred a negative point if selection of subjects was not random and pre-specified. 
Where details of selection, allocation, blinding or other quality parameters were not detailed, the risk of bias was 
graded as ‘unclear’. If multiple quality fields were unclear, the study lost one point per two unclear quality fields. 
Studies also incurred a negative point if there were losses to follow-up or withdrawals in excess of 15%. Similarly, 
studies including older subjects or in high-income countries lost up to two points, due to indirectness to the 
primary research question. The final GRADE score was derived from the sum of all five categories of evidence 
and classified as high (³4 points overall), moderate (3 points), low (2 points), or very-low quality evidence (one 
or less). We describe full details of this scoring system in Table S2. 
 

vi. Table S2: The GRADE scoring system used for clinical evidence reviews, adapted from advice 
and resources prepared by the GRADE Working Group37 

 
Type of evidence 
Based on   Study design 

Initial score 
+4 RCTs/ SR of RCTs, +/– other types of evidence 
+2 Observational evidence (e.g., cohort, case-control) 

Quality 

Based on 

Blinding and allocation process 
Follow-up and withdrawals 
Sparse data 
Other methodological concerns (e.g., incomplete reporting, subjective outcomes) 

Score 

0 No problems 
–1 Problem with 1 element 
–2 Problem with 2 elements 
–3 Problem with 3 or more elements 

Inconsistency 

Based on Degree of consistency of effect between or within studies 

Score 

+1 
Evidence of dose response across or within studies (or inconsistency across studies is 
explained by a dose response); also 1 point added if adjustment for confounders would 
have increased the effect size 

0 All/most studies show similar results 

–1 Lack of agreement between studies (e.g., statistical heterogeneity between RCTs, 
conflicting results) 

Indirectness 

Based on The generalisability of population and outcomes from each study to our population of interest 

Score 
0 Population and outcomes broadly generalisable 
–1 Problem with 1 element 
–2 Problem with 2 or more elements 

Effect size 

Based on The reported OR/RR/HR for comparison 

Score 

0 Not all effect sizes >2 or <0.5 and significant; or if OR/RR/HR not significant 

+1 Effect size >2 or <0.5 for all studies/meta-analyses included in comparison and 
significant 

+2 Effect size >5 or <0.2 for all studies/meta-analyses included in comparison and 
significant 
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vii. Additional methods 
 

a. Rationale for OPV outcome 

For OPV, we only included seroconversion to poliovirus serotype 3 in the main meta-analysis. Rates of 
seroconversion are typically lowest for this serotype, giving more power to detect an effect of the interventions. 
Serotype-specific analyses, with study included as a random effect, can be found in the e-appendix 
(https://eparker12.github.io/oral_vaccine_interventions_metaanalysis_2018/). Study was also included as a 
random effect for pooled analyses of concomitant versus separate administration of RVV and OPV, wherein 
outcomes for both vaccines were reported for the same infants.  

 

b. Rationale for choice of intervention study group 

In studies where multiple permutations of an intervention were tested against a single control group, the 
intervention that differed most in its characteristics from the control was selected, in order to avoid replication of 
control group participants. For example, if a dose interval was shortened from 8 weeks in the control group to 
either 1 or 3 weeks in the intervention arms, the 1-week interval was selected. Finally, for studies reporting 
stratified outcomes (e.g. by age group), we treated the strata as separate studies. 

 
 

viii. R markdown code 

 
The full markdown code used for the statistical analyses is available online at the following Github repository:  

https://github.com/eparker12/oral_vaccine_interventions_metaanalysis_2018 
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Supplementary results 
 

i. Figure S1. Map depicting studies of interventions to improve oral vaccine performance. Colour denotes the oral vaccine studied; shape denotes the intervention 
evaluated; and size of the shape denotes the number of participants in the study. 
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ii. Table S3: Trials testing multiple interventions. 
 

Reference Interventions 
(N, type) 

Factorial 
design (Y/N) 

Interaction 
(Y/N) 

Combined arm 
data included 

(Y/N) 

Ahmed (Vaccine 2009)38 

3 (Zinc, 
Withholding 
breastfeeding, 
Buffer) 

No N/A N/A 

Albert (JID 2003)39 2 (Vitamin A, 
Zinc) Yes Yes  

(additive effect) No 

Ali (JID 2014)26 2 (Dose timing, 
dose number) No N/A N/A 

Anh (Vaccine 2011)40 2 (Dose timing, 
dose interval) No N/A N/A 

Armah (JID 2016)27 2 (Dose timing, 
dose number) No N/A N/A 

Lazarus (Vaccine 2018)41 2 (Zinc, Probiotic) Yes No Yes 

Steele (Vaccine 2010)42 2 (Dose timing, 
OPV/RV) No N/A N/A 

Jhala (Ind Ped 1981)43 
2 (Vaccine 
inoculum, dose 
number) 

No N/A N/A 

Su-Arehawaratana (JID 
1992)44 

2 (Vaccine 
inoculum, dose 
number) 

No (4 separate 
studies) N/A N/A 

John (Vaccine 2011)45 2 (Vaccine 
inoculum, valency) 

No (2 separate 
trials) N/A N/A 

Patriarca (Lancet 1988)46 2 (Vaccine 
inoculum, valency) No N/A N/A 

Levine (Lancet 1987)47 2 (Buffer, dose 
interval) No N/A N/A 
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iii. Immunogenicity characteristics 

 
There was variability in the definitions used for seroconversion [summarised at osf.io/bemw6], in particular the 
interval between the final dose of vaccine and post-vaccine titre: 14-60 (mean 31·4) days for RVV, 21-270 (mean 
42·0) days for OPV, 7-28 days (mean 13·6) days for OCV and 7-30 (mean 15·5) days for typhoid.  
 
Of the studies also reporting pre- and post-vaccine antibody titres, the ratios of titres between study arms were 
highly comparable with seroconversion ratios (see Figure S2 below). Only one study reported a significant effect 
of the intervention on GMT without finding an impact on seroconversion48. 
 
Figure S2: Graph showing relationship between seroconversion ratio and post-vaccine titre ratio (intervention 
versus control) in studies reporting both outcomes.  
 

Pearson r=0.55 (95% CI 0.36-0.70), p<0.0001 
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iv. Figure S3: Risk of bias summary for all studies (generated using Review Manager version 5.3.5) 
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v. Forest plots and funnel plots for all interventions 

Full details of the meta-analysis including all statistical outputs, code and input data can be found in an e-appendix 
at the following website: https://eparker12.github.io/oral_vaccine_interventions_metaanalysis_2018/ 
 
 
Antihelmintics 
Forest plot 

 
Funnel plot 

 
 
 
 
Breastfeeding withheld 
Forest plot 

 
Funnel plot 
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Buffer 
Forest plot 

 
Funnel plot 
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Delayed first dose 
Forest plot 

 
Funnel plot 

 
 
 
 
Extra dose at birth 
Forest plot 

 
Funnel plot 
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Extra dose(s) 
Forest plot 

 
Funnel plot 

 
 
 
 
Increased vaccine inoculum 
Forest plot 

 
Funnel plot 
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Narrow dose interval 
Forest plot 

 
Funnel plot 

 
 
 
 
OPV valence 
Forest plot (OPV-specific analysis) 

 
 
Funnel plot 
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Probiotic 
Forest plot 

 
Funnel plot 
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RVV separated from OPV 
Forest plot (full analysis) 

 
 
Funnel plot 

 
 
 
Forest plot (OPV-specific analysis) 
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Vitamin A 
Forest plot (full analysis) 

 
Funnel plot 

 
 
Forest plot (OPV-specific analysis) 
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Zinc 
Forest plot 

 
Funnel plot 
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a. Footnotes for Forest plots (above) 

 

 Intervention Study Notes 

1 Buffer Sack (1997) * 

This study also examined another buffer, CeraVacx 
(sodium bicarbonate, trisodium citrate, rice syrup) with 
identical results. We excluded these data from the forest 
plot to avoid replication of the control group. 

2 Buffer Ing (1991) ** 
This study also examined the same buffer at a smaller 
volume (2ml). We excluded these data from the forest plot 
to avoid replication of the control group. 

3 Delayed first 
dose Steele (2010) * 

Intervention and control arm recruited separately. Exact 
sample sizes were not reported for immunogenicity data 
and were therefore estimated by assuming that loss-to-
follow-up rates reported in Figure 1 of the trial report were 
evenly distributed across arms. 

3 Extra dose(s) 10/14 * 

Study included both a 6/10w and 10/14w dose schedule. 
The 10/14w schedule was selected as the control group to 
ensure consistency with other studies and to delineate the 
effect of extra doses from delayed doses (considered in a 
separate comparison). 

4 Extra dose(s) Madhi (2010) ** 

Immunogenicity data extracted from Madhi et al. (Vaccine 
2012) and Cunliffe et al. (Vaccine 2012). Exact sample 
sizes were not reported for Malawi data; we therefore 
assumed that the 85 RVV recipients were distributed 1:1 
across the 2-dose and 3-dose schedules (n = 42 per arm) 
and used the reported seroconversion rates (47.2% and 
57.1%) to estimate the number of infants who 
seroconverted. 

5 OPV valency Sutter (2010) * 
This study also included an arm comparing bOPV with 
tOPV. We excluded these data from the forest plot to avoid 
replication of the control group. 

6 Probiotic De Vrese (2005) * 

This study also examined another probiotic, Lactobacillus 
casei CRL431 10^10 cfu, with similar results. We excluded 
these data from the forest plot to avoid replication of the 
control group. 

8 RVV separated 
from OPV Steele (2010) * 

Exact sample sizes were not reported for immunogenicity 
data and were therefore estimated by assuming that loss-to-
follow-up rates reported in Figure 1 of the trial report were 
evenly distributed across arms. 
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b. Acronyms for Forest plots (above) 

 

Acronym Notes 

1h One hour 

4w Four weeks 

50k 50,000 

Bbb01 Bifidobacterium breve 01 

BF Breastfeeding 

(c) Centrifuged 

(f) Filtered 

IPV Inactivated poliovirus vaccine 

IU International Units 

Lc ATCC Lactobacillus casei ATCC 

LGG Lactobacillus GG 

OCV Oral cholera vaccine 

OPV Oral poliovirus vaccine 

bOPV Bivalent OPV 

mOPV Monovalent OPV 

tOPV Trivalent OPV 

RVV Rotavirus vaccine 

RV1 Rotarix monovalent vaccine 

RV5 RotaTeq pentavalent vaccine 

Ty21a Live attenuated strain of salmonella typhi 

U/r Unrestricted 

Vit A Vitamin A 

w/ With 

w/h Withheld 

w/o Without 
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vi. Table S4: Summary of secondary analyses for each intervention category included in the meta-
analysis, describing 1) moderator effect according to vaccine type, 2) heterogeneity left over after 
accounting for moderator effect, and 3) funnel pot asymmetry.  

 

 
 
Significant effect (P value <0.05) 
 

 
  

                                                
4 Moderator effect, testing for heterogeneity between vaccines, is reported only if overall K ³3 and ³2 oral vaccine types 
included. 

5 Egger’s regression test, measuring funnel plot asymmetry, is reported if K ³3. If the moderator effect was significant (P value 
<0.05) or there was replication of infants across multiple vaccine types, we performed separate Egger’s tests for each vaccine.  

6 K also refers to strata within studies	

Intervention 
Moderator 

effect4  
(P value) 

Residual 
heterogeneity 

(P value) 

Egger’s test5 
(P value) 

No. of studies in meta-
regression (K)6 

Antihelminthic  0.087  2 
(2 OCV) 

Breastfeeding withheld 0.374 0.024 0.360 7 
(2 OCV, 4 RV, 1 PV3) 

Buffer 0.246 0.125 0.004 9 
(4 OCV, 4 RV, 1 PV3) 

Delayed first dose  0.221 0.053 5 
(5 RV) 

Extra dose at birth 0.436 0.066 0.027 6 
(1 RV, 5 PV3) 

Extra dose(s) 0.014 0.361 RV 0.089 9 
(1 OCV, 7 RV, 1 PV3) 

Increased vaccine inoculum 0.149 0.096 0.003 11 
(5 OCV, 6 PV3) 

Narrow dose interval 0.858 0.720 0.953 3 
(1 RV, 2 PV3) 

OPV valence  <0.0001 <0.0001 6 
(6 PV3) 

Probiotic 0.025 0.639  4 
(1 OCV, 2 RV, 1 PV3) 

RVV separated from OPV 0.004 0.019 RV 0.005 14  
(8 RV, 6 PV3) PV3 0.359 

Vitamin A 0.311 0.791 0.518 5 
(1 OCV, 4 PV3) 

Zinc 0.927 0.012 0.439 6 
(4 OCV, 1 RV, 1 PV3) 
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vii. Table S5: Summary of meta-regression results where heterogeneity not accounted for by vaccine 
type (i.e. residual heterogeneity P<0.05) testing age, income setting and background 
immunogenicity as secondary moderators.  

 
 
Significant effect (P value <0.05) 
 

 
  

                                                
7 Age group sub-divided into four categories: infant <1year, child 1-5 years, child 5-17 years and adult >=18years. 

8 Income setting sub-divided into low or lower-middle versus upper-middle or high. 

9 Background immunogenicity defined as the seroconversion rate in the control arm and modeled as a continuous variable 
after arcsine square root transformation to approximate a normal distribution. 

10 In vaccine-specific meta-analyses, residual heterogeneity was significant for RVV response but not OPV. Secondary 
moderators were therefore tested for RVV only.	

Intervention Age group7 
(P value) 

Income setting8 
(P value) 

Background 
immunogenicity9  

(P value) 
Notes 

Breastfeeding withheld 0.916 0.571 0.185 No moderators significant 

OPV valence  0.626 <0.0001 Strong negative correlation with 
background immunogenicity 

RVV separated from OPV10  0.542 0.016 

 
The benefit of separate vaccine 
delivery for RVV seroconversion 
is driven primarily by studies that 
administered a single dose and is 
negatively correlated with 
background immunogenicity. 
 

Zinc 0.002  0.869 
Zinc has more beneficial effect 
on vaccine outcome in children 
than infants. 
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viii. Sensitivity analysis 

 
Due to variation in timing of post-vaccine titre measurements, we conducted a post-hoc sensitivity analysis, 
excluding 19 studies from the meta-analysis that measured seroconversion outside our pre-specified windows 
(Table S1, Appendix). 
 
 
 

 
 
The effect of delayed first dose of RVV remained identical to the main analysis. For OPV valence, findings 
were similar to the main analysis but with widened confidence intervals. Similarly, the effect of separating 
RVV from OPV on RVV seroconversion and the increased inoculum effect for OCV remained similar to the 
main meta-analysis (RR 1.09 [95% CI 0.97-1.23]. For all other interventions, there remained no evidence of 
impact.  

 
 
 

  

                                                
11 Effect size refers to percent RVV seroconversion outcome. 

Intervention No of studies 
overall 

No of studies 
in sensitivity 

Overall Effect  
RR [95% CI] 

Sensitivity Effect 
RR [95% CI] 

Antihelminthic 2 1 1·26 [0.63-2·53]  

Breastfeeding withheld 7 7 0·93 [0·75-1·14] 0·93 [0·75-1·14] 

Buffer 9 7 1·03 [0·98-1·09] 1.02 [0.96-1.08] 

Delayed first dose 5 5 1.37 [1.16-1.62] 1.37 [1.16-1.62] 

Extra dose at birth 6 4 1·06 [0·98-1·14] 1.01 [0.99-1.04] 

Extra dose(s) 9 8 1·12 [0·96-1·30] 1.06 [0.94-1.20] 

Increased vaccine inoculum 11 7 1.05 [0.99-1.11] 1.03 [0.97-1.09] 

Narrow dose interval 3 2 0·98 [0·94-1·02] 0.97 [0.88-1.07] 

OPV valence 6 4 1·51 [1·20-1·91] 1.48 [1.18-1.85] 

Probiotic 4 3 1·09 [0·84-1·41] 1.04 [0.80-1.37] 

RVV separated from OPV11 14  12 1·21 [1·00-1·47] 1.33 [1.00-1.77] 

Vitamin A 5 2 1·01 [0·99-1·03] 1.03 [0.82-1.30] 

Zinc 6 6 1·11 [0·87-1·42] 1·11 [0·87-1·42] 

Total 87 68  
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ix. Table 1: Overview of 87 intervention studies included in the systematic review (with references 
assigned) 

 

 
 

* Of 86 unique studies, some studies examined two or more interventions and some reported on multiple oral vaccine targets 
(Table S3). 
 
** There were insufficient studies (<2) of antibiotics, early first dose, other micronutrients and miscellaneous interventions 
(maternal vitamin A, horse anti-serum, soya formula and E. coli K12) for inclusion in the meta-analysis. 
 
*** Most of these typhoid studies recruited children aged between 5 and 22 years 
 
 

                   Oral Vaccine 

 Poliovirus Rotavirus Cholera Typhoid 

Total studies (N)* 46 24 15 9 

Intervention     
Antihelminthic 0 0 249,50 151 
Antibiotic** 152 0 0 0 
Breastfeeding withheld 253,54 355-57 158 0 
Buffer 159 460-63 358,64,65 347,66,67 
Delayed first dose 0 426,27,40,42 0 0 
Early first dose** 168 0 0 0 
Extra dose(s) 143 626,27,69-72 144 273,74 
Extra dose at birth 575-79 180 0 0 
Miscellaneous** 381-83 0 184 0 
Narrow dose interval 385-87 140 0 147 
OPV valence 1046,88-95 NA NA NA 
Other micronutrients** 296,97 0 0 198 
Probiotic 148 241,99 2100,101 1102 
RVV separated from OPV 7103 742,103-108 NA NA 
Vaccine inoculum 725,43,45,46,109-111 0 444,112-114 0 
Vitamin A 4115-118 0 139 1119 
Zinc 1120 141 439,58,121,122 0 
Age group     
<1mo 19 1 0 0 
1-12mo 24 23 3 0 
1y-15y 2 0 4 6*** 
=>16y 1 0 8 3 
Mean (SD) age; mo 4.2 (7.9) 1.9 (1.3) 141.6 (163.3) 187.9 (133.8) 
Sex     
Males (%) 51.3 45.7 50.5 55.9 
Location     
Africa 8 6 2 1 
Asia 25 10 7 2 
Europe 5 3 2 2 
Americas 8 4 4 4 
Oceania 0 1 0 0 
Study size     
<50 participants with SC data 7 1 2 2 
50-500 37 21 13 2 
>500 2 2 0 5 
Total SC data (N) 8838 8954 1395 353030 

RVV = rotavirus vaccine, OPV = oral poliovirus vaccine, SC = seroconversion, mo = months, y = years  
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