The APMAP interactome reveals new modulators of APP processing and beta-amyloid production that are altered in Alzheimer's disease

Hermeto Gerber^{1,2,3}, Sebastien Mosser^{1,2}, Benjamin Boury-Jamot⁴, Michael Stumpe³, Alessandra Piersigilli^{5,6}, Christine Goepfert^{5,6}, Joern Dengjel³, Urs Albrecht³, Fulvio Magara⁴ and Patrick C. Fraering^{1,2*}

¹Foundation Eclosion, CH-1228 Plan-les-Ouates, Switzerland, ²Campus Biotech Innovation Park, CH-1202 Geneva, Switzerland, ³Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland, ⁴Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CH-1015 Lausanne, Switzerland, ⁵Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland, ⁶School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

*Correspondence should be addressed to Patrick C. Fraering. Phone: +41786406462; Fax: +41228801013; E-mail: fraeringpatrick@hotmail.com

SUPPLEMENTARY FIGURES

Fig.S1 Generation of the APMAP-KO mouse line. **a** Schematic representation of the knockout-first construct (KOMP Repository; www.komp.org) used for the generation of the APMAP full knockout mouse line. **b** The deleted APMAP protein expression was confirmed by Western blot analysis of whole brain extracts from 3-month-old APMAP-KO mice (ko/ko; n=2) and WT mice (+/+; n=2). β -Actin served as a protein loading control.

b

а

Skin	-
Mammalian gland	-
Heart	
Торяце	-
Sternum / Bone marrow	-
Thymus	-
Trachea	-
Nesonhagus	-
Thyroid	-
Salivary gland	-
Mandibular Lymphnodes	-
Stomach	
Small Intestine	-
Large Intestine	-
liver	-
Kidney right and left	-
Urinary bladder	-
Spleen	-
Pancreas	-
White adipose tissue	-
Spine (cervical, thoracal, lumbar)	-
Knee (inint hones muscles)	-
Head (multiple cross sections)	-
Brain (1 hemischere)	-
oram (± nemisphere)	_

Female genital tract:	
Uterus	
Ovary right and left	
Vagina	

Male genital tract:
Testis right and left
Seminal vesicle
Prostate
Preputial glands

	chow diet		high fat diet		significance
			n per		
	n per group	grade / score	group	grade / score	
Lung			1		
leucocytic infiltrates	ko-4, wt-8	ko 1.8, wt 3.7	ko-3, wt-1	ko 3, wt 2.5	inflammatory change
<u>Kidney</u>					
leucocytic infiltrates, perivascular	ko-8, wt-10	ko 3.8, wt 4.1	ko-4, wt-3	ko 3.7, wt 2.8	background lesion
tubular lipidosis	ko-3, wt-3	ko 1.2, wt 1.2	ko-5, wt-2	ko-1.8, wt 1.2	incidental finding
tubular basophilia	ko-1, wt-2				background lesion
tubular proteinaceous casts	wt-2		wt-1		background lesion
basement membrane thickening	wt-1				background lesion
glomerular sklerosis	wt-1		ko-1		background lesion
mesangial cell proliferation	wt-1		wt-2		background lesion
Liver	_				
leucocytic infiltrates	ko-3, wt-7	ko 1.1, wt 2.5	ko-5, wt-2	ko 4.8, wt 1.2	inflammatory change
hepatic lipidosis	ko-0, wt-0		ko-5, wt-5	ko 8, wt 8	diet related
					related to
extramedullary hematopoiesis	ko-2, wt-1		wt-2		inflammation
Stomach	l.				
leucocytic infiltrates	ko-4, wt-4	ko 1.3, wt 1	ko-1, wt-0	ko 1.2	inflammatory change
<u>Oesophagus</u>					
bacteria intracorneal			ko-1, wt-1		incidental finding
<u>Spleen</u>					
activated lymph follicles	ko-0, wt-1		ko-2, wt-2		background lesion
hemosiderosis	ko-6, wt-3	ko 2.7, wt 1.7	ko-1, wt-0	ko 1.2	background lesion related to
extramedullary hematopoiesis	ko-1, wt-1		ko-1, wt-0		inflammation
Salivary gland					
leucocytic infiltrates	ko-7, wt-8	ko 4, wt 4.2	ko-3, wt-1	ko 3.6, wt 1	background lesion
Lymph nodes (mandibular, mediastin	ial, mesenteric)			
activated lymph follicles			ko-2, wt-3		background lesion
sinus histiocytosis	ko-4, wt-7	ko 2.5, wt 3.7	ko-5, wt-12	ko 5.3, wt 1.9	background lesion
Pancreas					
leucocytic infiltrates	ko-3, wt-6	ko 1.7, wt 3.3	ko-0, wt-0		inflammatory change
Testis					
leucocytic infiltrates	ko-1, wt-2	ko-1, wt-1.17	ko-0, wt-1	wt 1	background lesion
Seminal Vesicles					
histiocytes intraluminal			ko-1		incidental finding
Preputial glands					
leucocytic infiltrates	ko-2, wt-2	ko 2.3, wt 1.5	ko-3, wt-2	ko 2.8, wt 1.6	background lesion
fibrosis	ko-0, wt-1				background lesion
cystic dilation	ko-1, wt-3		wt-3		background lesion
Skin					
leucocytic infiltrates w/wo bacteria			ko-4. wt-3	ko-3.6. wt 2.6	inflammatory change
Gingiya				,	,
leucocytic infiltrates			ko-1	ko 0.8	incidental finding
Muscle					
leucocytic infiltrates			ko-1		incidental finding
muscle fiber regeneration			ko-1		incidental finding
Urinary bladder					I mara cincur informa
leucocytic infiltrates	wt-1				background lesion
			1		

Fig.S2 Morpho-pathological characterization of APMAP-KO mice. **a** Organs and tissues analyzed to assess whether the biallelic deletion of the gene coding for APMAP induces macroscopic and/or microscopic morphological changes. **b** No significant morphological changes (graded from 0 to 6 according to their degree of severity) were recorded in the APMAP-KO groups compared to the age and sex-matched WT control animals, fed with chow or high fat diets. The phenotypic observations are not related to the specific genotype, as confirmed by the non-significant semi-quantitative histopathologic scores among the different groups, and by the intra- and intergroup low incidence. Mice on a chow diet were aged 7 to 9 months, with n=10 mice/group (equally distributed between males and females). Mice on a high fat diet were aged 4 months, with n=5 males/group. **c** APMAP deficiency does not affect morphology of neural tissues. Sagittal brain sections from 9 month-old WT and APMAP-KO mice stained with hematoxylin and eosin. Specific tissue is indicated at left of each pair of panels. Scale bars, 1 mm for brain and 200 μm for hippocampus, cerebral cortex and thalamus.

Fig.S3 Generation and selection of a CHO cell line stably overexpressing APMAP for the high-grade purification of APMAP and associated proteins. **a** Clonal selection of a CHO cell line stably overexpressing APMAP. Chinese hamster ovary adherent cells were transfected with a plasmid harboring APMAP1-Flag and selection was performed in DMEM containing 300 μ g/ml Geneticin G418. After 21 days of selection, single cell cultures were inoculated into 96-well plates by limiting dilution. Of all recovered clonal cell lines, 26 were screened for APMAP expression and the highest producers were maintained in culture for further analysis. **b**, **c** Whole cell extracts were prepared and analyzed by Western blot with anti-Flag (**b**) or anti-APMAP (**c**) antibodies. The highest producer (clone 5) was further adapted for cultures in suspension and used for the purification of APMAP and associated proteins. CP1

Q9HDC9 (100%), 46,481.5 Da

M S E A D G L R <mark>Q R</mark>	R P L R P Q V V T D	D D G Q A P E A K D	GSSFSGRVFR	V T F L M L A V S L	
V V K L E N G E I E		K T R D D E P V C G	R P L G I R A G P N	GTLFVADAYK	
EYDTVTR EYDTVTR MPGEPDNIRP	V L L D Q L R F P N	G V Q L S P A E D F S T L R P N P C F S	V L V A E T T M A R M L D E L S E R P W	I R <mark>R V Y V S G L M</mark> I K R M I F K I F S	K G G A D L F V E N O F T V M K F V P R
Y S L V L E L S D S	GAFR RSLHDP	DGLVATYISE	V H E H D G H L Y L	GSFRSPFLCR	LSLQAV

CP2

Q9HDC9 (100%), 46,481.5 Da

Adipocyte plasma membrane-associated protein OS=Homo sapiens GN=APMAP PE=1 SV=2 32 exclusive unique peptides, 40 exclusive unique spectra, 126 total spectra, 196/416 amino acids (47% coverage)

Adjpocyte plasma membrane-associated protein OS=Homo sapiens GN=APMAP PE=1 SV=2 36 exclusive unique peptides, 50 exclusive unique spectra, 173 total spectra, 212/416 amino acids (51% coverage)

M S E A D G L R <mark>Q R</mark>	RPLRPQVVTD	DDGQAPEAKD	GSSFSGR VFR	VTFLMLAVSL	T V P L L G A M M <mark>L</mark>
LESPIDPQPL	SFKEPPLLLG	V L H P N T K L R Q	A E R <mark>L F E N Q L V</mark>	GPESIAH IGD	VMFTGTADGR
V V K L E N G E I E	TIARFGSGPC	KTRDDEPVCG	R P L G I R A G P N	GTLFVADAYK	GLFEVNPWKR
E V <mark>K L L L S S E T</mark>	P I E G K N M S F V	NDLTVTQDGR	KIYFTDSSSK	WQR <mark>RDYLLL</mark> V	MEGTDDGRLL
EYDTVTR EVK	VLLDQLRFPN	GVQLSPAEDF	VLVAETTMAR	I R <mark>R V Y V S G L M</mark>	K G G A D L F V E N
MPGFPDNIRP	<u>SSSG</u> GYWVGM	STIRPNPGFS	MLDFLSERPW	IKRMIFK <mark>LFS</mark>	QETVMK FVPR
YSLVLELSDS	GAFR R S L H D P	DGLVATYISE	V H E H D G H L Y L	GSFRSPFLCR	LSLQAV

?12763 (100%), 38,417.4 Da Alpha-2-HS-glycoprotein OS=Bos taurus GN=AHSG PE=1 SV=2 3 exclusive unique peptides, 3 exclusive unique spectra, 5 total spectra, 38/359 amino acids (11% coverage)							
MKSFVLLFCL	AQLWGCHSIP L	DPVAGYKEP ACDDPDT	TEQA ALAAVDYINK				

NQIDSVKVWP	RRPTGEVYDI	EIDTLETTCH	VLDPTPLANC	SVRQQTQHAV	EGDCDIHVLK
Q D G Q F S V L F T	K C D S S P D S A E	DVR KLCPDCP	LLAPLNDSRV	VHAVEVALAT	FNAESNGSYL
QLVEISRAQF	VPLPVSVSVE	FAVAATDCIA	KEVVDPTKCN	LLAEKQYGFC	KGSVIQKALG
GEDVRVTCTL	FQTQPVIPQP	QPDGAEAEAP	SAVPDAAGPT	PSAAGPPVAS	VVVGPSVVAV
PLPLHRAHYD	LRHTFSGVAS	VESSSGEAFH	V G K <mark>T P I V G Q P</mark>	S I P G G P V R L C	PGRIRYFKI

CP3

Q9HDC9 (100%), 46,481.5 Da Adipocyte plasma membrane-associated protein OS=Homo sapiens GN=APMAP PE=1 SV=2 22 exclusive unique peptides, 25 exclusive unique spectra, 73 total spectra, 178/416 amino acids (43% coverage)

M S E A D G L R <mark>Q R</mark>	RPLRPQVVTD	DDGQAPEAKD	GSSFSGR VFR	VTFLMLAVSL	TVPLLGAMML
LESPIDPQPL	S F K <mark>E P P L L L G</mark>	VLHPNTK LRQ	A E R <mark>L F E N Q L V</mark>	GPESIAH IGD	VMFTGTADGR
V V K <mark>L E N G E I E</mark>	TIAR FGSGPC	K T R D D E P V C G	R P L G I R A G P N	GTLFVADAYK	GLFEVNPWKR
E V <mark>K L L L S S E T</mark>	P I E G K N M S F V	NDLTVTQDGR	KIYFTDSSSK	W Q R <mark>R D Y L L L V</mark>	MEGTDDGRLL
EYDTVTR EVK	V L L D Q L R <mark>F P N</mark>	GVQLSPAEDF	V L V A E T T <mark>M</mark> A R	I R R <mark>V Y V S G L M</mark>	K G G A D L F V E N
MPGFPDNIRP	S	STIRPNPGFS	MLDFLSERPW	IKRMIFK <mark>LFS</mark>	QETVMK FVPR
YSLVLELSDS	GAFRRSLHDP	DGLVATYISE	VHEHDGHLYL	GSFRSPFLCR	LSLQAV

M S E A D G L R <mark>Q R</mark>	RPLRPQVVTD	DDGQAPEAKD	GSSFSGR VFR	VTFLMLAVSL	T V P L L G A M M <mark>L</mark>
LESPIDPQPL	SFKEPPLLLG	VLHPNTK LRQ	A E R <mark>L F E N Q L V</mark>	GPESIAH IGD	VMFTGTADGR
V V K <mark>L E N G E I E</mark>	TIAR FGSGPC	K T R D D E P V C G	R P L G I R A G P N	GTLFVADAYK	GLFEVNPWKR
E V <mark>K L L L S S E T</mark>	P I E G K N M S F V	NDLTVTQDGR	KIYFTDSSSK	WQR <mark>RDYLLL</mark>	MEGTDDGRLL
EYDTVTR EVK	VLLDQLRFPN	GVQLSPAEDF	VLVAETTMAR	I R <mark>R V Y V S G L M</mark>	K G G A D L F V E N
MPGFPDNIRP	SSSGGYWVGM	STIRPNPGFS	MLDFLSERPW	IKRMIFK <mark>LFS</mark>	QETVMK FVPR
YSLVLELSDS	GAFR R S L H D P	DGLVATYISE	VHEHDGHLYL	GSFRSPFLCR	LSLQAV

Adjpocyte plasma membrane-associated protein OS=Homo sapiens GN=APMAP PE=1 SV=2 24 exclusive unique peptides, 30 exclusive unique spectra, 64 total spectra, 184/416 amino acids (44% coverage)

Q9HDC9 (100%), 46,481.5 Da

CP5

F1LQN3 (100%), 126,405.1 Da Reticulon OS=Rattus norvegicus GN=Rtn4 PE=1 SV=1 3 exclusive unique peptides, 3 exclusive unique spectra, 5 total spectra, 41/1163 amino acids (4% coverage)

M S E A D G L R <mark>Q R</mark>	RPLRPQVVTD	DDGQAPEAKD	GSSFSGR VFR	VTFLMLAVSL	TVPLLGAMML
L E S P I D P Q P L	SFKEPPLLLG	VLHPNTK LRQ	A E R L F E N Q L V	GPESIAH IGD	VMFTGTADGR
V V K <mark>L E N G E I E</mark>	TIAR F G S G P C	K T R D D E P V C G	R P L G I R A G P N	GTLFVADAYK	GLFEVNPWKR
E V <mark>K L L L S S E T</mark>	P I E G K N M S F V	NDLTVTQDGR	KIYFTDSSSK	WQR <mark>RDYLLLV</mark>	MEGTDDGRLL
EYDTVTR EVK	VLLDQLRFPN	GVQLSPAEDF	VLVAETTMAR	IRRVYVS <u>GLM</u>	KGGADLFVEN
MPGFPDNIRP	S	STIRPNPGFS	MLDFLSERPW	IKRMIFK <mark>LFS</mark>	QETVMK FVPR
YSLVLELSDS	GAFR R S L H D P	DGLVATYISE	VHEHDGHLYL	GSFRSPFLCR	LSLQAV

Q9HDC9 (100%), 46,481.5 Da Adjpocyte plasma membrane-associated protein OS=Homo sapiens GN=APMAP PE=1 SV=2 22 exclusive unique peptides, 27 exclusive unique spectra, 54 total spectra, 173/416 amino acids (42% coverage)

CP4

MEDIDOSSIV	SSSTDSPPP	PPAEKYOEVT	EREDEEDEEE	FEDEEEDDED	
MEDIDQ33LV	3 3 3 1 D 3 F F K F	FFAFKTQFVI	EFEDEEDEEE		LEELEVLERK
PAAGLSAAAV	PPAAAAPLLD	FSSDSVPPAP	R G P L P A A P P A	APER QPSWER	5
PAAAVLPSKL	PEDDEPPARP	P	LAEPAAPPST	PAAPKRRGSG	SVDETLFALP
AASEPVIPSS	AEKIMDLMEQ	PGNTVSSGQE	DFPSVLLETA	A S L P S L S P L S	TVSFKEHGYL
GNLSAVSSSE	GTIEETLNEA	SKELPERATN	PFVNRDLAEF	SELEYSEMGS	SFKGSPKGES
AILVENTKEE	VIVRSKDKED	LVCSAALHSP	QESPVGKEDR	VVSPEKTMDI	FNEMQMSVVA
PVREEYADFK	PFEQAWEVKD	TYEGSRDVLA	ARANVESKVD	RKCLEDSLEQ	KSLGKDSEGR
NEDASFPSTP	EPVKDSSRAY	ITCASFTSAT	ESTTANTFPL	LEDHTSENKT	DEKKIEERKA
QIITEKTSPK	TSNPFLVAVQ	DSEADYVTTD	Τ L S K V T E A A V	SNMPEGLTPD	LVQEACESEL
ΝΕΑΤGΤΚΙΑΥ	ETKVDLVQTS	EAIQESLYPT	AQLCPSFEEA	EATPSPVLPD	IVMEAPLNSL
LPSAGASVVQ	PSVSPLEAPP	PLSYDSIKLE	PENPPPYEEA	MNVALKALGT	KEGIKEPESF
ΝΑΑΥQΕΤΕΑΡ	YISIACDLIK	ETKLSTEPSP	DFSNYSEIAK	FEKSVPEHAE	LVEDSSPESE
PVDLFSDDSI	PEVPQTQEEA	VMLMKESLTE	V S E T V A Q H K E	ERLSASPQEL	GKPYLESFQP
NLHSTKDAAS	NDIPTLTKKE	KISLQMEEFN	TAIYSNDDLL	SSKEDKIKES	ETFSDSSPIE
IIDEFPTFVS	AKDDSPKLAK	EYTDLEVSDK	SEIANIQSGA	DSLPCLELPC	DLSFKNIYPK
DEVHVSDEFS	ENRSSVSKAS	ISPSNVSALE	PQTEMGSIVK	SKSLTKEAEK	KLPSDTEKED
RSLSAVLSAE	LSKTSVVDLL	YWRDIKKTGV	VFGASLFLLL	SLTVFSIVSV	TAYIALALLS
V T I S F R I Y K <mark>G</mark>	VIQAIQKSDE	GHPFR AYLES	EVAISEELVQ	KYSNSALGHV	NSTIKELRRL
FLVDDLVDSL	KFAVLMWVFT	YVGALFNGLT	LLILALISLF	SIPVIYERHQ	VQIDHYLGLA
NKSVKDAMAK	IQAKIPGLKR	KAD			

F1LQN3 (100%), 126,405.1 Da Reticulon OS=Rattus norvegicus GN=Rtn4 PE=1 SV=1 3 exclusive unique peptides, 3 exclusive unique spectra, 3 total spectra, 29/1163 amino acids (2% coverage)

A0A061I3K8 (100%), 160,726.0 Da Calnexin OS=Cricetulus griseus GN=H671_7g18220 PE=3 SV=1 15 exclusive unique peptides, 18 exclusive unique spectra, 22 total spectra, 109/1479 amino acids (7% coverage)

MEGKWLLCLL	LVLGTVAVQA	HDGHDDDMID	IEDDLDDVIE	E V E D S K <mark>S K S D</mark>	S S T P P S P K V T
Υ Κ <mark>Α Ρ V Ρ Τ G Ε V</mark>	YFADSFDRGS	L S G W I L S K <mark>A K</mark>	K D D T D D E I A K	YDGKWEVDEM	KDTKLPGDKG
LVLMSRAKHH	AISAKLNKPF	LFDTKPLIVQ	YEVNFQNGIE	CGGAYVKLLS	K <mark>T S E L N L D Q F</mark>
HDK TPYTIMF	GPDKCGEDYK	LHFIFRHKNP	KTGVYEEKHA	KRPDTDLKIY	FTDKKTHLYT
LILNPDNSFE	ILVDQYVVNS	GNLLNDMTPA	VNPSREIEDP	EDQKPEDWDE	RPKIPDPDAV
KPDDWDEDAP	GKIPDEEATK	PEGWLDDEPE	YIPDPDADKP	EDWDEDMDGE	WEAPQIANPK
CESAPGCGVW	Q R <mark>P L I D N P N Y</mark>	K G K W K P P M I D	NPNYQGVWKP	RKIPNPDFFE	DLEPFKMTPF
SAIGLELWSM	TSDIFFDNFI	ISGDRRVVDD	WANDGWGLK <mark>K</mark>	AADGAAEPGV	VGHMLEAAEE
RPWLWVVYIL	TVALPVFLVI	LFCCSGKKQS	ΝΑΜΕΥΚ <mark>ΚΤΟΑ</mark>	AQPDVKEDEG	KEEEKNKGDE
EEEEKLEEK	QKSDAEEDGG	TGSQDEEDRK	PTAEEDEILN	RSPRNRKPRR	ESWDLWHLHD
TVKRNLDSAA	SPQNGDQQNG	YGDLFPGHKK	TRREAPLGIS	VSANGLPPAS	PLGQPDKPPG
GDALQSGGKH	SLGLDPINKK	CMADSSIHLN	GSSNPNEPFP	LSLSKELKQE	PVDDLPCMIA
GAGGSVSQSN	LMPDLNLNEQ	EWKELIEELN	RSVPDEDMKD	LFTEDFEEKK	DPEPPGSATQ
TPLAQDINIK	TEFSPAAFEQ	EQLGSPQVRA	GSAGQTFLGP	SSAPVGTDSP	SLGSSQTLFH
TTGQPGADNP	SPNLMPASAQ	AQNAQRALAS	VVLPSQGPGG	ASELSSAHQL	QQIAAKQKRE
QMLQNPQQAA	SAPAPGQLST	WQQAGPSHSP	LDVPYPMEKP	ASPPGYKQDF	TNSKLLMMPS
V N K S S P R P G G	PYLQPSHSNL	LSHQSPSNLN	Q	LDYGNTKPLS	HYKADCGQGG
PGSGQSKPAL	MAYLPQQLPH	LSNEQNSLFL	МКQКААNMPF	RSLVPPGQEQ	NPSNVSVPAQ
ΤΑΝΥGΤQPPS	V S V A S T H N S S	P Y L S S Q Q Q A A	VMKQHQLLLD	QQKQREQQQL	QQQQQQFLQR
QHLLAEQEKQ	QFQRPSAAVP	GMNNLGPSNS	SCPRVFPQPG	ТЬМЅМGPGНА	P V S S L P S S S G
PQDRGVAQFT	GSQSLPQSSL	YGITSGLPQI	V A Q P P P Q A A S	AHAHIPRQTS	VGQNASAPAA
YGQNSLGSAG	LSQQHNKGTL	PPGLTKSQVP	RVSAAMGGQN	ASWQHQGMPN	LSSQTPGNSS
V S P F A A P S S F	HMQQAHLKIP	GQQFSQAMPS	RPMAPMSSAG	AAGSMLPPVS	TQQRNSAPAP
A P P Q A A P Q Q G	LPGLSPAGPE	LGAFSQSSTS	QMNSRAGLHC	TQAYPVRTMG	QELPFAFSGQ
PGSSGLSSVA	GHTDLIDSLL	KNRTSEEWIN	ELDDLLGSQ		

A0A0611M78 (100%), 43,787.5 Da Lysosome-associated membrane glycoprotein 1 OS=Cricetulus griseus GN=H671_1g1762 PE=4 SV=1 2 exclusive unique peptides, 2 exclusive unique spectra, 2 total spectra, 23/407 amino acids (6% coverage)

MAAPGAPRSL	LLLLAGLAH	GASALFVVKD	SNGTACIMAN	FSASFFTIYE	Т G H G S K N S T F
ELPSSAEVLN	SNSSCGRENV	SEPILTIAFG	SGYLLTLNFT	RNATRYSVQD	MYFAYNLSDT
Q H F L N A S N K <mark>G</mark>	IHSVDSSTDI	K A D I N K T Y R C	LSAIQVHMGN	VTVTLSDATI	QAYLLNSNFS
KEETRCTQDG	PSPTTVPPSP	SPPLVPTNPT	VIKYNVTGEN	GTCLLASMAL	QMNITYMKKD
NMTVTRALNI	SPNDTASGSC	SPHVVTLTVE	SKNSILDLKF	G M N G S S S L F F	LQEVRLNMTL
PDANVSSLMA	5	TVGNSYKCNT	EEHIFVTKEF	SLNVFSVQVQ	AFKVESDRFG
SVEECMQDGN	NMLIPIAVGG	ALAGLVLIVL	IAYLIGRKRS	HAGYQTI	

G3H7X9 (100%), 68,661.3	Da				
Nicastrin OS=Cricetulus	griseus GN=179_006475 I	PE=4 SV=1			
3 exclusive unique peptid	les, 3 exclusive unique sp	ectra, 3 total spectra, 35/	615 amino acids (6% cover	age)	
MVLLEGKLFN	RAVMEKLKGR	TSRIAGLAVT	LAKPNSTSSF	SPSVQCPNDG	FGIYSNSYGS
EFAHCKQTLW	NELGNGLAYE	DFSFPIFLLE	DENETKVIKQ	CYQDHNLAQN	GSAPRFPLCA

EFARCKUILW	NELUNULATE		DENEIKVIKŲ	CTUDHNLAUN	UJAFKFFLLA
MQLFSHMHAV	ISTATCMRRS	FIQSTFSINP	EIVCDPLSDY	NVWSMLKPIN	TSGALEPDDR
VVVAATRLDS	RSFFWNVAPG	AESAVASYVT	QLAAAEALHK	A S D V A T L P R N	VMFVFFQGET
FDYIGSSRMV	YDMENGKFPV	RLENIDSFVE	LGQVALRTSL	DLWMHTDPMS	QKNESVKNQV
EDLLVTLEKS	GAGVPEVVLR	RQNQSQALPP	SSLQRFLRAR	NISGVVLADH	SGSFHNRYYQ
SIYDTAENIN	V T Y P E R <mark>Q S P E</mark>	EDLNFVTDTA	KALANVATVL	<mark>A R</mark> A L Y E L A G G	TNFSDSIQAD
PQTVTRLLYG	FLVRANNSWF	QSILRQDLRS	YLDDGPLQHY	ΙΑΥΤSΡΤΝΤΤ	YVVQYALANL
TGKVTNLTRE	QCQDPSKVPN	ESKALYDYSW	VQGPLNSNKT	ERLPRCVRST	VRLARALSPA
FELSQWGSTE	YSTWAESRWK	DIQARIFLVA	SKELEFITLT	VGFGILIFSL	ΙΥΤΥСΙΝΑΚΑ
DVLFVAPREP	GAVSY				

F1LQN3 (100%), 126,405.1 Da
Reticulon OS=Rattus norvegicus GN=Rtn4 PE=1 SV=1
2 avaluative unique nontidas, 2 avaluative unique anestre, 2 total anestre, 22/1162 amine acida (29/ cove

2 exclusive unique peptides, 2 exclusive unique spectra, 2 total spectra, 22/1163 amino acids (2% coverage)

MEDIDQSSLV	S	ΡΡΑΓΚΥQΓΥΤ	E P E D E E D E E E	E E D E E E D D E D	LEELEVLERK
PAAGLSAAAV	PPAAAAPLLD	FSSDSVPPAP	RGPLPAAPPA	APERQPSWER	SPAAPAPSLP
PAAAVLPSKL	PEDDEPPARP	P	LAEPAAPPST	PAAPKRRGSG	SVDETLFALP
A A S E P V I P S S	AEKIMDLMEQ	PGNTVSSGQE	DFPSVLLETA	ASLPSLSPLS	TVSFKEHGYL
GNLSAVSSSE	GTIEETLNEA	SKELPERATN	PFVNRDLAEF	SELEYSEMGS	SFKGSPKGES
AILVENTKEE	VIVRSKDKED	LVCSAALHSP	QESPVGKEDR	VVSPEKTMDI	FNEMQMSVVA
PVREEYADFK	PFEQAWEVKD	TYEGSRDVLA	ARANVESKVD	RKCLEDSLEQ	KSLGKDSEGR
NEDASFPSTP	EPVKDSSRAY	ITCASFTSAT	ESTTANTFPL	LEDHTSENKT	DEKKIEERKA
QIITEKTSPK	TSNPFLVAVQ	DSEADYVTTD	Τ L S K V T E A A V	SNMPEGLTPD	LVQEACESEL
ΝΕΑΤGΤΚΙΑΥ	ETKVDLVQTS	EAIQESLYPT	AQLCPSFEEA	EATPSPVLPD	IVMEAPLNSL
LPSAGASVVQ	PSVSPLEAPP	PLSYDSIKLE	ΡΕΝΡΡΡΥΕΕΑ	MNVALKALGT	KEGIKEPESF
ΝΑΑΥQΕΤΕΑΡ	YISIACDLIK	ETKLSTEPSP	DFSNYSEIAK	FEKSVPEHAE	LVEDSSPESE
PVDLFSDDSI	ΡΕΥΡΟΤΟΕΕΑ	VMLMKESLTE	V S E T V A Q H K E	ERLSASPQEL	GKPYLESFQP
NLHSTKDAAS	NDIPTLTKKE	KISLQMEEFN	TAIYSNDDLL	SSKEDKIKES	ETFSDSSPIE
IIDEFPTFVS	AKDDSPKLAK	EYTDLEVSDK	SEIANIQSGA	DSLPCLELPC	DLSFKNIYPK
DEVHVSDEFS	ENRSSVSKAS	ISPSNVSALE	PQTEMGSIVK	SKSLTKEAEK	KLPSDTEKED
RSLSAVLSAE	LSKTSVVDLL	<u>Y W R D I </u> K K T G V	V F G A S L F L L L	SLTVFSIVSV	<u>TAYIA</u> LALLS
VTISFRIYKG	VIQAIQK <mark>SDE</mark>	GHPFR AYLES	EVAISEELVQ	K Y S N S A L G H V	NSTIK ELRRL
FLVDDLVDSL	KFAVLMWVFT	YVGALFNGLT	LLILALISLF	SIPVIYERHQ	VQIDHYLGLA
NKSVKDAMAK	IQAKIPGLKR	KAD			

4 exclusive unique peptit	ues, 4 exclusive unique sp	ectia, 4 total spectra, 44/0	13 annio acius (7% cover	age)	
MVLLEGKLFN	RAVMEKLKGR	TSRIAGLAVT	LAKPNSTSSF	SPSVQCPNDG	FGIYSNSYGS
EFAHCKQTLW	NELGNGLAYE	DFSFPIFLLE	DENETKVIKQ	CYQDHNLAQN	GSAPRFPLCA
MQLFSHMHAV	ISTATCMRRS	FIQSTFSINP	EIVCDPLSDY	NVWSMLKPIN	TSGALEPDDR
VVVAATRLDS	RSFFWNVAPG	AESAVASYVT	QLAAAEALHK	A S D V A T L P R N	VMFVFFQGET
FDYIGSSRMV	YDMENGKFPV	RLENIDSFVE	LGQVALRTSL	DLWMHTDPMS	QKNESVKNQV
EDLLVTLEKS	GAGVPEVVLR	RQNQSQALPP	SSLQRFLRAR	NISGVVLADH	SGSFHNRYYQ
SIYDTAENIN	V T Y P E R <mark>Q S P E</mark>	EDLNFVTDTA	KALANVATVL	<mark>A R</mark> A L Y E L A G G	TNFSDSIQAD
PQTVTRLLYG	FLVRANNSWF	QSILRQDLRS	YLDDGPLQHY	ΙΑΥΤSΡΤΝΤΤ	YVVQYALANL
TGKVTNLTRE	QCQDPSKVPN	ESKALYDYSW	VQGPLNSNKT	ERLPRCVRST	VRLARALSPA
F E L S Q W G S T E	YSTWAESRWK	DIQARIFLVA	SKELEFITLT	VGFGILIFSL	ΙΥΤΥΟΙΝΑΚ <mark>Α</mark>
DVLFVAPR EP	GAVSY				

G3H7X9 (100%), 68,661.3 Da Nicastrin OS=Cricetulus griseus GN=179_006475 PE=4 SV=1 4 exclusive unique peptides, 4 exclusive unique spectra, 4 total spectra, 44/615 amino acids (7% coverage)							
MVLLEGKLFN	RAVMEKLKGR	TSRIAGLAVT	LAKPNSTSSF	SPSVQCPNDG	FGIYSNSYGS		
EFAHCKQTLW	NELGNGLAYE	DFSFPIFLLE	DENETKVIKQ	CYQDHNLAQN	GSAPRFPLCA		
MQLFSHMHAV	ISTATCMRRS	FIQSTFSINP	EIVCDPLSDY	NVWSMLKPIN	TSGALEPDDR		
VVVAATRLDS	RSFFWNVAPG	AESAVASYVT	QLAAAEALHK	A S D V A T L P R N	VMFVFFQGET		
FDYIGSSRMV	YDMENGKFPV	RLENIDSFVE	LGOVALRTSL	DLWMHTDPMS	OKNESVKNOV		
EDLLVTLEKS	GAGVPEVVLR	RONOSOALPP	SSLORFLRAR	NISGVVLADH	SGSFHNRYYO		
SIYDTAENIN	V T Y P E R <mark>Q S P E</mark>	EDLNFVTDTA	KALANVATVL	ARALYELAGG	TNFSDSIQAD		
PQTVTRLLYG	FLVRANNSWF	QSILRQDLRS	YLDDGPLQHY	IAVTSPTNTT	YVVQYALANL		
TOWNTHLIDE		F C V A L V D V C W	VOCDINCNET	F D L D D C V D C T			

MEGKWLLCLL	LVLGTVAVQA	HDGHDDDMID	IEDDLDDVIE	E	S S T P P S P K V T
Y K <mark>A P V P T G E V</mark>	YFADSFDRGS	L S G W I L S K <mark>A K</mark>	KDDTDDEIAK	YDGKWEVDEM	KDTKLPGDKG
LVLMSRAKHH	A I S A K <mark>L N K P F</mark>	LFDTK PLIVQ	YEVNFQNGIE	CGGAYVKLLS	K <mark>T S E L N L D Q F</mark>
H D K T P Y T I M F	G P D K C G E D Y K	LHFIFRHKNP	KTGVYEEKHA	KRPDTDLKIY	FTDKKTHLYT
LILNPDNSFE	ILVDQYVVNS	GNLLNDMTPA	VNPSREIEDP	EDQKPEDWDE	R P K I P D P D A V
K P D D W D E D A P	GKIPDEEATK	PEGWLDDEPE	YIPDPDADKP	EDWDEDMDGE	WEAPQIANPK
CESAPGCGVW	Q R P L I D N P N Y	<mark>Κ</mark> GKWKPPMID	NPNYQGVWKP	RKIPNPDFFE	DLEPFKMTPF
SAIGLELWSM	TSDIFFDNFI	ISGDRRVVDD	WANDGWGLK <mark>K</mark>	AADGAAEPGV	VGH MLEAAEE
RPWLWVVYIL	TVALPVFLVI	LFCCSGKKQS	ΝΑΜΕΥΚ <mark>ΚΤΟΑ</mark>	AQPDVKEDEG	KEEEKNKGDE
EEEEKLEEK	QKSDAEEDGG	TGSQDEEDRK	PTAEEDEILN	RSPRNRKPRR	ESWDLWHLHD
TVKRNLDSAA	SPQNGDQQNG	YGDLFPGHKK	TRREAPLGIS	VSANGLPPAS	PLGQPDKPPG
GDALQSGGKH	SLGLDPINKK	CMADSSIHLN	GSSNPNEPFP	LSLSKELKQE	PVDDLPCMIA
GAGGSVSQSN	LMPDLNLNEQ	EWKELIEELN	RSVPDEDMKD	LFTEDFEEKK	DPEPPGSATQ
TPLAQDINIK	TEFSPAAFEQ	EQLGSPQVRA	GSAGQTFLGP	SSAPVGTDSP	SLGSSQTLFH
TTGQPGADNP	SPNLMPASAQ	AQNAQRALAS	VVLPSQGPGG	ASELSSAHQL	QQIAAKQKRE
QMLQNPQQAA	SAPAPGQLST	WQQAGPSHSP	LDVPYPMEKP	ASPPGYKQDF	TNSKLLMMPS
VNKSSPRPGG	PYLQPSHSNL	LSHQSPSNLN	Q	LDYGNTKPLS	HYKADCGQGG
PGSGQSKPAL	MAYLPQQLPH	LSNEQNSLFL	MKQKAANMPF	RSLVPPGQEQ	NPSNVSVPAQ
ΤΑΝΥGΤQPPS	V S V A S T H N S S	PYLSSQQQAA	VMKQHQLLLD	QQKQREQQQL	QQQQQQFLQR
QHLLAEQEKQ	QFQRPSAAVP	GMNNLGPSNS	SCPRVFPQPG	ТЬМЅМGPGНА	PVSSLPSSG
PQDRGVAQFT	GSQSLPQSSL	YGITSGLPQI	VAQPPPQAAS	AHAHIPRQTS	VGQNASAPAA
YGQNSLGSAG	LSQQHNKGTL	PPGLTKSQVP	RVSAAMGGQN	ASWQHQGMPN	LSSQTPGNSS
V S P F A A P S S F	ΗΜQQAHLKΙΡ	GQQFSQAMPS	RPMAPMSSAG	AAGSMLPPVS	TQQRNSAPAP
APPQAAPQQG	LPGLSPAGPE	LGAFSQSSTS	QMNSRAGLHC	ΤQAYPVRTMG	QELPFAFSGQ
PGSSGLSSVA	GHTDLIDSLL	KNRTSEEWIN	ELDDLLGSQ		

A0A06113K8 (100%), 160,726.0 Da Calnexin OS=Cricetulus griseus GN=H671_7g18220 PE=3 SV=1 21 exclusive unique peptides, 24 exclusive unique spectra, 30 total spectra, 141/1479 amino acids (10% coverage)

MAAPGAPRSL	LLLLAGLAH	GASALFVVKD	SNGTACIMAN	FSASFFTIYE	Т G H G S K N S T F
ELPSSAEVLN	SNSSCGRENV	SEPILTIAFG	SGYLLTLNFT	RNATRYSVQD	MYFAYNLSDT
Q H F L N A S N K <mark>G</mark>	IHSVDSSTDI	K A D I N K T Y R C	LSAIQVHMGN	VTVTLSDATI	QAYLLNSNFS
KEETRCTQDG	PSPTTVPPSP	SPPLVPTNPT	VIKYNVTGEN	GTCLLASMAL	QMNITYMKKD
NMTVTRALNI	SPNDTASGSC	SPHVVTLTVE	SKNSILDLKF	G M N G S S S L F F	LQEVRLNMTL
PDANVSSLMA	S N Q S L R <mark>A L Q A</mark>	T V G N S Y K C N T	EEHIFVTKEF	SLNVFSVQVQ	AFKVESDRFG
SVEECMQDGN	NMLIPIAVGG	ALAGLVLIVL	IAYLIGRKRS	HAGYQTI	

A0A061IM78 (100%), 43,787.5 Da Lysosome-associated membrane glycoprotein 1 OS=Cricetulus griseus GN=H671_1g1762 PE=4 SV=1 2 exclusive unique peptides, 2 exclusive unique spectra, 2 total spectra, 23/407 amino acids (6% coverage)

M S E A D G L R <mark>Q R</mark>	R P L R P Q V V T D	DDGQAPEAKD	<mark>G S S F S G R</mark> V F R	VTFLMLAVSL	TVPLLGAMML
LESPIDPQPL	S F K <mark>E P P L L L G</mark>	VLHPNTK LRQ	A E R <mark>L F E N Q L V</mark>	GPESIAH IGD	VMFTGTADGR
VVKLENGEIE	TIARFGSGPC	KTRDDEPVCG	R P L G I R A G P N	GTLFVADAYK	GLFEVNPWKR
EVKLLLSSET	P I E G K N M S F V	NDLTVTQDGR	KIYFTDSSSK	WQ <mark>R<mark>RDYLLL</mark>V</mark>	MEGTDDGRLL
EYDTVTR EVK	VLLDQLR FPN	GVQLSPAEDF	VLVAETTMAR	R <mark>R V Y V S G L M</mark>	K G G A D L F V E N
MPGFPDNIRP	<u>SSSG</u> G <u>YWVGM</u>	<u>STIRPNP</u> GFS	MLDFLSERPW	IKRMIFK <mark>LFS</mark>	<mark>Q Е Т V М К</mark> F V P R
YSLVLELSDS	G A F R R S L H D P	DGLVATY I SE	VHEHDGHLYL	GSFRSPFLCR	LSLQAV

Q9HDC9 (100%), 46,481.5 Da Adipocyte plasma membrane-associated protein OS=Homo sapiens GN=APMAP PE=1 SV=2 31 exclusive unique peptides, 37 exclusive unique spectra, 59 total spectra, 204/416 amino acids (49% coverage) G3H902 (100%), 93,714.9 Da Prostaglandin F2 receptor negative regulator OS=Cricetulus griseus GN=179_006863 PE=4 SV=1 2 exclusive unique peptides, 2 exclusive unique spectra, 4 total spectra, 20/830 amino acids (2% coverage)

V S D Y D G P I E Q H I K N V Q P S D Q F E L R C I T S T M A G S D A Y R L S V R T V S V T E G K D H V A L S H V D T R E P E Y Q V Y L N A L A V M D G D W T L R N N S W V K S K D S V L I T A E K P V Q T Q V S D A G L V Q T Q V S L A S L R S P T G S W Q R E K K E V R E T R R E $\begin{array}{c} S \hspace{0.5mm} S \hspace{0.5mm} F \hspace{0.5mm} L \hspace{0.5mm} E \hspace{0.5mm} L \hspace{0.5mm} A \hspace{0.5mm} S \hspace{0.5mm} V \hspace{0.5mm} Q \hspace{0.5mm} G \hspace{0.5mm} N \hspace{0.5mm} Y \hspace{0.5mm} E \hspace{0.5mm} D \\ W \hspace{0.5mm} E \hspace{0.5mm} L \hspace{0.5mm} H \hspace{0.5mm} R \hspace{0.5mm} G \hspace{0.5mm} P \hspace{0.5mm} V \hspace{0.5mm} H \hspace{0.5mm} R \\ Y \hspace{0.5mm} R \hspace{0.5mm} C \hspace{0.5mm} V \hspace{0.5mm} V \hspace{0.5mm} S \hspace{0.5mm} E \hspace{0.5mm} V \\ P \hspace{0.5mm} V \hspace{0.5mm} V \hspace{0.5mm} I \\ P \hspace{0.5mm} V \hspace{0.5mm} D \\ V \hspace{0.5mm} D \\ V \hspace{0.5mm} D \\ V \hspace{0.5mm} D \\ V \hspace{0.5mm} I \\ P \end{array}$ $\begin{array}{c} {\sf R} \; {\sf V} \; {\sf P} \; {\sf S} \; {\sf G} \; {\sf S} \; {\sf L} \; {\sf V} \; {\sf R} \; {\sf V} \\ {\sf L} \; {\sf Q} \; {\sf V} \; {\sf G} \; {\sf P} \; {\sf S} \; {\sf S} \; {\sf R} \; {\sf P} \; {\sf P} \\ {\sf F} \; {\sf H} \; {\sf P} \; {\sf G} \; {\sf P} \; {\sf G} \; {\sf Y} \; {\sf E} \; {\sf Q} \; {\sf R} \\ {\sf K} \; {\sf A} \; {\sf V} \; {\sf E} \; {\sf V} \; {\sf A} \; {\sf T} \; {\sf V} \; {\sf V} \; {\sf I} \\ {\sf L} \; {\sf L} \; {\sf A} \; {\sf S} \; {\sf H} \; {\sf M} \; {\sf L} \; {\sf A} \; {\sf R} \; {\sf L} \\ {\sf S} \; {\sf W} \; {\sf H} \; {\sf K} \; {\sf V} \; {\sf A} \; {\sf E} \; {\sf A} \; {\sf M} \; {\sf S} \\ {\sf V} \; {\sf S} \; {\sf W} \; {\sf Y} \; {\sf Y} \; {\sf R} \; {\sf M} \; {\sf R} \; {\sf R} \\ {\sf R} \; {\sf T} \; {\sf T} \; {\sf E} \; {\sf E} \; {\sf D} \; {\sf R} \; {\sf G} \; {\sf N} \\ {\sf G} \; {\sf N} \; {\sf T} \; {\sf F} \; {\sf E} \; {\sf M} \; {\sf T} \; {\sf C} \; {\sf K} \; {\sf V} \\ {\sf Q} \; {\sf V} \; {\sf D} \; {\sf G} \; {\sf V} \; {\sf U} \; {\sf L} \; {\sf K} \; {\sf V} \\ {\sf Q} \; {\sf V} \; {\sf D} \; {\sf G} \; {\sf V} \; {\sf L} \; {\sf E} \; {\sf K} \; {\sf V} \\ {\sf Q} \; {\sf T} \; {\sf S} \; {\sf D} \; {\sf D} \; {\sf M} \; {\sf A} \; {\sf F} \; {\sf D} \; {\sf V} \\ {\sf V} \; {\sf H} \; {\sf G} \; {\sf S} \; {\sf E} \; {\sf D} \; {\sf Q} \; {\sf D} \; {\sf G} \; {\sf G} \; {\sf L} \; {\sf S} \; {\sf C} \; {\sf L} \\ {\sf S} \; {\sf T} \; {\sf V} \; {\sf I} \; {\sf G} \; {\sf L} \; {\sf L} \; {\sf S} \; {\sf C} \; {\sf L} \; {\sf C} \; {\sf L} \\ {\sf C} \; {\sf L} \; {\sf C} \; {\sf C}$ N F D W S F S S S G G H Y K C S T P S T S P L H T H L A L R A R A L S A D Q G S S K V P G F S D D P S Y H L L V R D A S S K V P G F S D D P V F S K P V N I F W G D L T S P N E T K G H Y K C S T P S T S P L H T H L A L R A R A L S A D Q G S L D L S C N I T T D S Y H L L V R D A S S K V P G F S D D P Y G E R S K Q R A V F S K P V N I F W G D L T S P N E T K R C M V T A W S P I D R K G V V T A Q A E I H S R P I F I R R R L M S M E M D Е K H L S L P E K T V T S w K K T P D A S WA P G H N R Z A G V R L T T F S F R I Q P F F A A E N W T D A S N P I E I D F V L E F L L Q V L E F L L Q v K H QLSP A V R K L V S

CP7

A0A061I3K8 (100%), 160,726.0 Da

Calnexin OS=Cricetulus griseus GN=H671_7g18220 PE=3 SV=1

Q9HDC9 (100%), 46,481.5 Da

M	RPLRPQVVTD	DDGQAPEAKD	GSSFSGR VFR	VTFLMLAVSL	TVPLLGAMML
LESPIDPQPL	S F K <mark>E P P L L L G</mark>	VLHPNTK LRQ	A E R <mark>L F E N Q L V</mark>	GPESIAH IGD	VMFTGTADGR
V V K <mark>L E N G E I E</mark>	TIAR F G S G P C	K T R D D E P V C G	RPLGIR AGPN	GTLFVADAYK	GLFEVNPWKR
E V K <mark>L L L S S E T</mark>	PIEGK NMSFV	NDLTVTQDGR	KIYFTDSSSK	W Q R <mark>R D Y L L L V</mark>	MEGTDDGRLL
EYDTVTR EVK	VLLDQLRFPN	GVQLSPAEDF	VLVAETTMAR	I R R <mark>V Y V S G L M</mark>	K G G A D L F V E N
MPGFPDNIRP	S	STIRPNPGFS	MLDFLSERPW	IKRMIFK <mark>LFS</mark>	QETVMK FVPR
YSLVLELSDS	GAFRRSLHDP	DGLVATYISE	VHEHDGHLYL	GSFRSPFLCR	LSLQAV

Adipocyte plasma membrane-associated protein OS=Homo sapiens GN=APMAP PE=1 SV=2 19 exclusive unique peptides, 22 exclusive unique spectra, 26 total spectra, 146/416 amino acids (35% coverage)

10 exclusive unique peptides, 12 exclusive unique spectra, 14 total spectra, 115/1479 amino acids (8% coverage)

LELSDS GAFRRSLHDP DGLVATYISE VHEHDGHLYL GSFRSPFLCR

 spectra, 14 total spectra,

 H D G H D D D M I D

 L S G W I L S K A K

 L F D T K P L I V Q

 L H F I F R H K N P

 G N L N D M T P A

 P E G W L D D E P E

 K G K W K P P M I D

 I S G D R R V V D D

 L F C C S G K K Q S

 T G S Q D E E D R K

 Y G D L F P G H K K

 C M A D S S I H L N

 E W K E L I E E L N

 A Q N A Q R A L A S

 W Q Q A G P S H S P

 L S N Q Q A A G P S N L N

 L S N Q Q A A G P S N L N

 L S N Q Q A A G P S S L F L

 P Y L S S Q Q Q A A S

 Y G J L T S G L P Q I

 P P G L T K S Q V P

 G Q A F S Q S T S

 K N R T S E E W I N

 Ides, 12 exclusive unique

 L V L G T V A V Q A

 Y F A D S F D R

 G P D K

 G P D K

 C G E D Y K

 I L V D Q Y V V N S

 G K I P D E E A T K

 Q R

 P L I D N P NY

 T S D I F F D N F I

 T V A L P V F L V I

 Q K S D A E E D G G

 S P Q N G D Q Q N G

 S L G L D P I N K K

 L T E F S P A A F E Q

 S P N L M P A S A Q

 S P N L M P A S A Q

 S P N L M P A S A Q

 S A P A P G Q L S T

 M A Y L P Q Q L P H

 V S V A S T H N S S

 Q F Q R D S A A V P

 G S Q S L P Q S S L

 L S Q Q H N K G T L

 H M Q A H L K I P

 L S Q L S P A G P E

 G H T D L I D S L L

 10 exclusive unique pep

 M E G K W L L C L L

 Y K A P V P T G E V

 L V L M S R A K H H

 H D K T P Y T I M F

 L I L N P D N S F E

 K P D D W D E D A P

 C E S A P G C G V W

 S A I G L E L W S M

 R P W L W V Y I L

 E E E E K L E E K

 T V K R N L D S A A

 G D A L Q S G G K H

 G A A Q D I N I K

 T P G Q P G A D N P

 Q M L Q N P Q Q A A

 V N K S S P R P G G

 P G S G Q S K P A L

 T A N V G T Q P P S

 Q H L L A E Q E K Q

 P Q D R G V A Q F T

 Y G Q N S L G S A G

 V S P F A A P S S F

 A P Q Q A A P Q Q G

 P G S S G L S S V A

 $\begin{array}{c} \mathsf{E} \ \mathsf{D} \ \mathsf{D} \ \mathsf{D} \ \mathsf{D} \ \mathsf{D} \ \mathsf{D} \ \mathsf{C} \ \mathsf{I} \ \mathsf{E} \\ \mathsf{K} \ \mathsf{D} \ \mathsf{D} \ \mathsf{T} \ \mathsf{D} \ \mathsf{D} \ \mathsf{E} \ \mathsf{I} \ \mathsf{A} \ \mathsf{K} \\ \mathsf{Y} \ \mathsf{E} \ \mathsf{V} \ \mathsf{N} \ \mathsf{F} \ \mathsf{Q} \ \mathsf{N} \ \mathsf{G} \ \mathsf{I} \ \mathsf{E} \\ \mathsf{K} \ \mathsf{T} \ \mathsf{G} \ \mathsf{V} \ \mathsf{Y} \ \mathsf{E} \ \mathsf{E} \ \mathsf{I} \ \mathsf{E} \ \mathsf{C} \\ \mathsf{N} \ \mathsf{N} \ \mathsf{N} \ \mathsf{N} \ \mathsf{R} \ \mathsf{E} \ \mathsf{I} \ \mathsf{E} \ \mathsf{D} \ \mathsf{D} \ \mathsf{D} \ \mathsf{A} \ \mathsf{D} \ \mathsf{K} \ \mathsf{P} \\ \mathsf{Y} \ \mathsf{N} \ \mathsf{P} \ \mathsf{N} \ \mathsf{P} \ \mathsf{D} \ \mathsf{D} \ \mathsf{D} \ \mathsf{D} \ \mathsf{D} \ \mathsf{A} \ \mathsf{D} \ \mathsf{K} \ \mathsf{P} \\ \mathsf{N} \ \mathsf{N} \ \mathsf{N} \ \mathsf{N} \ \mathsf{N} \ \mathsf{R} \ \mathsf{E} \ \mathsf{I} \ \mathsf{E} \ \mathsf{L} \ \mathsf{D} \ \mathsf{D} \ \mathsf{N} \ \mathsf{N} \ \mathsf{N} \\ \mathsf{N} \ \mathsf{N} \ \mathsf{N} \ \mathsf{R} \ \mathsf{E} \ \mathsf{N} \ \mathsf{P} \ \mathsf{N} \ \mathsf{R} \ \mathsf{L} \ \mathsf{D} \ \mathsf{A} \\ \mathsf{P} \ \mathsf{T} \ \mathsf{A} \ \mathsf{E} \ \mathsf{E} \ \mathsf{C} \ \mathsf{D} \ \mathsf{C} \ \mathsf{L} \ \mathsf{C} \ \mathsf{L} \ \mathsf{L} \ \mathsf{D} \ \mathsf{A} \\ \mathsf{P} \ \mathsf{T} \ \mathsf{A} \ \mathsf{R} \ \mathsf{C} \ \mathsf{Q} \ \mathsf{R} \ \mathsf{L} \ \mathsf{R} \ \mathsf{L} \ \mathsf{D} \ \mathsf{A} \\ \mathsf{P} \ \mathsf{T} \ \mathsf{R} \ \mathsf{E} \ \mathsf{A} \ \mathsf{Q} \ \mathsf{R} \ \mathsf{P} \ \mathsf{R} \ \mathsf{L} \ \mathsf{G} \ \mathsf{S} \ \mathsf{N} \ \mathsf{P} \ \mathsf{N} \ \mathsf{R} \ \mathsf{P} \ \mathsf{R} \ \mathsf{L} \ \mathsf{G} \ \mathsf{G} \ \mathsf{G} \\ \mathsf{G} \ \mathsf{S} \ \mathsf{N} \ \mathsf{P} \ \mathsf{N} \ \mathsf{N} \ \mathsf{Q} \ \mathsf{R} \ \mathsf{C} \ \mathsf{R} \ \mathsf{R} \ \mathsf{P} \\ \mathsf{R} \ \mathsf{Q} \ \mathsf{K} \ \mathsf{C} \ \mathsf{A} \ \mathsf{A} \ \mathsf{A} \ \mathsf{N} \ \mathsf{M} \ \mathsf{P} \ \mathsf{F} \\ \mathsf{V} \ \mathsf{N} \ \mathsf{Q} \ \mathsf{R} \ \mathsf$ Т Е DDLDDVI Ε Е V Е DS S S Ρ

 K
 K
 F
 T
 S
 C
 T
 T
 S
 C
 C
 T
 T
 S
 C
 C
 T
 T
 S
 C
 C
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 Q Q P V V G L S Q E Q Q S L N A Q T R N P F

 P
 S
 P
 K
 V
 T

 L
 P
 G
 D
 K
 G
 L
 N
 L
 Q
 F
 K
 I
 H
 L
 Y
 T
 P
 D
 A
 N
 P
 G
 I
 A
 N
 P
 I
 A
 I
 P
 I
 A
 A
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

L

G3HGQ1 (100%), 186,663.3 Da Cation-independent mannose-6-phosphate receptor OS=Cricetulus griseus GN=I79_009791 PE=4 SV=1 14 exclusive unique peptides, 14 exclusive unique spectra, 14 total spectra, 152/1700 amino acids (9% coverage)

MPLVCSLYVH	PLPLLIGDSL	LRSSSRSLLE	FNTTTDCOPS	D S O H R T O T S I	TFLCGKTLGT
PEEVTATDCV	HYFEWRTTAA	CKKDIFKADK	EVPCYAEDDK	LKKHDLNPLI	KLSGGYLVDD
SDPETSLEIN	VCRDIDSLRD	PSTOLRACPA	GTAACLLKGD	OAFDVGRPKE	GLKLVSKDRL
VLSYVKFFAF	KPDFCNGHSP	AVTITEVCPS	FRREGTIPKL	TASSNCRYEV	EWITEYACHR
DYLESETCSI	SSECHDIAID		SYVSDGREYT	FYINVCGNAT	VPICNIKESA
VCOVKKADST	OVKIAGRHON		TILYSGODEC	SSGEORMSVI	NEECNKTAGN
DGRGEPVETG	FVDCTYFFTW	DTRYACVKEK	FDLLCGVSDG	KKRYDISVIA	RHSFSFKNWF
AVDGDOAFSE	KKYFFINVCH	RVLOFGKARS		DKNGSKNLGK	FVSSPTSFKG
Y LOI SYSDOD	DCGSDKKITT	NITIVCKPGD	IFSAPVIRTA	GPDGCFYFFF	WHTAAACVIS
KTEGENCTVE		SPITKKNGAY	KVGTEKYDEY		
VAKROFFDNS	TYNFRWYTSY	ACPEEPLECM	VTDPSMMEOY	DISSIVKSEG	RSGGNWYAMF
NSRFHVTRRK	YYINVCR PIN	PVPGCDRYAA	ACOMRYENSE	GSIAFTVSIS	NIGVAKTGPV
VEESGSIIIE	YVNGSACTTS		LHLVCGRGSL	NTHPIFTYNW	FCVVSFLWNT
FAACPLOTIT		PNSGEVENIS		PGIGKNEVEN	LCCAMPECGT
LAGNPAFGCF	ACTOTELESI	KPERPVGMEK	S L O L S T E G E L	TITYKCSSPS	DKGTAFIIR
ICNDDIYPGT	AKFIHODIDS	TRGIRNTEFF	FFTALACVPS	RVDCOVTDPA	GNEYDISALS
MACKPWTAVD	TSVDCKKRSE	YISVCTPIPY	LPGCHGSAVG	SCMVIPAEDR	
POADANGSIS		NORESTRILE	ECAOTICSPV	FOEVKDCEYM	EVWE TVEACE
VVRFFGDNCO	VKDPRHGNEY			FRVCCKISSN	VCHVBDGSKV
VSSCOFKKGS		TOKITYENGI	IKMNYTGGDT	CHOVYORSTT	LYFYCDRSTO
K P V F L R F T T D	CSYLEEWRTO	YACPPENVTE	CSTODGAGNS	IDISSISRYS	DNWFAVTRTG
ATEHYLINIC	KSLSPRAGGG	FPCPPFAAVC	LLDGSKPLNL	GKVRDGPOWT	GGVTVLK <mark>YVD</mark>
G D L C P D O L R K	RSTILRETCS	FSOVSSRPLE	ISAVODCEYT	FSWPTPAACP	VKNSTHDDCO
VTNPSTGHLF	DISSISGKAG	VTVSYSEKGI	VYMSICGENE	NCGAGVGACE	GOTRISVGKA
SKRLSYVDOV		CPSKSGLRYK	SVISEVCRPE	AGPTNRPMLI	SIDKOTCTLE
FSWHTPLACE	OVTECTVENG	SSIDLSPLI	HRTGGYFAYD	FSFDGTSDTT	PDFYINICOP
	G A A V C K V P V	NGPPIDIGRV	TGPPIFNPVA	NEVYLNEESS	TPCLADKHMN
YTSLLAFHCK	RGVSMGTPKI	LRTNDCDEVE	FWFTPLVCPD	FVKTOCCSVT	DEOLLYSENI
TSLSTSTFKA	RLPSIARGSD				

P10909 (100%), 52,495.0 Da Clusterin OS=Homo sapiens GN=CLU PE=1 SV=1 2 exclusive unique peptides, 2 exclusive unique spectra, 2 total spectra, 19/449 amino acids (4% coverage)					
ΜΜΚΤΙΙΙΕΥΟ				Y V N K E L O N A V	ΝΟΥΚΟΙΚΤΙΙ
FKTNFFRKTI		K E D A L N E T R E	SETKIKEIPC	VCNETMMALW	FECKPCLKOT
	LJNLLLAKKK	KLDALNLIKL	JLIKLKLLFU	VCNLIWWALW	LLCKFCLKQI
CMKFYARVCR	SGSGLVGRQL	EEFLNQSSPF	YFWMNGDRID	SLLENDRQQT	HMLDVMQDHF
SRASSIIDEL	FQDRFFTREP	QDTYHYLPFS	LPHRRPHFFF	PKSRIVRSLM	PFSPYEPLNF
HAMFQPFLEM	IHEAQQAMDI	HFHSPAFQHP	PTEFIREGDD	DRTVCREIRH	NSTGCLRMKD
OCDKCREILS	VDCSTNNPSQ	AKLRRELDES	LOVAERLTRK	YNELLKSYQW	KMLNTSSLLE
QLNEQFNWVS	RLANLTQGED	QYYLRVTTVA	SHTSDSDVPS	GVTEVVVKLF	DSDPITVTVP
VEVSRKNPKF	METVAEKALQ	EYRKKHREE			

F1LPC5 (100%), 63,343.8 Protein Tmem259 OS=R 3 exclusive unique pepti	Da attus norvegicus GN=Tme des, 3 exclusive unique sp	m259 PE=1 SV=2 Jectra, 3 total spectra, 30/5	574 amino acids (5% cover	age)	
MSEHAAAPGP	GPNGGGGGA	A P V R G P R <mark>G P N</mark>	LNPNPLINVR	DRLFHALFFK	MAVTYSRLFP
PAFRRLFEFF	V L L K A L F V L F	VLAYIHIVFS	RSPINCLEHV	RDRWPREGVL	RVEVRHNSSR
APVILQFCDG	GLGGLDLEPG	GLELEEEELS	VEMFTNSSIK	FELDIEPK V F	KPPGGADALN
DSQDFPFPET	PAKAWPQDEY	IVEYSLEYGF	LRLSQATRQR	LSIPVMVVTL	DPTREQCFGD
RFSRLLLDEF	LGYDDVLMSS	VKGLAENEEN	K G F L R N V V S G	EHYRFVSMWM	ARTSYLAAFV
IMVIETLSVS	MLLRYSHHOI	EVELVDLLOM	LEMNMALAFP	AAPLLTVILA	LVGMEAIMSE
FENDITIAFY		YDALCCHINT	SKRHWIRFFY	ΙΥΗΕΔΕΥΔΥΗ	YRENGOYSSI
	HSMIYEEHHY	FLPALLOOLR			
		CCASCPCSIC		CWVAETAALI	S D A S E I S C I S
				0	3073153053
AJLLLKKPAA	FJAFUJAKPU	FUAJLEDAFA	FAUS		

P R D V E

CP8

Q9HDC9 (100%), 46,481.5 Da Adipocyte plasma membrane-associated protein OS=Homo sapiens GN=APMAP PE=1 SV=2 8 exclusive unique peptides, 10 exclusive unique spectra, 10 total spectra, 100/416 amino acids (24% coverage) MSEADGLRQR <mark>RPLRPQVVTD DDGQAPEAK</mark>D GSSFSGRVFR VTFLMLAVSL TVPLLGAMML

LESPIDPQPL	S F K <mark>E P P L L L G</mark>	<mark>V L H P N T K</mark> L R Q	A E R <mark>L F E N Q L V</mark>	GPESIAH IGD	VMFTGTADGR
V V K <mark>L E N G E I E</mark>	TIAR F G S G P C	KTRDDEPVCG	RPLGIRAGPN	GTLFVADAYK	GLFEVNPWKR
E V K <mark>L L L S S E T</mark>	PIEGK NM SFV	NDLTVTQDGR	KIYFTDSSSK	WQRR <mark>DYLLLV</mark>	MEGTDDGR LL
EYDTVTREVK	VLLDQLR FPN	GVQLSPAEDF	VLVAETTMAR	IRRVYVSGLM	KGGADLFVEN
MPGFPDNIRP	S	STIRPNPGFS	MLDFLSERPW	IKRMIFK <mark>LFS</mark>	QETVMK FVPR
YSLVLELSDS	GAFRRSLHDP	DGLVATYISE	VHEHDGHLYL	GSFRSPFLCR	LSLQAV

A0A096P063 (100%), 34,826.0 Da Arginase OS=Papio anubis GN=ARG1 PE=3 SV=1 2 exclusive unique peptides, 2 exclusive unique spectra, 2 total spectra, 22/323 amino acids (7% coverage)

M S A K S R <mark>T I G I</mark>	IGAPFSK GQP	R G G V E E G P T V	LR KAGLLEKL	EEQECDVKDY	GDLSFADIPN
DSPFQIVKNP	RSVGKATEQL	AGKVAEVKKN	GRISLVLGGD	HRSLAIGSIS	GHASVHPDLG
VIWVDAHTDI	NTPLTTTGN	LHGQPVSFLL	KELKGKIPDV	PGFSWVTPCI	SAKDIVYIGL
RDVDPGEHYI	LKTLGIKYFS	MTEVDRLGIG	KVMEETLSYL	LGRKKRPIHL	SFDVDGLDPS
FTPATGTPVV	GGLSYREGLY	ITEEIYKTGL	LSGLDIMEVN	PSLGKTPEEV	TRTVNTAVAI
ILACFGVARE	GNHKPIDYLN	РРК			

G3HZE5 (100%), 69,919.3 Da

Heat shock 70 kDa protein 1A OS=Cricetulus griseus GN=179_016446 PE=3 SV=1

6 exclusive unique peptides, 6 exclusive unique spectra, 14 total spectra, 81/641 amino acids (13% coverage)

MAKSTAIGID	LGTTYSCVGV	FQHGK <mark>VEIIA</mark>	NDQGNRTTPS	YVAFTDTER L	IGDAAKNQVA
LNPQNTVFDA	KRLIGRKFGD	АVVQАDМКНW	PFQVVNDGDK	PKVQVSYKGE	TRAFYPEEIS
SMVLTKMKEV	AEAYLGHPVT	NAVITVPAYF	N D S Q R Q A T K <mark>D</mark>	AGVIAGLNVL	R I I N E P T A A A
IAYGLDRSGK	GERNVLIFDL	GGGTFDVSIL	TIDDGIFEVK	ATAGDTHLGG	EDFDNRLVSH
FVEEFKRKHK	KDISQNKRAV	RRLRTACERA	KRTLSSSTQA	NLEIDSLFEG	IDFYTSITRA
RFEELCADLF	RGTLEPVEKS	LRDAKMDKAK	IHDIVLVGGS	TRIPKVQKLL	QDFFNGRDLN
KSINPDEAVA	YGAAVQAAIL	MGDKSENVQD	LLLLDVAPLS	LGLETAGGVM	TALIKRNSTI
ΡΤΚ <mark>QTQTFTT</mark>	YSDNQPGVLI	Q V Y E G E R A M T	<u>R D N N L L G </u> R F E	LSGIPPAPRG	VPQIEVTFDI
DANGILNVTA	Т К К Т Б К А	I T I T N D K G R <mark>L</mark>	SKEEIER MVQ	EAERYKAEDE	VQRERVAAKN
ALESYAFNMK	SAVEDEGLKG	KISEADRKKV	LDGCQEVISW	LDANTLADKE	EFVHKRQELE
RVCGPIVSGL	Y Q G A G A P G A G	G	SGSGPTIEEV	D	

P29508 (100%), 44,565.9 Da
Serpin B3 OS=Homo sapiens GN=SERPINB3 PE=1 SV=2
22 exclusive unique peptides, 27 exclusive unique spectra, 28 total spectra, 194/390 amino acids (50% coverage)

M N S L S E A N T K	FMFDLFQQFR	KSKENNIFYS	PISITSALGM	VLLGAKDNTA	Q Q Ι K <mark>K V L H F D</mark>
QVTENTTGKA	ATYHVDRSGN	VHHQFQKLLT	E F N K <mark>S T D A Y E</mark>	LKIANKLFGE	K T Y L F L Q E Y L
DΑΙΚΚ <mark>ΓΥQΤS</mark>	VESVDFANAP	EESRKKINSW	VESQTNEK IK	NLIPEGNIGS	NTTLVLVNAI
Y F K G Q W E K <mark>K F</mark>	NKEDTKEEK F	WPNKNTYKSI	Q	FASLEDVQAK	V L E I P Y K G K D
L S M I V <mark>L L P N E</mark>	IDGLQK LEEK	L T A E K <mark>L M E W T</mark>	SLQNMRETRV	DLHLPRFKVE	ESYDLKDTLR
TMGMVDIFNG	DADLSGMTGS	R <mark>G L V L S G V L H</mark>	K A F V E V T E E G	ΑΕΑΑΑΑΤΑΥΥ	GFGSSPTSTN
EEFHCNHPFL	F F I R <mark>Q N K T N S</mark>	ILFYGR FSSP			

G3HYQ1 (100%), 27,689.8 Da 14-3-3 protein sigma OS=Cricetulus griseus GN=I79_016192 PE=3 SV=1 6 exclusive unique peptides, 8 exclusive unique spectra, 9 total spectra, 51/248 amino acids (21% coverage)

MEKASLIQKA	K <mark>L A E Q A E R</mark> Y E	DMAAFMKGAV	EKGEELSCEE	RNLLSVAYKN	VVGGQRAAWR
V L S S I E Q K S N	EEGSEEKGPE	V Κ <mark>Ε Υ <mark>Ε Ε Κ V Ε Τ</mark></mark>	E L R G V C D T V L	GLLDSHLIKE	AGEAGSRVFY
L K M K G D Y Y R <mark>Y</mark>	LAEVATGDDK	KR IIDSAR SA	YQEAMDISKK	EMPPTNPIRL	GLALNFSVFH
YEIANSPEEA	ISLAKTTFDE	AMADLHTLNE	DSYKDSTLIM	QLLRDNLTLW	TADSAGEEGG
EAPEEPQS					

Fig.S4 Mass spectrometric identification of APMAP-interacting proteins. Peptides identified by LC-MS/MS after tryptic digestion of eight different APMAP-containing low and high molecular weight protein complexes (CP1-CP8) from selected SEC fractions resolved by native-PAGE (see Fig.3) are highlighted in yellow in the primary sequences. Modifications are highlighted in green.

Fig.S5 Treatments with siRNAs targeting fetuin-A, serpinB3, stratifin, LAMP-1 and membralin do not affect APP-FL, APP-CTFs, or APMAP. The knockdown of the indicated APMAP-interacting proteins was performed as described in Fig.4 by small interfering RNA (siRNA) in HEK cells overexpressing APP bearing the Swedish mutation that causes early-onset familial Alzheimer's disease (HEK-APPSwe). Cells were treated for 3 days with siRNA duplexes (listed in the Materials and Methods section) complexed with Lipofectamine RNAiMax (Invitrogen). Whole cell extracts were prepared in HEPES buffer containing 1% NP40 and analyzed by Western blot for the siRNA protein targets APP-FL, APP-CTFs and APMAP. Cells transfected with the allstar control siRNA (scramble) served as negative controls while actin served as a protein loading control. APP-FL: APP full-length; APP-CTFs: APP-C-terminal fragments.

Gerber et. al., Supplementary Fig.S6

Fig.S6 Depletion of individual APMAP interacting proteins does not affect the level of α -, β - or γ -secretases. **a** The same whole-cell extracts as in Fig.4a, prepared from biological triplicates of HEK-APPSwe cells treated for three days with siRNA duplexes targeting the indicated APMAP-interacting proteins were analyzed by Western blot for the siRNA proteins targets, α -secretase ADAM10, β -secretase BACE1 and γ -secretase catalytic site protein presenilin-1 N-terminal fragment (PS1-NTF). Cells transfected with the allstar control siRNA (scramble) served as negative controls while actin served as a protein loading control. **b** Densitometric analysis of the ADAM10, BACE1 and PS1-NTF Western blot bands in (**a**). Student's *t*-test was applied for statistical analysis; significance is shown as the mean \pm SEM, *P<0.05; ADAM10, BACE1 and PS1-NTF: n=3/group.

Fig.S7 N-linked glycosylation of APMAP1 and absence of glycosylation of APMAP2. The glycosylation profiles of APMAP1 and APMAP2 were estimated by Western blot analysis of denatured human cortical lysates of two control brains and three neuropathologically verified AD brains treated for one hour at 37°C in the presence (+) or absence (-) of Peptide-N-glycosidase F (PNGase F) to catalyze the cleavage of N-linked oligosaccharides. For APMAP1, the PNGase-dependent band shift (from APMAP1 to Deglyc APMAP1) reveals an N-linked glycosylation. For APMAP2, the absence of a band shift confirms an unglycosylated protein.

Fig.S8 APMAP1 predicted N-glycosylation at residue Asn160, while APMAP2 is unglycosylated. **a** Glycosylation site prediction in human APMAP1 with NetNGlyc 1.0 (http://www.cbs.dtu.dk/services/NetNGlyc/), by using artificial neural networks that analyzed the sequence context of Asn-Xaa-Ser/Thr. Asn160 was the only site with a predicted high probability N-glycosylation (potential > 0.5 and Jury agreement 9/9). **b** Primary sequence of human APMAP1 with the cytosolic N-terminal domain underlined, the transmembrane domain in bold and exons 3, 4 and 5 in yellow. The predicted Nglycoylated residue Asn160 on exon 5 is displayed in red. **c** The human alternative splicing variant APMAP2 lacks exons 3 and 4 and exon 5 containing the predicted glycosylation site Asn160.

Fig.S9 The protein levels of the APMAP interactomers clusterin, calnexin, Arg1, PTGFRN and CI-M6PR are unchanged in AD brains. **a** The protein levels of the indicated APMAP interactomers were estimated by Western blot analysis in cortical lysates of 14 control brains and 14 neuropathologically verified AD brains (same samples as in Figure 5). **b** The densitometric analysis of the Western blot bands in (**a**) revealed no statistically relevant changes (Student's t-test) in the control and AD brains.