

Supplementary Information

Electrospun Conductive Nanofiber Yarn for a Wearable Yarn Supercapacitor with High Volumetric Energy Density

Xianqiang Sun 1,2 , Jianxin He 1,2,*, Rong Qiang 1,2 , Nan Nan 1,2 , Xiaolu You 1,2 , Yuman Zhou 1,2 , Weili Shao 1,2,*, Fan Liu 1,2 and Rangtong Liu 1,2

- ¹ Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007, China; liangjian791165@163.com (X.S.); qiangrong2009@126.com (R.Q.); 18037510635@163.com (N.N.); xiaoluyou0180@163.com (X.Y.); zhym_work@163.com (Y.Z.); liufan_a@hotmail.com (F.L.); ranton@126.com (R.L.)
- ² Collaborative Innovation Center of Textile and Garment Industry, Zhengzhou 450007, China
- * Correspondence: hejianxin771117@163.com (J.H.); weilishao@163.com (W.L.)

Electrochemical performance calculation

For all solid state SCs, the volumetric specific capacity (*Cv*) and mass specific capacity (*Cm*) calculations for the entire device follow the following equation:

$$
C_V = \frac{I \times \Delta t}{V \times \Delta U'}\tag{1}
$$

$$
C_m = \frac{I \times \Delta t}{m \times \Delta U'},
$$
 (2)

Here, *I*, Δt , and ΔU represent the discharge current, discharge time, and potential window, respectively. V represents the volume of the two yarns and the surrounding electrolyte of the entire device, and m represents the mass of effective active material for the capacitor electrode material.

According to the constant current charge–discharge curves at different current densities, the volumetric energy density E_v and the power energy density P_v can be calculated, following the following equation:

$$
E_V = \frac{1}{2} \times C_V \times \Delta U^2,\tag{1}
$$

$$
P_V = E_V / \Delta t. \tag{1}
$$

Figure S1. (**a**) Electrospinning process diagram of nanofiber core yarn, (**b**) PAN nanofiber core-spun yarn diagram.

Figure S2. (a) I-V curves of 5 cm long nickel-coated yarns with different nickel coating times. (b) Variations of resistance of nickel-coated cotton yarns with lengths.

Figure S3. (**a**) Electron micrographs of single nanofibers of PNF/NiC-6, (**b**) PNF/NiC-12, (**c**) PNF/NiC-48, (**d**) PNF/NiC-72.

Figure S4. SEM graph and diameter distribution histogram of (**a**) PAN, (**b**) PNF/NiC-6, (**c**) PNF/NiC-12, (**d**) PNF/NiC-24, (**e**) PNF/NiC-48, (**f**) PNF/NiC-72 compound material.

Figure S5. XPS spectrum of PNF/NiC composite cotton yarn (**a**), XPS spectrum of S 2p (**b**).

Figure S6. Resistance increase of Ni-coated cotton yarn after 3000 bending cycles.

Figure S7. Bending curves of 500 cycles of PNF/NiC-24 composite yarns.

Figure S8. Conductivity curves of PNF/NiC-24 composite yarns with different mole ratios (mol:mol) of PEDOT and PSS.

Figure S9. Conductivity curves of different deposition time for PAN nanofiber core-spun yarns.

Figure S10. Volumetric capacity curve after in-situ deposition of PEDOT: PSS for different hours.

Figure S11. Galvanostatic charge and discharge curves of three SC yarns in series (**a**) and parallel (**b**).

Supplementary Tables

Table S2. Specific capacitance of yarn electrode material deposited PEDOT: PSS for different hours.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).