## SUPPLEMENTARY FIGURES

## Surface loops in a single SH2 domain are capable of encoding the spectrum of specificity of the SH2 family

Huadong Liu, Haiming Huang, Courtney Voss, Tomonori Kaneko, Wen Qin, Sachdev Sidhu and Shawn S-C. Li





**Figure S1:** Coomassie blue staining SDS-PAGE gel of Fyn SH2 variants and wild-type SH2 domains from Fyn, BRGR1, or PI3K(p85 $\alpha$ ). The proteins, in (His)<sub>6</sub>-GST fusion, were expressed in *E-coli* and purified by nickel column.



**Figure S2:** A flowchart of the Oriented Peptide Array Library (OPAL) strategy. OPAL slides were probed by different GST-SH2 domains or variants (mutants), followed by detection with anti-GST antibody and visualization with a Cy5-labeled secondary antibody.



Figure S3a: Images of OPAL slides probed by different variants.



Figure S3b: Images of OPAL slides probed by different variants.



Figure S3c: Images of OPAL slides probed by different wt SH2 domains or variants.

P-1 Heat map



**Figure S4a:** Heat map of variant selectivity for positions P-1 based on the corresponding Z scores on OPAL. Color was generated according to the Z-score (i.e., green, small Z-score; red, large Z-score).



P+1 Heat map

Figure S4b: Heat map of variant selectivity for positions P+1 based on the corresponding Z scores on OPAL. Color was generated according to the Z-score (i.e., green, small Z-score; red, large Z-score).



P+3 Heat map

Figure S4c: Heat map of variant selectivity for positions P+1 based on the corresponding Z scores on OPAL. Color was generated according to the Z-score (i.e., green, small Z-score; red, large Z-score).



P+4 Heat map

Figure S4d: Heat map of variant selectivity for positions P+4 based on the corresponding Z scores on OPAL. Color was generated according to the Z-score (i.e., green, small Z-score; red, large Z-score).



P +5 Heat map

Figure S4e: Heat map of variant selectivity for positions P+5 based on the corresponding Z scores on OPAL. Color was generated according to the Z-score (i.e., green, small Z-score; red, large Z-score).

-3.0 1.0 3.0 Κ R Н D E N Q А G Ρ Ι L V М F Y ₩ S T C

P+6 Heat map

**Figure S4f:** Heat map of variant selectivity for positions P+6 based on the corresponding Z scores on OPAL. Color was generated according to the Z-score (i.e., green, small Z-score; red, large Z-score).



**Figure S5a.** Peptide ligand array probed by different variants. N-terminal biotinlabeled peptides were incubated with neutravadin. The resulting complex was printed on the slide in quadruplicates. Each slide was probed by a different GST fused FYN-SH2 variant or a control GST-SH2 domain. A rabbit-anti-GST antibody was used to detect the bound proteins, followed by imaging with a Cy5-labeled secondary antibody. Shown are images in a laser scanner.



**Figure S5b.** Images of peptide ligand arrays probed by different Fyn SH2 variants or control wt SH2 domains.



**Figure S6:** In-solution peptide-variant binding affinities correlate with the peptide array data. The peptide-SH2 variant binding free energy ( $\Delta G$ ) were calculated from the corresponding equilibration constant (Kd) derived from florescence polarization measurements according to the equation  $\Delta G^{\circ} =-RTIn(Kd)$ . Shown is a plot of the average -  $\Delta G^{\circ}$  value for SH2 variants grouped according to their Z scores on the peptide array. The peptide array data matches well with in-solution binding assay-that is, the higher Z score the greater the binding affinity.

## FynWT



**Figure S7a:** Representative binding curves for the wt Fyn SH2 domain to different peptides obtained from fluorescence polarization measurements (see also Table 1)



**Figure S7b:** Representative binding curves for the wt Src SH2 domain to different peptides (see also Table 1)



**Figure S7c:** Representative binding curves for the wt Grb2 SH2 domain to different peptides (see also Table 1)



**Figure S7d:** Representative binding curves for the wt BRDG1 SH2 domain to different peptides (see also Table 1)



**Figure S7e:** Representative binding curves for the Variant #7 to different peptides (see also Table 1)



**Figure S7f:** Representative binding curves for the Variant #8 to different peptides (see also Table 1)



**Figure S7g:** Representative binding curves for the Variant #10 to different peptides (see also Table 1)



**Figure S7h:** Representative binding curves for the Variant #14 to different peptides (see also Table 1)



**Figure S7i:** Representative binding curves for the Variant #17 to different peptides (see also Table 1)



**Figure S7j:** Representative binding curves for the Variant #18 to different peptides (see also Table 1)



**Figure S7k:** Representative binding curves for the Variant #29 to different peptides (see also Table 1)

| Bait peptide             | Sequence                      | Motif        | Total variants | Library 3+3 | Library 3+x |
|--------------------------|-------------------------------|--------------|----------------|-------------|-------------|
| pYEEI-variant 2N#        | EPQpYE <b>N</b> EEE           | P+2N         | 0              | 0           | 0           |
| pYEEI-variant 3I#        | EPQpYEE <b>I</b> EE           | P+3I         | 11             | 5           | 6           |
| pYEEI-varient_4L#        | EPQpYEEE <b>L</b> E           | P+4L         | 14             | 8           | 6           |
|                          |                               |              |                |             |             |
| VEGFR1-pY1213#           | DVRpYV <b>N</b> AAKF          | P+2N         | 0              | 0           | 0           |
| ShcA-pY239#              | DHQpYY <u>N</u> DAPG          | P+2N         | 20             | 8           | 12          |
| β2-adrenoreceptor-pY350# | SKApYG <u>N</u> GASS          | P+2N         | 0              | 0           | 0           |
| PDGFRβ-pY716#            | AELpYS <u>N</u> AAPV          | P+2N         | 14             | 8           | 6           |
| ErbB2-pY1139#            | QPEpYV <u>N</u> QADV          | P+2N         | 2              | 1           | 1           |
| TIE2-pY1102              | RKTpYV <u>N</u> TTLY          | P+2N         | 0              | 0           | 0           |
|                          |                               |              |                |             |             |
| FCERB-pY219              | DRVpYEE <b>L</b> NIYS         | P+3L         | 0              | 0           | 0           |
| SIG11-pY668              | TTEpYSE <u>I</u> KIHT         | P+3I         | 5              | 5           | 0           |
| CD79A-pY188              | ENLPYEG <b>L</b> NLDD         | P+3L         | 14             | 7           | 7           |
| CEA20-pY578              | ESIPYEV <b>L</b> GMQQ         | P+3L         | 4              | 3           | 1           |
|                          |                               |              |                |             |             |
| TRAF7-pY275*             | QDTpYETH <b>L</b> ET          | P+4L         | 2              | 2           | 0           |
| MALT1-pY470*             | RNDpYDDT <u>I</u> PI          | P+4I         | 3              | 0           | 3           |
| RSKL-pY423               | YQHpYDLD <b>L</b> KD          | P+4L         | 0              | 0           | 0           |
| B-raf-pY85*              | YEEPYTSK <b>L</b> DA          | P+4L         | 0              | 0           | 0           |
|                          |                               |              |                |             |             |
| EGFR-pY869               | EKEPYHAEGGK                   |              | 0              | 0           | 0           |
| EGFR-pY915               | SKPpYDG <u>IP</u> AS          | P+3I, P+4P   | 0              | 0           | 0           |
| EGFR-pY944#              | IDVpYMI <u><b>MV</b></u> KA   | P+3M, P+4V   | 0              | 0           | 0           |
| EGFR-pY978               | PQRpYLV <b>I</b> QGD          | P+3I         | 4              | 2           | 2           |
| EGFR-pY998               | SNFpYRA <b>LM</b> DE          | P+3L, P+4M   | 3              | 3           | 0           |
| EGFR-pY1016              | ADEpYLI <u>P</u> QQG          | P+3P         | 6              | 6           | 0           |
| EGFR-pY1069              | LQRpYSSD <b>P</b> TG          | P+4P         | 0              | 0           | 0           |
| EGFR-pY1092              | VPEpYI <u>N</u> QSVP          | P+2N         | 8              | 0           | 8           |
| EGFR-pY1110              | NPVpYH <b>N</b> Q <b>P</b> LN | P+2N, P+4P   | 15             | 8           | 7           |
| EGFR-pY1125              | DPHpYQD <u>P</u> HST          | P+3P         | 1              | 1           | 0           |
| EGFR-pY1138              | NPEpYL <u>N</u> T <u>V</u> QP | P+2N, $P+4V$ | 7              | 6           | 1           |
| EGFR-pY1172              | NPDpYQQD <b>F</b> FP          | P+4F         | 8              | 7           | 1           |
| EGFR-pY1197              | NAEpYLR <b>V</b> APQ          | P+3V         | 0              | 0           | 0           |
| ErbB4-pY1035             | PPIpYTSRARI                   |              | 0              | 0           | 0           |
| ErbB4-pY1066             | QFVpYRDGGFA                   |              | 0              | 0           | 0           |
| ErbB4-pY1208             | EPLpYL <u>N</u> TFAN          | P+2N         | 11             | 9           | 2           |
| ErbB4-pY1221             | KAEpYLKNNIL                   |              | 0              | 0           | 0           |
| ErbB4-pY1301             | PPPpYRHRNTV                   |              | 0              | 0           | 0           |
|                          |                               | Sum          | 152            | 89          | 63          |

Supplementary Table 1. A count of unique phage variants identified by different bait peptides

## Notes:

# These peptides contain variations from the wt sequences to avoid confusion in classification; Each peptide contains an N-terminal ahxahx (where ahx is 6-aminohexanoic acid) linker for attachment of biotin and immobilization.

\* These pTyr sites are not reported as natural phosphorylation sites.

EGFR 869, 915 & 944 sites (*italicized*) are located in the kinase domain.

The peptide classification is based on the presence of an Asn at the P+2 or a hydrophobic residue at the P+3 or P+4 position.