Transcriptional repression of IKK β by p53 in arsenite-induced GADD45 α accumulation and apoptosis

Yongliang Hu^{1,*}, Rui Jin^{4,*}, Ming Gao^{1,5,*}, Huan Xu¹, Shuxian Zou^{1,2}, Xiaoguang Li¹, Chen Xing¹, Qiyu Wang¹, Hongli Wang¹, Jiannan Feng¹, Meiru Hu¹, Lun Song^{#, 1, 2, 3} Hu Y, et al. Figure S1

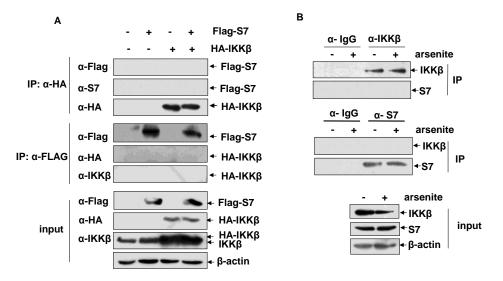


Figure S1: IKK β neither interacts with S7 nor regulates its expression level under both resting and arsenite exposure conditions. (A) HepG2cells were either left untreated or transfected with the expression plasmid encoding FLAG-S7 or in combination with HA-IKK β construct. Cell lysate were immunoprecipitated with anti-HA or anti-FLAG antibody and then the immunoprecipitants were probed with the antibodies as indicated. (B) HepG2 cells were left untreated or treated with arsenite (20 μ M) for 6 h. Cell lysate were immunoprecipitated with anti-IKK β , anti-S7 antibody or the control IgG, and then the immunoprecipitants were probed with the antibodies as indicated.

Hu Y, et al. Figure S2

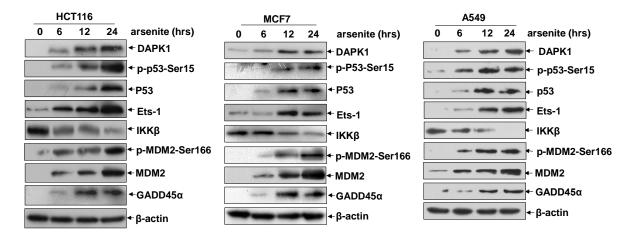
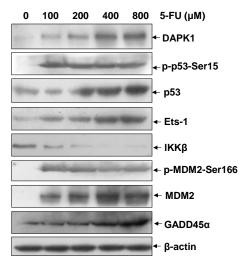



Figure S2: DAPK1/p53/Ets-1/IKK β /MDM2/GADD45 α pathway is activated by arsenite in different cancer cell lines. HCT116, MCF7 and A549 cells were left untreated or treated with arsenite (20 μ M). Then the activation of the DAPK1/p53/Ets-1/IKK β /MDM2/GADD45 α pathway was detected at 12 h after arsenite exposure.

Hu Y, et al. Figure S3

Figures S3: DAPK1/p53/Ets-1/IKK β /MDM2/GADD45 α pathway is activated by 5-Fu in HepG2 cells. HepG2 cells were left untreated or treated with different doses of 5-Fu as indicated. Then the activation of the DAPK1/p53/Ets-1/IKK β /MDM2/GADD45 α pathway was detected at 12 h after 5-Fu exposure.