Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

Supporting Information

for Adv. Healthcare Mater., DOI: 10.1002/adhm.201800441

3D-Plotted Beta-Tricalcium Phosphate Scaffolds with Smaller Pore Sizes Improve In Vivo Bone Regeneration and Biomechanical Properties in a Critical-Sized Calvarial Defect Rat Model

Jingjing Diao, Jun OuYang, Ting Deng, Xiao Liu, Yanting Feng, Naru Zhao, * Chuanbin Mao, * and Yingjun Wang*

WILEY-VCH

Supporting Information

3D-Plotted beta-Tricalcium Phosphate Scaffolds with Smaller Pore Sizes Improve in Vivo Bone Regeneration and Biomechanical Properties in a Critical-Sized Calvarial Defect Rat Model

Jingjing Diao, Jun OuYang, Ting Deng, Xiao Liu, Yanting Feng, Naru Zhao^{*}, Chuanbin Mao^{*}, Yingjun Wang^{*}

Figure S1. Schematic illustration of the custom- designed testing device and biomechanical testing process of the implants after the defects were implanted with scaffolds of different pore sizes (100 μ m, 250 μ m, 400 μ m) and autogenous bone for 4, 8, and 12 weeks. a) A universal nut (M5 model). b) The nut in (a) welded by a custom-made sheet-metal (a hole with 5 mm in diameter). c) Biomechanical testing process.