The cholesterol biosynthesis pathway regulates IL-10 expression in human Th1 cells.

Perucha E et al.

Supplementary Figure 1. Metabolic regulation of Th1 switching in primary human CD4⁺ T cells. (a) Schematic representation of the experimental set-up leading to Th1 switching cells and gene expression array experiments. (b) Schematic representation of the micro-array analysis workflow. (c) Clustering analysis of gene expression data on $IFN\gamma^+IL-10^-$ (green), $IFN\gamma^+IL-10^+$ (red) and $IFN\gamma^-IL-10^+$ (blue) populations. (d) Relation between mRNA levels of cholesterol biosynthesis pathway selected targets in the $IFN\gamma^-IL-10^-$ and $IFN\gamma^+IL-10^$ populations and the MFI ratio for IL-10 ($IFN\gamma^+IL-10^+$: $IFN\gamma^-IL-10^-$) (n=14), showing a linear regression for each gene. R and p values for one-tailed Spearman test for each target are shown. (e) Principal component analysis of gene expression array derived from control Jurkat T cells *versus* Jurkat-CYT-1 *versus* Jurkat-CYT-2 expressing cells.

Supplementary Figure 2. Schematic representation of the cholesterol biosynthesis pathway and its regulation. Metabolites of the pathway are shown in black, enzymes of the pathway are shown in blue and inhibitors are shown in red. The pathway is regulated by two master transcription factors: Liver X receptor β (LXR β) negatively regulates the pathway by promoting cholesterol efflux while Sterol Regulatory Element-Binding Protein-2 (SREPB-2) positively regulates the pathway by promoting the transcription of the enzymes implicated in the pathway as well as cholesterol import via the LDLr. Probes significantly associated with IL-10 levels (Fig. 1b) are highlighted in yellow. Legend with full names is provided in Supplementary Table 1.

Supplementary Figure 3. Gating strategies. Purified human CD4⁺ T cells stimulated *in vitro* with plate bound α -CD3 (2 µg ml⁻¹) + α -CD46 (5 µg ml⁻¹) + rhIL-2 (50 U ml⁻¹) were cultured for 36 hours. (**a**) Representative CD4⁺ purity gating. (**b**) Gating strategy and post-sort analysis for cytokine secretion assay presented in Fig. 1 and Supplementary Fig. 1. (**c**) Gating strategy for intracellular cytokine staining analysis presented in Fig. 2, 3, 4 and Supplementary Fig. 4, 6.

Supplementary Figure 4. Th1 switching to IL-10 is blocked when the mevalonate pathway is inhibited. Purified human CD4⁺ T cells stimulated in vitro with plate bound α -CD3 (2 μ g ml⁻¹) + α -CD46 (5 μ g ml⁻¹) + rhIL-2 (50 U ml⁻¹) were cultured for 36 hours in the presence of atorvastatin and 250 µM mevalonic acid (MA) as indicated, unless stated otherwise. (a) Normalised mean fluorescence intensity (MFI) for IL-10 in IFN γ^{+} IL-10⁺ (left) and IFN_YL-10⁺ (right) cells (n=20). (b) Representative dot-plots for annexin staining on treated cells (data are representative of 5 independent donors). (c) Percentage of fixable viability dye positive cells (n=20). (d) Representative histogram of Cell Trace Violet (CTV) staining of $CD4^{+}$ T cells stimulated in vitro with IL-2, α -CD3 + α -CD46 or beads coated with α -CD3 + α -CD28 for 36 hours (data are representative of 3 independent donors). (e) Representative dotplot of $CD69^+$ and $CD25^+$ surface staining. (f) Normalised frequency of $CD69^+$ (left) and CD25⁺ (right) cells (n=7). (g) Normalised frequency of IL-17⁺IL-10⁺ (top left), IL-17⁺IL-10⁻ (bottom left), TNF α^{+} IL-10⁺ (right left), TNF α^{+} IL-10⁻ (bottom right) producing cells (n=20). (h) Normalised frequency of IL-10⁺IFN γ^{-} (left), IFN γ^{+} L-10⁺ (centre) and IFN γ^{+} IL-10⁻ (right) CD4⁺ T cells co-cultured with monocytes and α -CD3 (100 ng ml⁻¹) in the absence or presence of Adalimumab (1 μ g ml⁻¹) and treated with atorvastatin and MA (n=4). (i) Normalised frequency of IL-10⁺IFN_Y (left), IFN_Y⁺L-10⁺ (centre) and IFN_Y⁺IL-10⁻ (right) CD4⁺ T cells activated for 3 days with plate bound α -CD3 (0.5 µg ml⁻¹) + α -CD28 (1 µg ml⁻¹) + IFN α (600 U ml⁻¹) and treated with atorvastatin and MA (n=3). Graphs show independent donors (dots) normalised to 0 dose of atorvastatin; bars represent median values. *<0.05, **<0.01 and ***<0.001 denote a significant difference compared to untreated cells by repeated measures one-way ANOVA test with post hoc Dunnett's correction (a, c, g) or Friedman test with post hoc Dunn's correction (f).

Supplementary Figure 5. IL-10 regulation in Th1 switching cells is dependent on fit CBP metabolism, but not on isoprenylation, vitamin D3 or cellular cholesterol content. Purified human CD4⁺ T cells stimulated *in vitro* with plate bound α -CD3 (2 µg ml⁻¹) + α -CD46 (5 µg ml⁻¹) + rhIL-2 (50 U ml⁻¹) were cultured for 36 hours in the presence of selected metabolites and inhibitors as indicated. (a) Normalised concentrations of secreted IL-10 by cells cultured in the presence of inhibitors for farnesyl-PP transferase (FTase I inhibitor) (left), geranylgenaryl-PP synthase (GGTI-298) (centre) and Rab geranylgeranyltransferase (psoromic acid) (right) (n=4). (b) Normalised concentrations of secreted IL-10 by cells cultured with 5 µM atorvastatin (AT) and increasing concentrations of farnesylpyrophosphate (FPP) (left) and geranylgeranylphyrophosphate (GGPP) (right) and mevalonic acid (MA) as control (n=5). (c) Normalised concentrations of secreted IL-10 by cells cultured in the presence of increasing concentrations of U1866A (n=6). (d) Normalised concentrations of secreted IL-10 by cells cultured with 5 μ M atorvastatin (AT) and increasing concentrations of calcitriol and mevalonic acid (MA) as control (n=5). (e) Principal component analysis of lipidomics analysis of cells treated with atorvastatin (AT) and mevalonic acid (MA) (n=3). Graphs show independent donors (dots) normalised to untreated cells; bars represent median values. *P* values: ***<0.001 denote a significant difference compared to untreated cells by Friedman test with *post hoc* Dunn's correction for multiple comparisons.

Supplementary Figure 6. IL-10 expression in Th1 switching cells is dependent on intact cholesterol pathway fitness. Purified human CD4⁺ T cells stimulated *in vitro* with plate bound α -CD3 (2 µg ml⁻¹) + α -CD46 (5 µg ml⁻¹) + rhIL-2 (50 U ml⁻¹) were cultured for 36 hours in the presence of 25-hydroxycholesterol (25-HC) and different media conditions as indicated. (a) Normalised *LDLr*, *HMGCS1*, *FDFT1* and *DHCR7* mRNA levels of cells cultured in fully supplemented media (M), 25-HC (2 µM) with or without cholesterol 500x (Ch) (n=5-7). (b) Normalised frequency of IL-10⁺IFNγ⁻ (left), IFNγ⁺L-10⁺ (centre) and IFNγ⁺IL-10⁻ (right) CD4⁺ T cells co-cultured with monocytes and α -CD3 (100 ng ml⁻¹) in the absence or presence of Adalimumab (1 µg ml⁻¹) and treated with 25-HC (n=5). (c) Normalised frequency of IL-10⁺IFNγ⁻ (left), IFNγ⁺L-10⁻ (cight) CD4⁺ T cells activated for 3 days with plate bound α -CD3 (0.5 µg ml⁻¹) + α -CD28 (1 µg ml⁻¹) + IFN α (600 U ml⁻¹) and treated with 25-HC (n=6).

Metabolites				
ACoA	Acetyl-CoA			
HCoA	3-hydroxy-3-methylglutaryl-CoA			
MA	Meval	lonic Acid		
M5P	Mevalonate-5-phosphate			
M5PP	Mevalonate-5-pyrophosphate			
IsPP	Isopentenyl-5-pyrophosphate			
DAPP	Dimethylallyl-PP			
GPP	Geranyl-PP			
FPP	Farnesyl-PP			
GGPP	Geranylgeranyl-PP			
Squa	Squalene			
23Ox	2,3-oxidosqualene			
Lan	Lanos	sterol		
44Di	4,4'-di	imethyl-cholesta-8,14,24-trieneol		
14De	14-de	methyl-lanosterol		
4MZC	4-met	hylzymosterol-carboxylate		
3K4M	3-ketc	o-4-methyl-zymosterol		
Zym	Zymo	sterol		
Cho7	Chole	sta-7,24-dien-3beta-ol		
Des	Desm	osterol		
Cho8	Chole	sta-8,en-3beta-ol		
Lat	Latho	sterol		
7DCho	7-deh	ydrocholesterol		
25HC	25-hy	droxycholesterol		
Enzymes/proteins				
HMGCS		3-hydroxy-3-methylglutaryl-CoA synthase		
HMGCR		3-hydroxy-3-methylglutaryl-CoA reductase		
MVK		Mevalonate Kinase		
PMVK		Phosphomevalonate kinase		
MVD		Mevalonate-5-pyrophosphate decarboxilase		
FDPS		Farnesyl-PP synthase		
IDI		Isopentenyl-PP isomerase		
FNT		Farnesyltransferase		
GGPS		Geranylgeranyl-PP synthase		
GGT		Geranylgeranyl transferase		
RabGGTase		Rab geranylgeranyl transferase		
FDFT1		Farnesyl-PP farnesyltransferase 1 (squalene synthase)		
SQLE		Squalene epoxydase		
LSS		Lanosterol synthase		
CYP51A		Lanosterol 14 alpha-demethylase		
TM7SF2		Delta(14)-sterol reductase		
SC4MOL (MSMO1)		Methylsterol Monooxygenase 1	_	

NSDHL	Sterol-4-alpha-carboxylate 3-dehydrogenase
HSD17B7	3-ketosteroid reductase
DHCR24	24-dehydrocholesterol reductase
EBP	Sterol isomerase
SCD5L	Lathosterol oxidase
DHCR7	7-dehydrocholesterol reductase
CH25H	25-hydroxycholesterol hydroxylase
NPC1	Niemann-Pick disease, type C1
LDLR	Low density lipoprotein receptor