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diminish the degree of resolution and robustness of large-scale comparative analyses.
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ABSTRACT 20 

Background: Shotgun metagenomics provides powerful insights into microbial community 21 

biodiversity and function. Unfortunately, inferences from metagenomic studies are often limited 22 

by dataset size and complexity, and are restricted by the availability and completeness of 23 

existing databases. De novo comparative metagenomics enables the comparison of 24 

metagenomes based on their total genetic content. 25 

Results: We developed a novel tool called Libra that performs all-vs-all comparison of 26 

metagenomes based on their k-mer-composition. This tool presents three main innovations: the 27 

use of a scalable Apache Hadoop framework enabling massive dataset comparison, the use of 28 

complex distance metrics allowing precise clustering of metagenomes based on their k-mer 29 

content, and a web-based tool imbedded in iMicrobe (http://imicrobe.us) that uses the CyVerse 30 

advanced cyberinfrastructure to promote broad use of the tool by the scientific community.  31 

Conclusions: A comparison of Libra to equivalent tools using both simulated and real 32 

metagenomic datasets, ranging from 80 million to 4.2 billion reads, reveals that numerous 33 

methods commonly implemented to reduce compute time for large datasets—such as data 34 

reduction, read count normalization, and presence/absence distance metrics—greatly diminish 35 

the degree of resolution and robustness of large-scale comparative analyses. In contrast, Libra 36 

provides scalable high-resolution comparisons using all reads without biases due to differences 37 

in abundance and read depth, enabling global-scale analyses to identify microbial signatures 38 

linked to biological processes. 39 

Keywords: metagenomics, Hadoop, k-mer, distance metrics, clustering  40 
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INTRODUCTION 43 

Over the last decade, scientists have generated petabytes of genomic data to uncover the role 44 

of microbes in dynamic living systems. Yet to understand the underlying biological principles 45 

that guide the distribution of microbial communities, massive ‘omics datasets need to be 46 

compared with environmental factors to find linkages across space and time. One of the 47 

greatest challenges in these endeavors has been in documenting and analyzing unexplored 48 

genetic diversity in wild microbial communities. For example, fewer than 60% of 40 million non-49 

redundant genes from the Global Ocean Survey (GOS) and the Tara Oceans Expeditions match 50 

known proteins in bacteria [1,2]. Other microorganisms such as viruses or pico- eukaryotes that 51 

are important to ocean ecosystems are even less well defined (e.g. < 7% of reads from viromes 52 

match known proteins [3]). This is largely due to the fact that reference genomes for these 53 

organisms do not exist in public data repositories and genome-sequences from metagenomic 54 

data await better taxonomic and functional definition. As a result, even advanced tools such as 55 

k-mer based classifiers that rapidly assign metagenomic reads to known microbes (Table 1) 56 

miss “microbial dark matter” that comprises a significant proportion of metagenomes.  57 

Table 1. 
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Cited by Year 

Libra MG Pairwise distance calculation Hadoop X X X X X current study 

Compareads MG Pairwise distance calculation single server X 

    

35 2012 

Commet MG Pairwise distance calculation single server X 

    

30 2014 

Mash G/MG Pairwise distance calculation single server X 

    

157 2016 

Simka MG Pairwise distance calculation HPC*** X X 

   

18 2016 

NBC MG Taxonomic profiling singer server X 

    

168 2010 

Kraken MG Taxonomic profiling singer server X 

    

785 2014 

FOCUS MG Taxonomic profiling singer server X 

  

X 

 

49 2014 

Clark MG Taxonomic profiling singer server X 

    

176 2015 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://paperpile.com/c/8kIEbl/k1BC4+96Fzn
https://paperpile.com/c/8kIEbl/6r8Pm


 4 

Metaphlan2 MG Taxonomic profiling singer server X 

    

227 2015 

Metafast MG Taxonomic profiling single server X 

    

19 2016 

Centrifuge MG Taxonomic profiling single server X 

    

78 2016 

Jellyfish G/MG K-mer counting single server X 

    

746 2011 

BioPig G/MG K-mer counting Hadoop X X X 

  

97 2013 

Bloomfish G/MG K-mer counting Hadoop X X X 

  

2 2017 

Myrna G Differential gene expression Hadoop X X X 

  

331 2010 

Eoulsan G Differential gene expression Hadoop X X X 

  

90 2012 

Cloud RSD G Ortholog detection Hadoop X X X 

  

120 2010 

CloudBLAST G Read mapping (ref db) Hadoop X X X 

  

362 2008 

Cloudburst G Read mapping (ref genome) Hadoop X X X 

  

711 2009 

Crossbow G Variant detection Hadoop X X X     501 2009 

* MG = metagenomics; G = genomics 

   
** Scalability is defined as reliable distributed high-performance computing framework 

   
*** High-performance computer 

 58 

De novo comparative metagenomics offers a path forward. In order to examine the 59 

complete genomic content, metagenomic samples can be compared using their sequence 60 

signature (or frequency of k-mers; Table 1). This approach relies on three core tenets of k-mer-61 

based analytics: (i) closely related organisms share k-mer profiles and cluster together, making 62 

taxonomic assignment unnecessary [4,5], (ii) k-mer frequency is correlated with the abundance 63 

of an organism [6], and (iii) k-mers of sufficient length can be used to distinguish specific 64 

organisms [7]. In 2012, the Compareads [8] method was proposed, followed by Commet [9]. 65 

Both of these tools compute the number of shared reads between metagenomes using a k-mer-66 

based read similarity measure. The number of shared reads between datasets is then used to 67 

compute a Jaccard distance between samples. Given the computational intensity of all-vs-all 68 

sequence analysis, several other methods have been employed to reduce the dimensionality of 69 

metagenomes and speed up analyses by creating unique k-mer sets and computing the genetic 70 

distance between pairs of metagenomes, such as MetaFast [10] and Mash [11]. The fastest of 71 

these methods, Mash, indexes samples by unique k-mers to create size-reduced sketches, and 72 

compares these sketches using the min-Hash algorithm [12] for computing a genetic distance 73 
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using Jaccard similarity. Yet, the tradeoff for speed is that samples are reduced to a subset of 74 

unique k-mers (1k by default) that lack information on k-mer abundance in the samples. Further, 75 

given that Mash uses Jaccard similarity only the genetic distance between samples is 76 

accounted for (or genetic content in microbial communities) without considering abundance 77 

(dominant vs rare organisms in the sample) which is central to microbial ecology and ecosystem 78 

processes. 79 

Recently, SIMKA [13] was developed to compute a distance matrix between metagenomes by 80 

dividing the input datasets into abundance vectors from subsets of k-mers, then rejoining the 81 

resulting abundances in a cumulative distance matrix. The methodology can be parallelized to 82 

execute the analyses on a high-performance compute cluster (HPC). SIMKA also provides 83 

various ecological distance metrics to let the user choose the metric most relevant to their 84 

analysis. However, the computational time varies based on the distance metric, where simple 85 

distances scale linearly and complex distances metrics scale quadratically as additional 86 

samples are added [13]. Moreover, SIMKA normalizes datasets in an all-vs-all comparison by 87 

reducing the depth of sequencing for all samples to the least common denominator, therefore 88 

decreasing the resolution of the datasets. Lastly, computing k-mer analytics using HPC is 89 

subject to reduced fault tolerance for massive datasets.      90 

Scaling sequence analysis using big data analytics via Hadoop. Hadoop is an attractive 91 

platform for performing large-scale sequence analysis because it provides a distributed file 92 

system and distributed computation for analyzing massive amounts of data. Hadoop clusters are 93 

comprised of commodity servers so that the processing power increases as more computing 94 

resources are added. Hadoop also offers a high-level programming abstraction based on 95 

MapReduce that greatly simplifies the implementation of new analytical tools. Programmers do 96 

not need specialized training in distributed systems and networking to implement distributed 97 

programs using Hadoop. Hadoop also provides fault-tolerance by default. When a Hadoop node 98 

fails, Hadoop reassigns the failed node’s tasks to another node containing a redundant copy of 99 
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the data those jobs were processing. This differs from HPC where schedulers track failed nodes 100 

and either restart the failed computation from the most recent checkpoint, or from the beginning 101 

if checkpointing wasn’t used. Thus, using a Hadoop infrastructure ensures that computations 102 

and data are protected even in the event of hardware failures. These benefits have led to new 103 

analytic tools based on Hadoop, making Hadoop a de facto standard in large-scale data 104 

analysis. In metagenomics, the development of efficient and inexpensive high-throughput 105 

sequencing technologies has led to a rapid increase of the amount of sequence data for 106 

studying microbes in diverse environments. However, no Hadoop-enabled comparative 107 

metagenomics tools currently exist.  108 

Spark [14] is increasingly popular for scientific data analysis [15] because of its outstanding 109 

performance provided by fast in-memory processing. Although Libra is currently implemented 110 

on Hadoop, Libra can be easily ported to Spark because both Hadoop and Spark have similar 111 

interfaces for data processing and partitioning. For example, Resilient Distributed Datasets 112 

(RDD) can be partitioned and distributed over a Spark cluster using Libra’s k-mer range 113 

partitioning. RDDs are memory-resident, allowing Spark to significantly improve the 114 

performance of Libra’s k-mer counting and distance matrix computation by avoiding slow disk 115 

I/O for intermediate data. Nevertheless, we implemented Libra using Hadoop because Spark 116 

requires much more RAM than Hadoop, significantly increasing the cost of the cluster. 117 

Existing big data algorithms compare reads to limited genomic reference data. Recent 118 

progress has been made in translating bioinformatics algorithms to big data architectures to 119 

overcome scalability issues for genomic but not metagenomic applications (Table 1). Thus far, 120 

these algorithms compare large-scale NGS datasets to reference genomic datasets and replace 121 

computationally intensive algorithms such as sequence alignment [16], genetic variant detection 122 

[17,18], or short read mapping [19–22]. For example, BlastReduce and CloudBurst are parallel 123 

sequence mapping tools based on Apache MapReduce [20,21]. These tools, however, 124 

implement a query-to-a-reference approach that is inefficient for all-vs-all analyses of reads from 125 
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metagenomes. Other algorithms such as BioPig [23] and Bloomfish [24] generate an index of 126 

sequence data for later partial sequence search and k-mer counting using MapReduce [25]. 127 

These tools, however, adopt a suffix array approach similar to traditional bioinformatics tools 128 

that is inefficient in reading and indexing data on a distributed file system such as Hadoop, thus 129 

reducing performance. Moreover, neither tool offers an end-to-end solution for comparing 130 

metagenomes consisting of: data distribution on a Hadoop cluster, k-mer indexing and counting, 131 

distance computation, and visualization. Finally, none of these tools are enabled in an advanced 132 

cyberinfrastructure where users can compute analyses in a simple web-based platform that 133 

offers compute, data storage, and analysis tools.  134 

Libra: a tool for scalable all-vs-all sequence analysis in an advanced cyberinfrastructure 135 

Here, we describe a scalable algorithm called Libra that is capable of performing all-vs-all 136 

sequence analysis using MapReduce on the Apache Hadoop platform. We demonstrate for the 137 

first time that Hadoop can be applied to all-vs-all sequence comparisons of large-scale 138 

metagenomic datasets comprised of mixed microbial communities. We present a new distance 139 

metric for comparing datasets using Cosine Similarity [34] to consider genetic distance and 140 

microbial abundance simultaneously, along with widely accepted distance metrics in biology 141 

such as Bray-Curtis [35] and Jensen-Shannon [36]. We validate this new distance metric using 142 

simulated metagenomes to show that Libra has exceptional sensitivity in distinguishing complex 143 

mixed microbiomes. Next, we show Libra’s ability to distinguish metagenomes by both 144 

community composition and abundance using 48 samples (16S rRNA and WGS) from the 145 

human microbiome project (HMP) across diverse body sites, and compare the results to Mash 146 

and SIMKA. Finally, we show that Libra can scale to massive global-scale datasets by 147 

examining viral diversity in 43 Tara Ocean Viromes (TOV) from the 2009-2011 Expedition [27] 148 

that represent 26 sites containing about 4.2 billion reads. The resulting data demonstrate that 149 

Libra provides accurate, efficient, and scalable compute for comparative metagenomics that can 150 

be used to discern global patterns in microbial ecology.  151 
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To promote the broad use of the Libra algorithm we developed a web-based tool in iMicrobe 152 

(http://imicrobe.us), where users can run Libra using data in their free CyVerse [28,29] account 153 

or use datasets that are integrated into the iMicrobe Data Commons. These analyses are 154 

fundamental for determining relationships among diverse metagenomes to inform follow-up 155 

analyses on microbial-driven biological processes.  156 

DATA DESCRIPTION 157 

Staggered mock community. We performed metagenomic shotgun sequencing on a 158 

staggered mock community obtained from the Human Microbiome Consortium (HM-277D). The 159 

staggered mock community is comprised of genomic DNA from genera commonly found on or 160 

within the human body, consisting of 1,000 to 1,000,000,000 16S rRNA gene copies per 161 

organism per aliquot. The resulting DNA was subjected to whole genome sequencing as 162 

follows. Mixtures were diluted to a final concentration of 1 nanogram/microliter and used to 163 

generate whole genome sequencing libraries with the Ion Xpress Plug Fragment Library Kit and 164 

manual #MAN0009847, revC (Thermo Fisher Scientific, Waltham, MA, USA). Briefly, 10 165 

nanograms of bacterial DNA was sheared using the Ion Shear enzymatic reaction for 12 min 166 

and Ion Xpress barcode adapters ligated following end repair. Following barcode ligation, 167 

libraries were amplified using the manufacturer’s supplied Library Amplification primers and 168 

recommended conditions. Amplified libraries were size selected to ~ 200 base pairs using the 169 

Invitrogen E-gel Size Select Agarose cassettes as outlined in the Ion Xpress manual and 170 

quantitated with the Ion Universal Library quantitation kit. Equimolar amounts of the library were 171 

added to an Ion PI Template OT2 200 kit V3. The resulting templated beads were enriched with 172 

the Ion OneTouch ES system and quantitated with the Qubit Ion Sphere Quality Control kit (Life 173 

Technologies) on a Qubit 3.0 fluorometer (Qubit, NY, NY, USA). Enriched templated beads 174 

were loaded onto an Ion PI V2 chip and sequenced according to the manufacturer’s protocol 175 

using the Ion PI Sequencing 200 kit V3 on a Ion Torrent Proton sequencer. The sequence data 176 
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comprised of ~80 million reads have been deposited to the NCBI Sequence Read Archive under 177 

accession SRP115095 under project accession PRJNA397434.  178 

Simulated data derived from the staggered mock community. The resulting sequence data 179 

from the staggered mock community (~80 million reads) were used to develop simulated 180 

metagenomes to test the effects of varying read depth, and composition and abundance of 181 

organisms in mixed metagenomes. To examine read depth (in terms of raw read counts and file 182 

size), we used the known staggered mock community abundance profile to generate an artificial 183 

metagenome using GemSim [30] of 2 million reads (454 sequencing) and duplicated the dataset 184 

2x, 5x and 10x. We also simulated the effects of sequencing a metagenome more deeply using 185 

GemSim [30] to generate simulated metagenomes with 0.5, 1, 5, and 10 million reads based on 186 

the relative abundance of organisms in the staggered mock community. Next, we developed 187 

four simulated metagenomes to test the effect of changing the dominant organism abundance 188 

and genetic composition including: 10 million reads from the staggered mock community (mock 189 

1), the mock community with alterations in a few abundant species (mock 2), the mock 190 

community with many alterations in abundant species (mock 3), and mock 3 with additional 191 

sequences from archaea to further alter the genetic composition (mock 4) as described in 192 

Supplemental Table 1. All simulated datasets are available in iMicrobe (http://imicrobe.us).   193 

Human microbiome 16S rRNA gene amplicons and WGS reads. Human microbiome 194 

datasets were downloaded from the NIH Human microbiome project [31] including 48 samples 195 

from 5 body sites including: urogenital (posterior fomix), gastrointestinal (stool), oral (buccal 196 

mucosa, supragingival plaque, tongue dorsum), airways (anterior nares), and skin 197 

(retroauricular crease left and right; Supplemental Table 2). Matched datasets consisting of 16S 198 

rRNA reads, WGS reads, and WGS assembled contigs were downloaded from the 16S trimmed 199 

dataset and the HMIWGS/HMASM dataset respectively. For the WGS reads dataset, the 200 

analysis was run on the paired 1 read file. 201 
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Tara ocean viromes. Tara oceans viromes were downloaded from European Nucleotide 202 

Archive (ENA) at EMBL and consisted of 43 viromes from 43 samples at 26 locations across the 203 

world's oceans collected during the Tara Oceans (2009-2012) scientific expedition 204 

(Supplemental Table 3; [27]). Metadata for the samples was downloaded from PANGAEA [32]. 205 

These samples were derived from multiple depths including: 16 surface samples (5-6 meters), 206 

18 deep chlorophyll maximum samples (DCM; 17-148 meters), and one mesopelagic sample 207 

(791 meters). Quality control procedures were applied according to methods described by Brum 208 

and colleagues [27]. 209 

RESULTS AND DISCUSSION  210 

Libra computational strategy. Libra uses Hadoop MapReduce to perform massive all-vs-all 211 

sequence comparisons between next-generation sequence (NGS) datasets. Libra is designed 212 

to estimate genetic distance accurately without sacrificing performance. Instead, scalable 213 

algorithms and efficient resource usage make it feasible to perform all-vs-all comparisons on 214 

large datasets. 215 

Libra performs all-vs-all distance comparisons using a sweep line algorithm 216 

(https://en.wikipedia.org/wiki/Sweep_line_algorithm). Naively, all-vs-all comparisons would 217 

require a total of 𝑛 × (𝑛− 1)/2 comparisons between 𝑛 samples. Using a sweep line algorithm, 218 

Libra can perform these comparisons in a single pass (Supplemental Figure 1). Libra maximizes 219 

cluster efficiency using a load balancing algorithm inspired by Terabyte Sort [33] to distribute the 220 

workload evenly over the Hadoop cluster. Highly parallelizable inverted index construction and 221 

distance matrix computation algorithms enable Libra to scale to any size NGS dataset (often 222 

millions of reads), and perform any number of comparisons across datasets, making global 223 

ecosystem-level analyses possible. 224 
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Libra distance calculation. Libra uses a vector space model to compute the distance between 225 

two NGS datasets. In this model each sample is represented by a vector, each dimension of 226 

which corresponds to a unique k-mer. Each component of a vector indicates the weight given to 227 

the corresponding k-mer in the distance computation. For example, using the frequency (the 228 

raw count) of a k-mer as its weight and using 4-mers, the vector <2,4,0,...> indicates that a k-229 

mer ‘aaaa’ has a weight of two and a k-mer ‘aaac’ has a weight of four in the sample, etc. The 230 

more weight, the more important the k-mer. 231 

The distance between two samples can now be measured by comparing their vectors using a 232 

distance metric. Libra provides three distance metrics — Cosine Similarity [34], Bray-Curtis [35] 233 

and Jensen-Shannon [36]. In this paper, we demonstrate Cosine Similarity as the default 234 

distance metric given that it had the shortest runtime for all distances (see Methods). 235 

Cosine Similarity determines an estimate of the genetic distance between samples by the angle 236 

between the two vectors. The larger the angle, the larger the distance. The cosine is one when 237 

the angle is zero (i.e. the vectors are identical except for their magnitude) and less than one 238 

otherwise (see Supplemental Methods for a detailed description). 239 

The cosine of the angle does not depend on the magnitude (length) of the vectors. This is 240 

advantageous in comparing samples with different sizes of samples (or sequencing depth). For 241 

example, if there are two samples with the same composition of k-mers but one has k-mers with 242 

double the frequency than the other, their vectors will have same angles so that their cosine 243 

similarity will one. 244 

Libra implementation. We implemented Libra on the Hadoop MapReduce platform. This 245 

allows Libra to run on any standard Hadoop 2.3 implementation, while taking advantage of the 246 

scalability and fault-tolerance features provided by Hadoop. Hadoop allows robust parallel 247 

computation over distributed computing resources via its simple programming interface called 248 
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MapReduce, while hiding much of the complexity of distributed computing (e.g. node failures). 249 

Taking advantage of Hadoop MapReduce, Libra can scale to larger input datasets and more 250 

computing resources. Furthermore, many cloud providers such as Amazon and Google offer 251 

Hadoop clusters on a pay-as-you-go basis, allowing scientists to scale their Libra computations 252 

to match their datasets and budgets. 253 

Libra is implemented using three different MapReduce jobs — 1) k-mer histogram construction, 254 

2) inverted index construction, and 3) distance matrix computation. Figure 1 shows a workflow 255 

of the Libra algorithm. 256 

Figure 1. The Libra Workflow. 257 

Libra consists of three MapReduce jobs (yellow boxes) — 1) k-mer histogram construction, 2) 258 

inverted index construction and 3) distance matrix computation. k-mer histograms are first 259 

constructed for input samples to balance workloads over the Hadoop cluster during the 260 

subsequent jobs. Inverted indices are constructed per a group of samples in parallel by 261 

partitioning k-mer ranges. An index chunk is produced from each partition and an inverted index 262 

is constructed from multiple index chunks. During the distance matrix computation, partial 263 

contributions are computed within a partition and accumulated to produce the final distance 264 

matrix. 265 

Libra constructs a k-mer histogram of the input samples for load-balancing. A separate Map 266 

task is spawned for every data block in the input sample files to calculate the k-mer histogram 267 

for each sample. Thus, the k-mer histogram of the input samples is computed in parallel by 268 

running multiple Map tasks and a Reduce task that combines their results. 269 

Libra performs the inverted index construction in parallel. In the Map phase, a separate Map 270 

task is spawned for every data block in the input sample files. Each Map task generates k-mers 271 

from the sequences stored in a data block then passes them to the Reduce tasks. In the 272 
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Reduce phase, the I/O and computation is split by partitioning the k-mer space using the k-mer 273 

histograms computed in the first phase (Supplemental Figure 2). A separate Reduce task is 274 

spawned for every partition and a custom Partitioner routes the produced k-mers to Reduce 275 

tasks by their k-mer ranges. Each Reduce task then counts k-mers it receives and produces an 276 

index chunk. As a result, each index chunk is stored as a separate file in the Hadoop MapFile 277 

format. The MapFile is well-suited for Libra as it is designed to store key-value pairs in key 278 

order, and supports binary search of the keys. 279 

In the distance matrix computation, the work is split by partitioning the k-mer space in the 280 

beginning of a MapReduce job. The k-mer histogram files for input samples are loaded and 281 

merged, and the k-mer space is partitioned according to the k-mer distributions. A separate Map 282 

task is spawned for each partition to perform the computation in parallel. As a result, each task 283 

produces an output file containing partial contributions to the score matrix. At the end of the job, 284 

Libra merges the partial contributions from the files and produces the complete distance matrix. 285 

Advanced cyberinfrastructure for Libra in iMicrobe. To improve access to Libra we made it 286 

available at iMicrobe (https://www.imicrobe.us). A researcher with a CyVerse account can run 287 

Libra on iMicrobe by filling-out a simple web form specifying the input files and parameters. 288 

Input files are selected from the CyVerse Data Store where they have either been uploaded by 289 

the user to their home directory or are part of the iMicrobe Data Commons. When a job is 290 

submitted, the user is presented with the status of the job, and on completion the output files 291 

and visualization of results. To deploy Libra on iMicrobe, we developed a job dispatch service to 292 

automate execution of Libra on a University of Arizona Hadoop cluster.  The service is written in 293 

NodeJS and accepts a JSON description of the job inputs and parameters, stages the input files 294 

onto the UA Hadoop cluster, executes Libra with the given parameters, and transfers the 295 

resulting output files to the user's home directory in the CyVerse Data Store. The service 296 
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provides a RESTful interface that mimics the Agave API Jobs service and is secured using an 297 

Agave OAuth2 token.  Source code is located at https://github.com/hurwitzlab/occ-plan-b. 298 

Cosine similarity allows for an accurate and normalized comparison of metagenomes.  299 

Jaccard and Bray-Curtis distance have been extensively used to compare metagenomes based 300 

on their sequence signature [10,11,13]. While Mash only computes the Jaccard distance 301 

between samples, Simka and Libra implement several classical ecology distances allowing the 302 

user to choose the best-suited distance for the considered dataset [13]. Moreover, Libra 303 

implements a new distance metric, the cosine similarity. Users can also weight k-mers based on 304 

their abundance in Libra (using boolean weighting, natural weighting and logarithmic weighting) 305 

to account for differences in microbial community composition and sequencing effort as detailed 306 

below.  307 

We tested these effects by varying: (1) the size of the datasets, (2) depth of sequencing, (3) the 308 

abundance of dominant microbes in the community, and (4) genetic composition of the 309 

community by adding in an entirely new organism (in our case we added archaea). We 310 

constructed simulated metagenomes and compared Libra’s distance based on the cosine 311 

similarity against those from Mash and SIMKA. Simulated datasets were derived from genomic 312 

DNA from a staggered mock community of bacteria obtained from the human microbiome 313 

consortium and sequenced deeply using the Ion Torrent sequencing platform (80 million reads, 314 

see Methods).  315 

First, we examined the effect of the size of the dataset by using GemSim [30] to obtain  a 316 

simulated metagenome composed of 1 million reads from the mock community and duplicating 317 

that dataset 2x and 10x. Overall, we found that altering the size of the metagenome (by 318 

duplicating the data) had no effect on the distance between metagenomes for Mash, SIMKA, or 319 

Libra. In each case the distance of the duplicated datasets to the 1x mock community was less 320 

than 0.0001 (data not shown).  321 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/hurwitzlab/occ-plan-b
https://paperpile.com/c/8kIEbl/M6kKE+RWhtK+LTd9P
https://paperpile.com/c/8kIEbl/LTd9P
https://paperpile.com/c/8kIEbl/ftnTG


 15 

Because metagenomes don’t scale exactly with size and instead have an increasing 322 

representation of low-abundance organisms, we created a second simulated dataset from the 323 

mock community using GemSim [30] 0.5, 1, 5, and 10 million reads (454 sequencing) to mimic 324 

the effect of sequencing more deeply. Given the abundance of organisms in the mock 325 

community, the 0.5 M read dataset is mainly comprised of dominant species. With increased 326 

sequencing depth (1, 5, and 10 M reads) additional species are added relative to their 327 

abundance in the mock community. Overall, sequencing depth has little effect on the distance 328 

between samples in Mash and Libra (natural weighting), whereas SIMKA shows no changes 329 

between samples when using Jaccard and Bray-Curtis distances (Figure 2A). Indeed, SIMKA 330 

normalization is implemented as follows: the smallest sample from the dataset is determined 331 

and its number of sequences is used to compare the samples (in this experiment, all mock 332 

communities were compared based on the first 0.5 million reads). These results suggest that 333 

Libra (natural weighting) and Mash are appropriate for comparing datasets at different 334 

sequencing depths, whereas using SIMKA could lead to undesired effects.   335 

Figure 2. Analysis of artificial metagenomes using Mash, SIMKA and Libra. 336 

A. Distance to staggered mock community artificial metagenome composed of 10 million 337 

reads (mock1 10M), for artificial metagenomes of same community sequenced at 338 

various depth. Artificial metagenomes were obtained using GemSim and the known 339 

abundance profile of the staggered mock community (see Supplemental Table 1). In 340 

order to mimic various sequencing depth, the artificial metagenomes were generated at 341 

0.5, 1, 5 or 10 million reads (noted mock1 0.5M; mock1 1M; mock1 5M; mock1V2 10M). 342 

The distances between the 4 artificial metagenomes and a 10 million read artificial 343 

metagenome (mock1 10M) were computing using Mash, SIMKA (Jaccard and Bray-344 

curtis distance) and Libra (natural weighting). 345 

B. Distance to staggered mock community artificial metagenome (mock 1), for artificial 346 
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metagenomes from increasingly distant communities. The mock 1 relies on the known 347 

abundance profile from the staggered mock community. The mock 2 community profile 348 

was obtained by randomly inverting 3 species abundance from mock 1 profile. The mock 349 

3 profile was obtained by randomly inverting 2 species abundances from mock 2 profile. 350 

Finally, mock 4 profile was obtained by adding high abundance archeal genomes not 351 

present in any the other mock communities. Artificial metagenomes were generated 352 

using GemSim at 10 million reads. The distance between the mock 1 community to 353 

mock 2, mock 3, mock 4 and a replicate community (mock1 V2) was computed using 354 

Mash, SIMKA (Jaccard and Bray-curtis distance) and LIBRA (cosine distance, natural 355 

and logarithmic weighting). 356 

In addition to natural variation in population-level abundances, artifacts from sequencing can 357 

result in high-abundance k-mers. Libra allows users to select the optimal methodology for 358 

weighting high abundance k-mers in their datasets including boolean, natural, and logarithmic. 359 

These options for weighting k-mers are important for different biological scenarios as described 360 

below and shown in simulated datasets. To examine the effect of weighting, we compared and 361 

contrasted the natural and logarithmic weight in Libra, with other distances obtained from Mash 362 

and SIMKA (Jaccard and Bray-Curtis). We also examined the effect of adding an entirely new 363 

species by spiking a simulated dataset with sequences derived from archaea (that were not 364 

present in the mock community). The simulated datasets were comprised of the staggered 365 

mock community (mock 1), the mock community with alterations in a few abundant species 366 

(mock 2), the mock community with many alterations in abundant species (mock 3), and mock 3 367 

with additional sequences from archaea to alter the genetic composition of the community 368 

(mock 4; see Supplemental Table 1). The resulting data showed that Libra (logarithmic 369 

weighting) shows a stepwise increase in distance among the mock communities (Figure 2B). 370 

This suggests that logarithmic weighting in Libra allows for a comparison of distantly related 371 

microbial communities. Mash also shows a stepwise distance between communities, but is 372 
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compressed relative to Libra, making differences less distinct. SIMKA (Bray-Curtis and Jaccard) 373 

and Libra (cosine distance, natural weighting) reach the maximum difference between mock 374 

communities 3 and 4 (Figure 2B). This indicates that these distances are more appropriate 375 

when comparing metagenomes with small fluctuations in the community (e.g., data from a time-376 

series analysis), whereas Libra (cosine distance, logarithmic weighting) can be used to 377 

distinguish metagenomes that vary in both genetic composition and abundance over a wide-378 

range of species diversity by dampening the effect of high-abundance k-mers. Because of this 379 

important difference, we used the cosine distance with the logarithmic weighting in all 380 

subsequent analyses. Cosine distance also provided the fastest computation for complex 381 

distance metrics (see Methods).   382 

Libra accurately profiles differences in bacterial diversity and abundance in amplicon 383 

and WGS datasets from the human microbiome. 384 

Microbial diversity is traditionally assessed using two methods: the 16S rRNA gene to classify 385 

bacterial and archaeal groups at the genus to species level, or whole genome shotgun 386 

sequencing (WGS) for finer taxonomic classification at the species or subspecies level. Further, 387 

WGS datasets provide additional information on functional differences between metagenomes. 388 

Here we compare and contrast the effect of different algorithmic approaches (Mash vs Libra vs 389 

SIMKA), distance metric (Libra vs SIMKA), data type (16S rRNA vs WGS), and sequence type 390 

(WGS reads vs assembled contigs) in analyzing data from 48 samples across 8 body sites from 391 

the Human Microbiome Project. Specifically, we examine matched datasets (16S rRNA reads, 392 

WGS reads, and WGS assembled contigs) classified as urogenital (posterior fomix), 393 

gastrointestinal (stool), oral (buccal mucosa, supragingival plaque, tongue dorsum), airways 394 

(anterior nares), and skin (retroauricular crease left and right; Supplemental Table 2).  395 

Because the HMP datasets represent microbial communities, abundant bacteria will have more 396 

total read counts than rare bacteria in the samples. Thus, each sample can vary by both taxonomic 397 
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composition (the genetic content of taxa in a sample) and abundance (the relative proportion of 398 

those taxa in the samples). Importantly, the 16S rRNA amplicon dataset is useful in showing how 399 

well each algorithm performs in detecting and quantifying small-scale variation for single a gene at 400 

the genus-level, whereas the WGS dataset demonstrates the effect of including the complete 401 

genetic content and abundance of organisms at the species-level in a community [37]. Also, we 402 

examine differences in each algorithm when read abundance is excluded using assembled contigs 403 

that only represent the genetic composition of the community.   404 

Using the 16S rRNA reads, both Mash and Libra clustered samples by broad categories but not 405 

individual body-sites (Figure 3A and B). Similar to what is described in previous work [13], samples 406 

from the airways and skin co-cluster, whereas other categories including urogenital, 407 

gastrointestinal, and oral are distinct [13]. These results indicate that limited variation in the 16S 408 

rRNA gene may only allow for clustering for broad categories. Further, the Mash algorithm shows 409 

lower overall resolution (Figure 3A) as compared to Libra (Figure 3B). Indeed, amplicon 410 

sequencing analysis is not an intended use of Mash, given that it reduces the dimensionality of the 411 

data by looking at presence/absence of unique k-mers, whereas Libra examines the complete 412 

dataset accounting for both composition in organisms and their abundance. In contrast, SIMKA 413 

(Jaccard-ab and Bray-Curtis) failed to cluster samples by broad categories: some skin samples are 414 

found associated with stool and formix samples (Figure 3C and D). Moreover, SIMKA Jaccard-ab 415 

fails to cluster the mouth samples together (Figure 3C). This result suggests that applying SIMKA 416 

and these well-used distance metrics are not appropriate for these datasets. 417 

Figure 3. Clustering of HMP 16S rRNA datasets using Mash, Libra and SIMKA. 418 

48 Human metagenomic samples from the HMP projects clustered by Mash (A), Libra (B) or 419 

SIMKA using Jaccard-ab (C) and Bray-Curtis distances (D) from 16s sequencing runs. The 420 

samples were clustered using Ward’s method on their distance scores. Heat maps illustrate the 421 
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pairwise dissimilarity between samples, scaled between 0 (green) and 1 (red).  A key below the 422 

heatmap colors the samples by body sites. 423 

When using WGS reads, both Mash and Libra show enhanced clustering by body-site (Figure 4A 424 

and B), however Mash shows decreased resolution (Figure 4A) as compared to Libra (Figure 4B). 425 

Again, these differences reflect the effect of using all of the read data (Libra) rather than a subset 426 

(Mash). Importantly, the Libra algorithm also depends on read abundance that provides increased 427 

resolution for interpersonal variation as seen in skin samples (Figure 4B). Similar to the 16S rRNA 428 

datasets, SIMKA (Jaccard-ab and Bray-Curtis) failed to cluster the samples by body site, where 429 

some skin and stool samples cluster with formix samples (Figure 4C and D). Similarly, SIMKA 430 

Jaccard-ab also fails to cluster the mouth samples together (Figure 4C). Overall SIMKA shows an 431 

enhanced clustering by body-site using WGS data compared to the 16S rRNA data using these 432 

distance metrics, however the clustering is still not accurate.   433 

Figure 4. Clustering of WGS samples using Mash, and Libra and SIMKA. 434 

48 Human metagenomic samples from the HMP projects clustered by Mash (A), Libra (B) or 435 

Simka using Jaccard-ab (C) and Bray-Curtis distances (D) from whole genome shotgun 436 

sequencing runs. The samples were clustered using Ward’s method on their distance scores. 437 

Heat maps illustrate the pairwise dissimilarity between samples, scaled between 0 (green) and 438 

1 (red).  A key below the heatmap colors the samples by body sites. 439 

When abundance is taken out of the equation by using assembled contigs (Supplemental Figure 3) 440 

Mash performs well in clustering distinct body sites whereas Libra shows discrepancies and less 441 

overall resolution. Thus, Libra requires reads rather than contigs to perform accurately and obtain 442 

high-resolution clustering (Figure 4). SIMKA (Jaccard-ab and Bray-Curtis) was not able to 443 

distinguish any assembled datasets and scored all sample-to-sample distances to the maximum, 444 

even considering presence-absence distance metric proposed by SIMKA (data not shown). This 445 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 20 

phenomenon may be explained by the normalization method used by SIMKA, which does not 446 

provide enough data to compare the samples when normalized by the smallest number of contigs 447 

(in our dataset 69). 448 

Libra allows for ecosystem-scale analysis: clustering the Tara ocean viromes to unravel 449 

global patterns. 450 

To demonstrate the scale and performance of the Libra algorithm, we analyzed 43 Tara Ocean 451 

Viromes (TOV) from the 2009-2011 Expedition [27] representing 26 sites, 43 samples, and 4.2 452 

billion reads from the global ocean (see methods). Phages (viruses that infect bacteria) are 453 

abundant in the ocean [38] and can significantly impact environmental processes through host 454 

mortality, horizontal gene transfer, and host-gene expression. Yet, how phages change over 455 

space and time in the global ocean and with environmental fluxes is just beginning to be 456 

explored. The primary challenge is the majority of reads in viromes (often > 90%) do not match 457 

known proteins or viral genomes [3] and no conserved genes like the bacterial 16S rRNA gene 458 

exist to differentiate populations. To examine known and unknown viruses simultaneously, 459 

viromes are best compared using sequence signatures to identify common viral populations. 460 

Two approaches exist to cluster viromes based on sequence composition. The first approach 461 

uses protein clustering to examine functional diversity in viromes between sites [3,27,39]. 462 

Protein clustering, however, depends on accurate assembly and gene finding that can be 463 

problematic in fragmented and genetically diverse viromes [40]. Further, assemblies from 464 

viromes often only include a fraction of the total reads (e.g., only ⅓ in TOV [27]). To examine 465 

global viral diversity in the ocean using all of the reads we examined TOV using Libra. The 466 

complete pairwise analysis of ~4.2 billion reads in the TOV dataset [27] finished in 18 hours 467 

using a 10-node Hadoop cluster (see Methods and Table 2). Importantly, Libra exhibits 468 

remarkable performance in computing similarity scores, wherein k-mer matches for all TOV 469 

completed within 1.5 hours (Table 2). This step usually represents the largest computational 470 
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bottleneck for bioinformatics tools that compute pairwise distances between sequence pairs for 471 

applications such as hierarchical sequence clustering [41–44]. 472 

Table 2. Execution times for the Libra based on the Tara Ocean Virome (TOV) dataset. 473 

Stage Execution Time 

Preprocessing 

(k-mer histogram construction + Inverted 

index construction) 

16:32:55 

Distance matrix computation 1:24:27 

Total 17:57:22 

 474 

Overall, we found that viral populations in the ocean are largely structured by temperature in 475 

four gradients (Figure 5) similar to their bacterial hosts [2]. Interestingly, samples from different 476 

Longhurst Provinces but the same temperature gradient cluster together. Also, water samples 477 

from the surface (SUR) and deep chlorophyll maximum (DCM) at the same station, cluster more 478 

closely together than samples from the same depth at nearby sites (Figure 5). Also noteworthy, 479 

samples that were derived from extremely cold environments (noted as C0 in Figure 5) lacked 480 

similarity to all other samples (at a 30% similarity score), indicating distinctly different viral 481 

populations. These samples include a mesotrophic sample that have previously been shown to 482 

have distinctly different viral populations than surface ocean samples [45]. Taken together, 483 

these data indicate that viral populations are structured globally by temperature, and at finer 484 

resolution by station (for surface and DCM samples) indicating that micronutrients and local 485 

conditions play an important role in defining viral populations.   486 

Figure 5. Visualizing the genetic distance among marine viral communities using Libra. 487 
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Distance computed from 43 TOV from the 2009-2012 Tara Oceans Expedition. Lines (edges) 488 

between samples represent the similarity and are colored and thickened accordingly. Lines with 489 

insignificant similarity (less than 30%) are removed. Each of the sample names are color coded 490 

by Longhurst Province. Inner circles show temperature ranges. Sample names show the 491 

temperature range, station, and depth as indicated on the legend. 492 

 493 

INNOVATIONS 494 

Scientific collaboration is increasingly data driven given large-scale next generation sequencing 495 

datasets. It is now possible to generate, aggregate, archive, and share datasets that are 496 

terabytes and even petabytes in size. Scalability of a system is becoming a vital feature that 497 

decides feasibility of massive ‘omic’s analyses. In particular, this is important for metagenomics 498 

where patterns in global ecology can only be discerned by comparing the sequence signatures 499 

of microbial communities from massive ‘omics datasets, given that most microbial genomes 500 

have not been defined. Current algorithms to perform these tasks run on local workstations or 501 

high-performance computing architectures that cannot scale. Libra presents three main 502 

innovations: the use of a scalable Apache Hadoop framework enabling massive dataset 503 

comparison, the use of sophisticated distance metrics allowing high accuracy and clustering of 504 

the metagenomes based on their k-mer content, and a web-based tool imbedded in the 505 

CyVerse advanced cyberinfrastructure through iMicrobe (http://imicrobe.us) for broader use of 506 

the tool in the scientific community. The work described here is the first step in implementing a 507 

cloud-based resource for comparative metagenomics that can be broadly used by scientists to 508 

analyze large-scale shared data resources. Moreover, the code can be ported to any 509 

MapReduce cluster (e.g., Wrangler at TACC, Amazon EMR or private Hadoop clusters). This 510 

computing paradigm is consistent with recent efforts to increase the accessibility of big datasets 511 

in the cloud, such as the Pan Cancer Analyses of Whole Genomes Project [46]. 512 
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METHODS 513 

Scalability benchmarking for Libra. We used synthetic datasets for a scalability benchmark. 514 

The synthesized datasets consisted of different number of samples, each of which is 10 billion 515 

bytes (approximately 9.3 GB). We took samples that are larger than 10 billion bytes from Tara 516 

ocean virome dataset and truncated each of them to approximately 10 billion bytes in size while 517 

respecting read boundaries. We varied the number of samples to show the scalability of Libra. 518 

We used four datasets consisting of 10, 20, 30 and 40 samples in the benchmark. Total sizes of 519 

the datasets are 93GB, 186GB, 279GB and 372GB respectively. Each experiment was run 520 

three times, and an average of the three runs reported (Supplemental Table 4). 521 

Figure 6. Scalability testing for Libra. Four datasets consisting of 10, 20, 30 and 40 samples 522 

with total sizes of 93GB, 186GB, 279GB and 372GB, respectively. Runtime of Libra increased 523 

linearly with increased input volume and number of input samples. The linear increase of 524 

runtime shows that Libra efficiently handles increased volume of input and efficiently computes 525 

distances between all sample pairs while the number of sample pairs increases quadratically. 526 

Benchmarking runtimes of different distance metrics in Libra. We used the same synthetic 527 

dataset with 40 samples (372GB in total) in the scalability benchmarking. We varied the 528 

distance metrics and measured the runtimes of Libra. Because all distance metrics share the 529 

same index, we reused the index constructed during the scalability benchmarking, thus, 530 

runtimes of the inverted index construction for the different metrics are the same. Each 531 

experiment was run three times, and an average of the three runs reported (Supplemental Table 532 

4). 533 

Figure 7. Runtimes of three different distance metrics (Cosine Similarity, Bray-Curtis and 534 

Jensen-Shannon) in Libra with 40 samples of input (372GB in total). Differences in runtimes are 535 

mainly due to different computational workload of distance metrics. For example, Jensen-536 
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Shannon requires more multiplications and divisions in nested loops than cosine similarity, 537 

incurring more computational workload. Yet, distance matrix computation with Jensen-Shannon 538 

took only 12.64% of total runtime. 539 

Experimental Environment Description: 540 

Mash and SIMKA configurations. Mash v1.1 was run on the metagenomic datasets with the 541 

following parameters: -r –s 10000 –m 2 [19]. The analysis of assemblies was run without the 542 

parameter “-r”, used for short sequences. 543 

SIMKA v1.3.2 was run on the metagenomic datasets with the following parameters: -544 

abundance-min 2 -max-reads [MINCOUNT] -simple-dist -complex-dist, where [MINCOUNT] is 545 

the smallest sequence count across the analyzed samples. 546 

Hadoop cluster configuration. The Libra experiments described in the paper were performed 547 

on a Hadoop cluster consisting of 10 physical nodes (9 MapReduce worker nodes). Each node 548 

contains 12 CPUs and 128 GB of RAM, and is configured to run a maximum of 7 YARN 549 

containers simultaneously with 10 GB of RAM per container. The remaining system resources 550 

are reserved for the operating system and other Hadoop services such as Hive or Hbase. 551 
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Availability and Implementation:  562 

Project name: Libra 563 
Project home page: http://github.com/iychoi/libra 564 
Operating system(s): Hadoop 2.3 or higher 565 
Programming language: Java 566 
Other requirements: Java 1.7 or higher 567 
License: Apache License Version 2.0 568 
Any restrictions to use by non-academics: No restriction 569 
Libra web-based App is in iMicrobe under Apps (http://imicrobe.us); Code to implement the 570 
Libra web-based App is in Github (https://github.com/hurwitzlab/occ-plan-b).  571 
 572 
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August 24, 2018 
  
Dear Editors, 

Please find our paper for consideration at Gigascience as a research article titled “Libra: robust biological 

inferences of global datasets using scalable k-mer based all-vs-all metagenomic comparisons”. 
  
Microbiome research spans a broad array of disciplines from medicine, agriculture, bioenergy, and the 

environment, and is united in addressing core scientific questions relating microbial communities to biological 

and chemical processes in human, animal, or Earth systems. Given the preponderance of genomic data from 

diverse environments, there is a new desire to ask cross-cutting questions from the environment to human 

health. To move this work forward, microbiome datasets need to be holistically analyzed to examine how 

microbes move through living systems. Currently, only a subset of tools are available that make these analyses 

possible (through data reduction techniques and read count normalization), but none exploit big data 

architectures to scale compute and analyze complete datasets (100% of reads) in a linear and fault tolerant 

manner. This level of resolution is vital in metagenomic analyses where > 50% of the reads are unknown and 

the only way to understand functional changes in microbial communities is through all-vs-all analysis of 

diverse datasets to associate sequence patterns with environmental factors. To date, no tool offers a scalable 

and complete analysis of reads to explore global patterns in microbiome sciences. 
  
Here we describe the first scalable algorithm for comparative metagenomics called Libra that is capable of 

performing an all-vs-all sequence analysis on hundreds of metagenomes in a Hadoop big data framework. 

Libra performs with unparalleled accuracy compared to equivalent tools using both simulated and real 

metagenomic datasets ranging from 80 million to 4.2 billion reads. In contrast to current methods, Libra’s 

state-of-the-art algorithm and its implementation in a big data architecture does not require a reduction in 

dataset size or simplified distance metrics to achieve remarkable compute times and accuracy. As a result, 

Libra enables integration of massive datasets across disciplines to identify microbial and viral signatures linked 

to key biological processes. Moreover, Libra is available as an open-access web-based tool in iMicrobe 

(http://imicrobe.us) and in Github where the code is available for further optimization and reuse by the 

community. All authors declare no competing interests and have approved the manuscript for submission. The 

content of the manuscript has not been published, or submitted for publication elsewhere. Thank you for 

considering our paper for publication in Gigascience. 

 

 

Sincerely, 

 
Bonnie Hurwitz, PhD 

Assistant Professor of Biosystems Engineering                  

University of Arizona, bhurwitz@email.arizona.edu  
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