Abnormal brown adipose tissue mitochondrial structure and function in IL10 deficiency

José C. de-Lima-Júnior^{1,2}, Gabriela F. Souza^{1,2}, Alexandre Moura-Assis^{1,2}, Rodrigo S. Gaspar^{2,3}, Joana M. Gaspar^{1,2}, Andréa L. Rocha⁴, Danilo L. Ferrucci^{5,6}, Tanes I. Lima^{2,4}, Sheila C. Victório^{1,2}, Ivan L. P. Bonfante⁷, Claudia R. Cavaglieri⁷, José C. Pareja⁸, Sérgio Q. Brunetto⁹, Celso D. Ramos^{2,10}, Bruno Geloneze^{2,8}, Marcelo A. Mori⁴, Leonardo R. Silveira^{2,4}, Gesmar R. S. Segundo¹¹, Eduardo R. Ropelle^{2,3}, Lício A. Velloso^{1,2*}

Materials and methods

PET/CT image analyse in mice

Images were acquired and processed using ALBIRA, a small animal PET/SPECT/CT in vivo imaging system (Bruker® Corporation, Massachussetts, USA) and analyzed using a PMOD workstation, also from Bruker®. (18F)-FDG was obtained from the Nuclear and Energy Research Institute (IPEN, Sao Paulo, Brazil). Mice were anesthetized with 2% isoflurane and injected in the venous sinus with 5 MBq of 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG). Mice were keep awake and exposed at 4 °C during uptake period of 60 minutes. The computed tomography was performed as a low-dose acquisition with 80 kVp, 160 μA, and 1024 projections, during 0.8s per CT rotation, pitch 4.0 – 5.0 mm, field of view of 71.3mm and a scan speed of 24.6 mm/s. The PET scan was performed immediately after the CT scan without changing the position of the mice, always in the craniocaudal direction from head to proximal thighs. After 60 minutes of [18F]FDG uptake, PET scans were started for a total duration of 40 min. PET scans were reconstructed using the PMOD in LabPET software and images were calibrated in Bq per mL by scanning a phantom cylinder. Regions of interest (ROI) were drawn on surrounding slices on CT scans and reconstructed as three-dimensional volumes to measure densities and uptake of each desired tissue. Then, PET images were processed and converted

into standardized uptake values (SUVs) adjusted by body weight of each animal and superimposed on the CT anatomical image to measure [18F]FDG uptake in the indicated tissue.

In vivo Multiphoton Redox and Fluorescence Lifetime Imaging (FLIM)

Before imaging, the mice were anesthetized with an intraperitoneal injection of a mixture of ketamine (200mg / kg), xylazine (5mg / kg) and diazepam, and the interscapular BAT was dissected rapidly and then minced into very small fragments in a chambered coverglass for acquiring images. The multiphoton images were obtained with the Zeiss LSM780-NLO com Becker&Hickl Photon Counting at the University of Campinas. The source was a titanium sapphire laser. A FLIM image z-stack was collected from the same tissue volume at 890-nm excitation. Single photon counting was accomplished at a rate of 5 x 10^4 photons per second. We used SPCImage software (Becker and Hickl) to evaluate the fluorescence lifetime decay curves. The redox ratio was calculated dividing FAD fluorescence intensity by NADH fluorescence intensity, pixel by pixel, using ImageJ.

Quantitative RT-PCR

Total RNA was extracted from mouse BAT by using TRIzol reagent (Invitrogen) according to the manufacturer's recommendations. The cDNA synthesis was performed using 2.0 μ g of total RNA according the manufacturer's instructions (High Capacity cDNA Reverse Transcription Kit, Life Technologies). Each PCR contained 25–40 ng of reverse-transcribed RNA, 0.25 μ l of each specific primer, Taqman Universal master mix (Life Technologies), and RNAse-free water to a 10 μ l final volume. Real time PCR analysis of gene expression was carried out in an ABI Prism 7500 sequence detection system (Applied Biosystems). Primers were purchased from Applied Biosystems or Integrated DNA Technologies. Relative gene expression was normalized to that of GAPDH in all samples according to the $\Delta\Delta$ Ct method. Real-time data were analyzed using the Sequence Detector System 1.7 (Applied Biosystems). The nucleotide sequences of the primers are: Pgc-1 α - Forward primer (5'-3') – AGCCGTGACCACTGACAACGAG and Reverse

2

primer (5'-3') – GCTGCATGGTTCTGAGTGCTAAG; Ucp1 - Forward primer (5'-3') GGCCTCTACGACTCAGTCCA and Reverse primer (5'-3') – TAAGCCGGCTGAGATCTTGT.

Rectal temperature and interscapular brown adipose tissue thermal release

To evaluate core temperature we performed the measurements using a digital thermometer (BAT-7001H, Clifton, NJ, USA) in combination with a copper-constantan thermocouple rectal probe (RET-3) obtained from Physitemp Instruments (Clifton, NJ, USA). The probe was petroleum jelly-lubricated before being positioned in the rectum at 2-2.5 cm for 1 second. Measurements were taken every hour after exposure to cold. For the detection of interscapular brown adipose tissue thermal release, an infrared (IR) camera (FLIR T450sc, FLIR Systems, Inc. Wilsonville, USA) was employed to obtain surface images of each mouse with an IR resolution of 320×240 pixels and a Thermal sensitivity / NETD of <40 mK @ +30 ° C (+ 86 ° F). Images were presented in rainbow high contrast form available in the color palette of the free software FLIR Tools IR.

Metabolic phenotyping and locomotor activity.

The physiological markers of energy expenditure (O_2 consumption, CO_2 production, RER, heat rate, and ambulatory activity) were measured using an open circuit calorimeter system, the LE405 Gas Analyzer (Panlab – Harvard Apparatus, Holliston, MA, USA), which was calibrated as recommended by the manufacturer. Mice were acclimated for 24 h in the apparatus, and thereafter, data were recorded for 24 h (light and dark periods).

Supplementary Figures

Supplementary Figure 1. Flow diagram of obese volunteers submitted to Roux-in-Y gastric bypass (RYGB).

Supplementary Figure 2. IL10 is associated with energy expenditure, but not with BAT metabolic activity in obese individuals underwent bariatric surgery (RYGB). A-D, Comparison of BAT metabolic activity before and after RYGB (n=7). A, BAT volume; B, SUV_{lean/mean}; C, SUV_{lean/peak}; D, SUV_{lean/max}. E-H, Comparison of inflammatory/metabolic parameters before and after RYGB (n=8-12). E, Serum IL10 levels; F, energy expenditure; G, respiratory quotient; H, glucose infusion rate during euglycemic hyperinsulinemic clamp. I-L, Correlation of serum levels of IL10 and BAT metabolic activity or energy expenditure in obese individuals before RYGB (n=7-8). I, Serum IL10 levels versus energy expenditure using generalized linear models with estimated lean body mass; J, serum IL10 levels versus SUV_{lean/mean} (2 data points are outside of the axis limits). K-L, Correlation of serum IL10 and BAT metabolic activity or energy expenditure in obese subjects after RYGB (n=7-8). K, Serum IL10 levels versus energy expenditure of the axis limits). K-L, Correlation of serum IL10 levels versus subjects versus energy expenditure in obese subjects after RYGB (n=7-8). K, Serum IL10 levels versus subjects versus energy expenditure in obese subjects after RYGB (n=7-8). K, Serum IL10 levels versus energy expenditure using generalized linear models with estimated LBM; L, Serum IL10 levels versus subjects versus energy expenditure using generalized linear models with estimated LBM; L, Serum IL10 levels versus subjects versus subjects are outside of the axis limits).

Supplementary Figure 3. No acute thermogenic response to IL10 treatment. Male WT mice were treated with saline, recombinant IL10 (10 μ g/kg/dose) or the β_3 -agonist CL316,243 (1mg/kg/day) to evaluate acute thermogenic response after IL10. **A**, Representative surface infrared iBAT temperature image before and after indicated treatment. **B**, Surface infrared iBAT temperature before and after indicated treatment. **C**, Surface infrared iBATdelta temperature before and after indicated treatment. **D**, Whole body O₂ consumption before and after indicated treatment. **E**, Nonshivering thermogenesis calculated from (**D**) data. **F**, Acute treatment of immortalized primary brown adipocyte precursor cells. Western blot representative image measuring Phospho-(Ser/Thr) PKA Substrates after indicated treatments. **G**, Densitometry quantification of Phospho-(Ser/Thr) PKA Substrates normalized by alfa tubulin. N = 3 per condition. Ordinary one-way ANOVA was performed.

Supplementary Figure 4. IL10 KO mice have preserved thermogenic capacity. **A**, Wet tissue weight of BAT. **B**, iBAT total protein content. **C**, iBAT protein density. **D**, UCP1 per mg of tissue. **E**, UCP1 total content per depot calculated as **B** multiplied by **C**. WT was normalized to 1. The Representative western blot image measuring UCP1 is depicted in the right-hand bottom corner of the figure. N = 4 per condition. *After stripping, this membrane was the same used to blot anti-OPA1 and Mfn 2 (Fig. 4H), TFAM and OXPHOS (Supp. Fig. 6 A). The loading control used is the same, as indicated in supplementary material with details about cut blots. F, Change in iBAT temperature during a BAT thermogenic capacity analysis using CL-induced thermogenesis test in awake mice. G, Change in O2 consumption during a BAT thermogenic capacity analysis using CL-induced thermogenesis test in awake mice. N = 4 mice per condition. Student's unpaired t-test was performed. * p< 0.05*

Supplementary Figure 5. IL10 KO mice have preserved diet-induced thermogenesis. A-B, Effect of high-fat diet on oxygen consumption (VO₂) in awake male WT mice. N = 4. **C**, Effect of high-fat diet on PGC-1 α mRNA levels in awake male WT mice and IL10KO mice. N = 5 per condition. **D**, Effect of high-fat diet on Ucp1 mRNA levels in awake male WT mice and IL10KO mice. N = 5 per condition. Data indicate means ± SEM. *p \leq 0.05; **p \leq 0.01; ***p \leq 0.001, Statistical analysis was performed using Student's unpaired t test.

Supplementary Figure 6. Assessment of iBAT glycolysis using ¹⁸F-FDG PET/CT and analysis of metabolic status using FLIM. A, Representative image and quantification of 2h cold-stimulated iBAT ¹⁸F-FDG uptake (SUVmax) in WT and IL10 KO mice. **B**, Representative fluorescence lifetime imaging obtained using ex vivo iBAT from WT and IL10 KO mice. **C**, FLIM of autofluorescent NADH. **D**, FLIM of autofluorescent FAD. **E**, Reduction-oxidation pair NADH:NAD+ (redox ratio) between WT and IL10 KO mice. In **A**, n = 4. In **B-E**, n = 5. Data indicate means \pm SEM. **p \leq 0.01. Statistical analysis performed using Student's unpaired t test.

Supplementary Figure 7. Analysis of OXPHOS complex proteins and liver mitochondria respiration. A-D, Representative Western blot image of OXPHOS complex proteins and TFAM in iBAT from WT and IL10 KO mice. N = 4 per condition. *After stripping, this membrane was the same used to blot anti-OPA1 and Mfn 2 (Fig. 4H), and anti-UCP1 (Supp. Fig. 4E). The loading control used is the same, as indicated in supplementary material with details about cut blots.* N = 4 per condition. **E**, Quantification of complex I-driven (pyruvate-malate) oxygen consumption rates (OCR) in liver isolated mitochondria from wild type (WT) and IL10 KO mice. State 2 quantifies no-ATP synthesis-related respiration (proton leak). State 3 quantifies OCR coupled to maximal ATP synthesis. State 4oligo quantifies rate of basal non-phosphorylating oxygen consumption after oligomycin and state 3u quantifies maximal respiration induced by FCCP. Bar graphs show average \pm SEM per experiment (n= 3 - pool of 3 mice per group). Statistical analysis was performed using Student's t-test, unpaired; two-way ANOVA was performed using Sidak's test, p< 0.05.

Supplementary Tables

Supplementary Table 1. Clinical trials on going targeting brown adipose tissue

Study title	Identifier	Intervention
Longitudinal Follow-up of Brown Adipose Tissue Function and Structure	NCT01985503	Observational
The Effects of Capsinoids on Brown Adipose Tissue Activation in Obesity	NCT03110809	Capsinoid vs placebo
Study of the Effect of Vagus Nerve Stimulation on Human Brown Adipose Tissue Activity	NCT01491282	Enabling and disabling vagal nervous system
STAGES Trial: Study of Adiposity, Growth and Endocrine Stages	NCT01460784	Observational
Dopaminergic Effects on Brown Adipose Tissue	NCT02428933	Bromocriptine
CB1 Receptors in Human Brown Adipose Tissue	NCT02941172	Observational
Brown Adipose Tissue and Body Mass Index	NCT02173834	Observational
Detection of Brown Adipose Tissue by Magnetic Resonance Imaging (BAT_PET/MRI)	NCT02237872	Observational
Secretin Activates Human <mark>Brown Adipose Tissue</mark> .	NCT03290846	Secretin
Effects of b3-Adrenergic Receptor Agonists on Brown Adipose Tissue	NCT01783470	Mirabegron
The Detection and Factors of Brown Adipose Tissue in Different Locations of Adults	NCT01387451	Observational
Hyperpolarized Xenon-129 Magnetic Resonance Imaging and Spectroscopy of Brown Fat: Healthy Adult Volunteer Pilot Study	NCT02220426	Observational
Mirabegron and Brown Adipose Tissue	NCT03012113	Mirabegron
The Incidence and Factors of Brown Adipose Tissue in Chinese	NCT01381042	Observational
The Incidence,Factors,and Importance of Brown Adipose Tissue in Chinese Adults	NCT01387438	Observational
Exenatide and Brown Adipose Tissue (exe01)	NCT03002675	Exenatide
Adenosine and A2A Receptors in Human Brown Adipose Tissue	NCT03327168	Adenosina
The Role of Brown Adipose Tissue in Triglyceride Clearance in People	NCT02786251	Observational
Activation of Cervical and Upper Thoracic Brown Adipose Tissue in Humans Via Beta-adrenergic	NCT01015794	Ephedrine Hydrochloride

Stimulation		
Brown Adipose Tissue Activity and Age	NCT02130154	Observational
Influence of Liraglutide, a GLP-1 Receptor Agonist, on Brown Adipose Tissue (BAT) Activity in Humans	NCT02718950	Liraglutide
Brown Fat Activity and Bariatric Surgery	NCT03168009	Bariatric surgery
Brown Adipose Tissue Activity in Pre- and Postmenopausal Women	NCT02927392	Leuprolide acetate
The Effect of Brown Adipose Tissue Activation on Insulin Sensitivity in Humans	NCT01791114	Observational
GLP-1 Agonism Stimulates Browning of Subcutaneous White Adipose Tissue in ObesityMen	NCT02170324	Exenatide
Effects of Sleep Restriction on BAT Activation in Humans	NCT02770118	Sleep deprivation
Calorie Restriction Retards the Aging Process	NCT01508091	Calorie restriction
Monounsaturated Fatty Acids and Brown/Beige Adipose Tissue in Humans	NCT03024359	Extra virgin olive oil
Brown Adipose Tissue Activity and Thyroid Hormone	NCT02499471	Levothyroxine therapy
Enhancement of Brown Adipose Tissue Function Via Chronic Pharmacological Treatment	NCT02236962	Placebo, Ephedrine and pioglitazone
Activating Brown Adipose Tissue Through Exercise	NCT02365129	Exercise training
A Role for Brown Adipose Tissue in Postprandial Thermogenesis?	NCT01974778	Meal
Studying the Effect of Capsinoids on Brown FatUsing Infrared Thermal Imaging.	NCT01961674	Capsinoid/placebo and rice
BRown Fat Activity Measurement With Infrared imaginG tHermography andThermogenesis - the BRIGHT Study	NCT02790255	Observational
Chronic Intermittent Cold Exposure on Weight Loss	NCT01312090	Whole-body cryotherapy
Efficacy of Pharmacological Stimulation of BAT and WAT in Lean and Obese Young Adults	NCT02354807	Mirabegron
Effects of Hyperthyroidism on Amount and Activity of Brown Adipose Tissue	NCT02133040	Observational
Collection of Human Tissue Samples From the Neck Region for Characterization of Its Molecular and Biochemical Signatures	NCT02274805	Observational
Effects of Estrogen Deficiency on Energy Expenditure	NCT01846728	Estrogen supression
Leipzig Adipose Tissue Childhood Cohort	NCT02208141	Observational
Human <mark>Brown Adipose Tissue</mark> and Mitochondrial Respiration	NCT03111719	Observational
Cold Stress Stimulate the Browing of Subcutaneous White Adjose in Healthy Adjuts	NCT02159144	Cold stress

Brown Fat Activation Study	NCT02919176	Mirabegron and pioglitazone
Nicotinamide Riboside and Metabolic Health	NCT02835664	Nicotinamide Riboside (Niagen)
Sildenafil Activates Browning of White Adiposeand Improves Insulin Sensitivity	NCT02524184	Sildenafil
Energy Expenditure Responses to Different Temperatures	NCT01568671	Different temperatures
Cold Induced Activation of Brown Adipose Tissue in Humans	NCT03096535	Cold stress
Correlation of Irisin and Adipokine Levels With Body Mass Index and Risk Factors for Metabolic Syndrome in Hispanic Children	NCT02320110	Observational
Physiological Responses and Adaptation of Brown Adipose Tissue to Chronic Treatment With Beta 3- Adrenergic Receptor Agonists	NCT03049462	Mirabegron
A Cold Physical Treatment to Manage Insulin Resistance	NCT02852759	Selective Cold treatment and Electroacupuncture

Supplementary Table 2. Baseline data for clinical variables of middle-aged diabetic subjects

Variable	Baseline
Number of subjects	16
Age, yr	52 (7,75)
Female sex, %	100
Diabetes, %	100
Weight, kg - Mean (95% CI)	83,8 (10,53)
BMI, kg/m ²	29,3 (4,76)
Glucose, mg/dL - Mean (95% CI)	137 (49)
Insulin, mUI/mL - Mean (95% CI)	9,8 (7,63)
HbA1C, %	6,95 (1,75)
HOMA2-IR	1,33 (1,13)
BAT volume, mL - Mean (95% CI)	6,2(14,21)
SUV _{lean/mean} , g/mL	2,18 (0,49)
SUV _{lean/max} , g/mL	3,46 (2,24)
SUV _{lean/peak} , g/mL	2,86 (1,96)
LDL cholesterol, mg/dL -Mean (95% CI)	121 (52,75)
HDL cholesterol, mg/dL - Mean (95% CI)	37,5 (13,25)
Triglycerides, mg/dL - Mean (95% Cl)	121,5 (91,75)
Total cholesterol, mg/dL - Mean (95% CI)	199 (59,75)

To convert glucose to millimoles per liter, multiplies by 0.01129. Lean body mass was obtained using pletismography for correction of SUV in PET imaging. To convert cholesterol to millimoles per liter, multiplies by 0.02586. To convert triglycerides to millimoles per liter, multiplies by 0.01129. CI, confidence interval; SUV, standardized uptake value; LDL, low-density lipoprotein; HDL, high-density lipoprotein.

Variable	Before surgery	After surgery
Age, yr	36.2	37.5
	(32.7 – 39.8)	(34.0 - 41.1)
Female sex, %	100	100
Weight, kg	108.41	80.48***
Mean (95% CI)	(100.66 - 116.16)	(76.85 – 84.11)
Change from baseline, %		-25.90
Mean (95% CI)		(-30.5421.26)
Glucose, mg/dL	91.56	77.72***
Mean (95% CI)	(82.78 – 100.34)	(71.27 – 84.19)
Insulin, mUI/mL	17.21	4.69**
Mean (95% CI)	(11.05 – 23.39)	(2.88 - 6.51)
M-value 120-180	2.95	7.13**
Mean (95% CI)	(2.30 - 3.60)	(5.30 - 8.98)
SUV, g/mL	2.88	4.65
Mean (95% CI)	(-0.60 – 7.33)	(0.68 - 8.64)
LDL cholesterol, mg/dL	107	75.73*
Mean (95% CI)	(85.80 - 128.20)	(54.88 – 96.59)
HDL cholesterol, mg/dL	45	51.73
Mean (95% CI)	(40.11 – 49.90)	(40.59 – 62.88)
Triglycerides, mg/dL	83.11	66
Mean (95% CI)	(53.69 – 112.54)	(47.57 – 84.43)
Total cholesterol, mg/dL	169.78	139.55*
Mean (95% CI)	(149.85 – 189.70)	(117.88 – 157.22)
CRP, mg/dL	18.33	4.09**
Mean (95% CI)	(-14.63 - 51.28)	(-2.14 - 10.30)

Supplementary Table 3. Unadjusted baseline and 1-year follow-up for clinical variables

All patients were submitted to RYGB. The sample size does not include data from patients who lost follow-up. We performed Wilcoxon matched-pairs signed rank test. No adjustments were performed for multiple comparisons. To convert glucose to millimoles per liter, multiplies by 0.01129. To convert cholesterol to millimoles per liter, multiplies by 0.02586. To convert triglycerides to millimoles per liter, multiplies by 0.01129. CI, confidence interval; SUV, standardized uptake value; LDL, low-density lipoprotein; HDL, high-density lipoprotein. *p<0,05, **p<0,01, ***p<0,001

Unspliced immunoblot images used in this study and raw data analysis

100 KDa 70 KDa	1.1 F.I	WT	T I I I I I I	L S	SIDL P	
2.0 1.5- 1.0- 0.5- 0.0				Image: Constraint of the sector of		
OPA1 ratio to	longer form	11.10.		Unpaired t test with equal SD	A Data Set-A	
					Y	
wt - long	wt short		1	Table Analyzed	Opa1-S/L	
23962	18351	0,76583758	2			
30650	21412	0,69859706	2	Column B	II 10KO	
20414	28819	1,41172725	3			
28646	35749	1,24795783	4	VS.	vs.	
			5	Column A	WT	
			6			
KO - long	ko short		7	Unpaired t test		
NO IONS	32877	1,66735977	8	P value	0.1235	
19718		1 20121022		P value summary	ns	
19718 30101	39168	1,30121923	ų u			
19718 30101 14690	39168 20607	1,40279101	9	Significantly different? (P < 0.05)	No	
19718 30101 14690 19057	39168 20607 22940	1,40279101 1,20375715	10	Significantly different? (P < 0.05)	No	
19718 30101 14690 19057	39168 20607 22940	1,30121923 1,40279101 1,20375715	10 11	Significantly different? (P < 0.05) One- or two-tailed P value?	No Two-tailed	
19718 30101 14690 19057	39168 20607 22940	1,30121323 1,40279101 1,20375715	9 10 11 12	Significantly different? (P < 0.05) One- or two-tailed P value? t, df	No Two-tailed t=1.791 df=6	

Figure 4G – Opa1

FIGURE 4 G – Mfn2

This membrane was stripped to blot anti-UCP1 (Supp. Fig. 3E), anti-OPA1 (Fig. 4H), TFAM and OXPHOS (Supp. Fig. 6 A).

Ponceau

This load control was used for Fig. 4H, Supp. Fig. 3E and Supp. Fig. 6 A.

Unpaired t test with equal SD		A								
	onparied tiest with equal 3D	Data Set-A								
		Y								
1	Table Analyzed	Mfn2								
2				V					<u> </u>	
3	Column B	IL10KO				C				
4	vs.	vs.	H:	18 🔻	\times \checkmark	fx				
5	Column A	WT		Α	В	С	D	F	F	G
6			_		-	-	_	_		-
7	Unpaired t test		1	MITN2						
8	P value	0.4181	2							
9	P value summary	ns	3	Formant	Aroa		Boncoou	Area all peak	Mfn Boncoou	
10	Significantly different? (P < 0.05)	No	4	Jegment	2 027 549		Policeau		0 24021549	
11	One- or two-tailed P value?	Two-tailed	5	1	2.037.348	wit	wt	7 114 005	0,54521548	
12	t, df	t=0.8693 df=6	7	2	2 920 469	wt	wt	4 970 451	0,0530575	
13			0	3	5.639.406	wt	wt	4.079.451	1 12729049	
14	How big is the difference?		0	4	991 294	ko	ko	5 260 199	0 1641272	
15	Mean ± SEM of column A	0.7318 ± 0.1633 N=4	10	5	1 702 719	ko	ko	5 894 673	0.28885724	
16	Mean ± SEM of column B	0.4950 ± 0.2179 N=4	11	7	2 045 355	ko	ko	5 197 480	0,20003724	
17	Difference between means	-0.2367 ± 0.2723	12	8	6 021 447	ko	ko	5 312 066	1 13354145	
18	95% confidence interval	-0.9031 to 0.4296	13		0102211117	NO		5.512.000	1,10001110	
19	R squared	0.1119	14							
20			15							
21	F test to compare variances		16							
22	F,DFn, Dfd	1.782, 3, 3		-	1					
23	P value	0.6470								
24	P value summary	ns								
25	Significantly different? (P < 0.05)	No								
	1		1							

							ſ	_⋛ FIG	URE 4J	, d	lous			
			-	Vehicle	1/20	Anti-IL 10	Isoprotered	Vehicle	IL10 Anti-III	Isoproter	Vehicle	1/10	wr ^{Anti-IL} 20	10.10.17
					+	-			•••		1	-	5.	
1	Pági	na Inic	ial	J 🐼 Inserir Calibri (Cor	↓ Layout 'po)	da Pág	ina Fór A∸ A ▼	rmulas						
11	Colar 7	() () () ()		N I	<u>s</u> •		• <u>A</u> •	EE	Ę	57				Ŧ
	,	▼ A	в	C Ja	D	E	F	G	r P	4-				Ť
1									90					
2	Veh			Long isofor	Short isofor	m	1		- 5	3-	_	_	f t	
4	IL10			1277	2098		1,642913						· _	+
5	Anti-I	IL10		4667	8864		1,899293		t t	2				
6	Isopr	oterenol		13529	33379		2,467219		. it	- îl r			_ _	-
8	Ven IL10	_		14151	38274		2,704685		2		ΤI			
9	Anti-I	IL10		11068	34662		3,131731		Ā	1-1	<u>•</u>			
10	Isopr	oterenol		10455	44830		4,287901		<u> </u>			_ _≱-	·	
11	Veh			11145	32359		2,903454			′ <u>011</u>	_	-	_	
13	Anti-I	IL10		947	0		0,550557				8	0	.0	0
14	Isopr	oterenol								, m	Ç.	₩.		ren
15										10			MIL	, oter
16													۳.	10P1
10													•	で
											I			
				Ordinar	vone we		<u>`</u>		A	В				
				Orumar	y one-way	ANOVA	`		Data Set-A	Data Set-B	3			
									Y	l Y				
	1	Table /	Analyz	ed					Y Data 1	Y	-			
	1	Table /	Analyz	ed					Y Data 1	Y				
	1	Table /	Analyz	ed					Y Data 1	Y				

		Data Set-A	Data Set-B
		Y	Y
1	Table Analyzed	Data 1	
2			
3	ANOVA summary		
4	F	1.298	
5	P value	0.3582	
6	P value summary	ns	
7	Are differences among means statistically significant? (P < 0.05)	No	
8	R square	0.3936	
9			

	Ordinary one-way ANOVA								
		Y							
1	Table Analyzed	Data 1							
2									
3	ANOVA summary								
4	F	1.607							
5	P value	0.2839							
6	P value summary	ns							
7	Are differences among means statistically significant? (P < 0.05)	No							
8	R square	0.4455							

К	L	м	N	0	Р	Q	R	S	т	U	V	W	
lane 1	2	3	4	5	6	7	8	9	10	11	12		
134.971	337.406	173.263	1.965.355		273.506	540.406	606.577		744.577	598.627	447.042		
1.605.962	1.527.083	1.133.648	1.848.012	395.991	1.587.861	856.355	1.417.841	504.627	207.920	359.335	1.450.154		
1.005.598	3.834.740	1.518.719	615.284	684.598	2.350.134	992.305	299.092	1.962.012	1.198.527	1.080.184	674.991		
590.770	1.065.255	518.062	725.012	3.324.326	800.770	634.891	359.163	2.065.891	3.983.326	2.429.790	269.021		
1.736.719	1.171.234	279.435	2.013.912	698.577	1.288.234	979.891	2.152.497	375.627	232.092	366.506			
1.096.012	2.780.690	599.456	259.971	1.895.719	1.632.598	480.820	643.941	1.986.861	836.820	445.163			
				1.204.376				238.971					
6.170.032	10.716.408	4.222.583	7.427.546	8.203.587	7.933.103	4.484.668	5.479.111	7.133.989	7.203.262	5.279.605	2.841.208	PKA	
2.354.083	3.685.861	4.411.317	3.333.276	220.092	819.355	2.354.083	3.685.861	4.411.317	3.333.276	220.092	819.062	alfa-tubulina	
2,6209917	2,90743682	0,95721595	2,22830213	37,2734447	9,68213168	1,90505942	1,48652133	1,61720162	2,16101577	23,9881731	3,46885584		

SUPP. FIG. 4D-4E

Ponceau

	BAT US	DLO
and the second s		
And the second		
A Contract of the		
· Section for		

c

	A	В	C	D	E	F		G	Н	1	1	К	L	M	N	0	Р	
	?	UCP1 per		UCP1 per r	ng protein	- specific UCI	1 content per 20	micrograms	UCP1 per mg tissue					UCP1 per d	epot (total protein*ucp1		per mg protein)
				c57	il10			-	c57	il10	normal			c57	il10			
				19396	6590	4 969800		3295200	236536,6	983641,8	0,439589	1,828038		300974,6	563825,8	0,626369	1,173398645	
				51531	8568	8 2576550		4284400	620855,4	1278925	1,153822	2,376804		445996,7	874600,1	0,92818	1,820162616	
	20 microgra	ms = 0,02 i	ng	48684	7358	1 2434200		3679050	547011,2	1794659	1,016587	3,335263		510770,5	867834,1	1,062983	1,806081648	
				63575	5108	9 3178750		2554450	747941,2	654987,2	1,390003	1,217253		664284,6	380708,1	1,382467	0,792305597	
Ī	Conteúde pr	roteíco em	um lane:						538086,1					480506,6				
	0,02																	
	iBA		iBAT wet v	eight			total protein											
			C57	IL-10	c57	1	C57		IL-10									
			0,082	0,067	8	2 67		15,51735184	8,555259									
			0,083	0,067	8	3 67		8,654920804	10,2068									
			0,089	0,041	8	9 41		10,49154654	11,79427									
			0,085	0,078	8	5 78		10,44883431	7,45186									
	Mann-Whitney last			A				Y			1		1 /	A				
			Data Set-A		Table Analyzed	tissue weight		Mann		-Whitney test		Dete						
				Y	2			-					Data	Set-A				
	Table Analyze:	đ	Total UC	P1 protein per B/	VI 2	Column A		II 10 KO	_				١	(
	Column A		_	WT	0	-			1	Table Analyzed			Basal Terr	perature				
	VS.		ve	vs		vs.		vs.	2									
	Column B		-	IL10 KO		Column B		WT	-				14.07					
					6				3	Column A			WI					
	Mann Whitney test				7	Unpaired t test			4	VS.			VS.					
	P value		0.3429		8	P value	0.0363		5	Column B	Column B							
	Exact or approximate P value?		a? Exact		9	P value summ	ary	•										
	P value summ	P value summary ns			10	Significantly d	ifferent? (P < 0.05)	Yes	0									
	Significantly d	Significantly different? (P < 0.05) No			- 11	One- or two-tailed P value?		Two-tailed	7	Mann Whitney test								
	One- or two-ts	One- or two-tailed P value? Two-tail		d	12	t df		t=2 685 df=6	8	P value			0.0286					
	Sum of ranks	Sum of ranks in column A,B		14.00 , 22.00		N MT		1-2.003 01-0	0	Exact or approximate P value?			Exact					
	Mann-Whitney	уU	4.000		13						pprovintato	Talaot						
					14	.4 How big is the difference?			10	P value summary								
	Difference between medians			15	Mean ± SEM of column A		0.06325 ± 0.007857 N	4 11	Significantly different? (P < 0.05)			Yes						
	Median of column A 0.9956			16	Mean ± SEM	of column B	0.08475 ± 0.001548 N	-4 12	One- or tw	ne- or two-tailed P value?		Two-tailed						
	Median of column B 1.490			17	Difference between means		-0.0215 ± 0.008008		Sum of	ala la selvere A D		26.00 40	00					
	Difference: Actual -0.4942				95% confidence interval		-0.04109 to -0.001905	13	Sum of ra	inks in colun	nn A,B	20.00,10	.00					
					18	55% connoen		1-0.04103 10 -0.001303										