A protein complex from human milk enhances the activity of antibiotics

and drugs against *Mycobacterium tuberculosis*

Virginia Meikle¹, Ann-Kristin Mossberg², Avishek Mitra¹, Anders P. Hakansson² and Michael Niederweis¹*

¹ Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America

² Department of Translational Medicine, Division of Experimental Infection Medicine, Lund University, Malmo, Sweden

*Corresponding author:

845 19th Street South, BBRB 609, Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, U.S.A Phone: +1-205-975-4390 Corresponding author email address: mnieder@uab.edu

SUPPLEMENT

Supplementary Tables

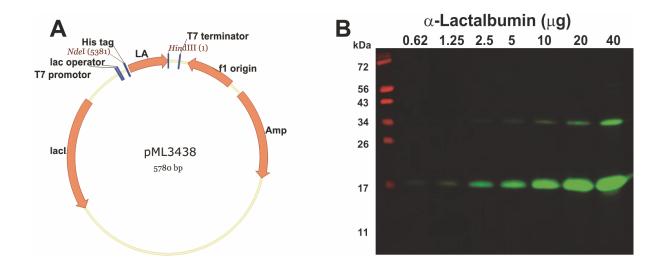
Name	Sequence (5' to 3')
Ndel-his-mutLA	TATTAACATATGCACCACCACCACCACCACCACAAACAGTTCACAAAATC TGAATTG
HindIII-LA rev	CTAGATAAGCTTTACAGTTTCTCGCTA

Table S1: Oligonucleotides used in this work.

Strain	Parent strain and relevant genotype	Reference
E. coli DH5α	$SUDE44$: $\Psi \delta U \Delta I A C \Delta I M I D \Delta I A C A A A I Q F$: UE 109	(1)
<i>E. coli</i> BL21(DE3)	<i>E. coli</i> B derivative; F^- <i>ompT gal dcm lon hsdS</i> _B ($r_B^ m_B^-$) λ (DE3 [<i>lacl lacUV5</i> -T7 gene 1 <i>ind1 sam7 nin5</i>])	(2)
<i>M. tuberculosis</i> H37Rv	wild-type	ATCC 25618
<i>M. tuberculosis</i> mc ² 6206	H37Rv derivative, Δ <i>leuCD,</i> ΔpanCD	(3)
	Non-encapsulated derivative of the wild-type strain D39; obtained from Dr. D. E. Briles	(4)

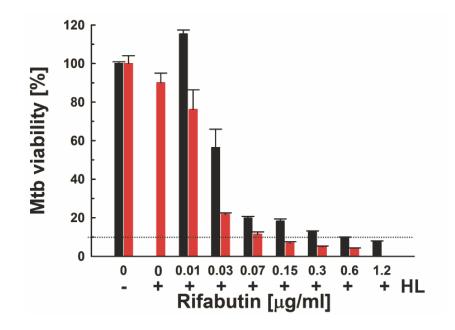
Table S2. Strains used in this work.

Plasmid	Components and properties	Reference
pET-21(b)+	f1 origin of replication, amp ^R , T7lac	Novagen
	pET-21(b)+ - derivative; α-lactalbumin expression plasmid; ColE1 origin; amp ^R ; 5780 bp	(this study)


Table S3. Plasmids used in this work.

•

The annotation amp^R indicates that the plasmid confers resistance to ampicillin. "Origin" denotes the origin of replication.


2

Supplementary Figures

Fig. S1. Expression vector and production of recombinant α-lactalbumin from *E. coli*.

A. Map of the α -lactalbumin expression plasmid pML3438. The recombinant α -lactalbumin gene (*hALA*) encodes a mutated human α -lactalbumin (C6S, C28S, C61S, C73S, C77S, D87A, C91S, C111S, C120S) with an N-terminal histidine tag comprising eight histidines. Transcription of the *hALA* gene is initiated from the bacteriophage T7 promoter. The *bla* gene confers resistance to ampicillin. **B.** The recombinant α -lactalbumin protein was purified by Ni(II) affinity chromatography. Different amounts of α -lactalbumin (LA) were loaded on a protein gel and detected by a monoclonal antibody in a western blot. The theoretical molecular mass of the recombinant α -lactalbumin is 15 kDa. The band with an apparent molecular mass of app. 34 kDa is probably dimeric α -lactalbumin.

Fig. S2. HAMLET potentiates the efficacy of rifabutin against M. tuberculosis

M. tuberculosis H37Rv was incubated with increasing concentrations of rifabutin in the absence (black bars) or presence (red bars) of 90 μ g/ml HAMLET (75% of the MIC₉₀). The viability of *M. tuberculosis* H37Rv was determined by the microplate Alamar Blue assay. Error bars represent standard errors of the mean values of biological triplicates.

Supplementary References

- 1. **Hanahan, D.** 1983. Studies on transformation of *Escherichia coli* with plasmids. J Mol Biol **166:**557-580.
- 2. **Studier, F. W., and B. A. Moffatt.** 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. **189:**113-130.
- 3. Sampson, S. L., C. C. Dascher, V. K. Sambandamurthy, R. G. Russell, W. R. Jacobs, Jr., B. R. Bloom, and M. K. Hondalus. 2004. Protection elicited by a double leucine and pantothenate auxotroph of *Mycobacterium tuberculosis* in guinea pigs. Infect Immun **72:**3031-3037.
- 4. Avery, O. T., C. M. Macleod, and M. McCarty. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type iii. J Exp Med **79:**137-158.