advances.sciencemag.org/cgi/content/full/5/1/eaat5778/DC1 ## Supplementary Materials for # Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system Ryan Hawtof, Souvik Ghosh, Evan Guarr, Cheyan Xu, R. Mohan Sankaran*, Julie Nicole Renner* *Corresponding author. Email: mohan@case.edu (R.M.S.); julie.renner@case.edu (J.N.R.) Published 11 January 2019, *Sci. Adv.* **5**, eaat5778 (2019) DOI: 10.1126/sciadv.aat5778 #### This PDF file includes: Equation for faradaic efficiency calculation for NH₃ from NH₃ measurements Equation for instantaneous faradaic efficiency calculation for NH₃ from H₂ measurements Equation for faradaic NH₃ concentration Equation for energy consumption - Fig. S1. Representative current waveforms measured in the plasma electrolytic system during NH₃ synthesis. - Fig. S2. RGA measurements of mass/charge ratio (m/z) = 2 and 17, corresponding to H₂ and NH₃ partial pressure, at 2 mA in a plasma electrolytic reactor by analyzing exhaust gas from cell as a function of time. - Fig. S3. H₂ production in the plasma electrolytic system. - Fig. S4. Schematic of the hybrid plasma electrolytic system in a split H-cell geometry. - Fig. S5. Comparison of NO_x produced with that predicted from O_2 gas evolution in plasma electrolytic system. - Fig S6. Heating of solution in the plasma electrolytic system. - Fig. S7. Representative fluorescence assay calibration used to determine NH₃ produced. - Fig. S8. Representative fluorescence assay calibration used to determine NO_x produced. - Table S1A. Summary of NH_3 produced by plasma electrolytic synthesis for the following configurations: N_2 both flowing through the cathode tube where the plasma is normally generated and bubbled through the solution to purge, but no electrical power applied, Ar as both the supply gas in the plasma and purge gas, Ar as the supply gas in the plasma and N_2 as the purge gas, and N_2 as both the supply gas in the plasma and purge gas. - Table S1B. Summary of one-sample and two-sample t tests carried out on datasets in table S1A. - Table S2A. Summary of NH₃ produced and faradaic efficiencies by plasma electrolytic synthesis after different processing times. - Table S2B. Summary of one-sample and two-sample t tests carried out on datasets in table S2A. - Table S3A. Summary of NH₃ produced and faradaic efficiencies by plasma electrolytic synthesis at different currents. - Table S3B. Summary of one-sample and two-sample t tests carried out on datasets in table S3A. Table S3C. Summary of H₂ produced in plasma electrolytic reactor by analyzing exhaust gas using GC. Table S4A. Summary of NH₃ produced and faradaic efficiencies by plasma electrolytic synthesis in a split cell. Table S4B. Summary of two-sample *t* tests carried out on datasets in table S4A (and tables S2A and S3A). Table S5A. Summary of NH₃ produced and faradaic efficiencies by plasma electrolytic synthesis at different pH values. Table S5B. Summary of one-sample and two-sample t tests carried out on datasets in table S5A. Table S6A. Summary of NH₃ produced and faradaic efficiencies by plasma electrolytic synthesis in the presence of NO₃ and NO₂ scavengers. Table S6B. Summary of one-sample and two-sample t tests carried out on datasets in table S6A. Table S7A. Summary of NO_x produced by plasma electrolytic synthesis after different processing times and at different currents. Table S7B. Summary of one-sample and two-sample *t* tests carried out on datasets in table S7A. Table S8. Summary of voltages measured between the plasma cathode and the Pt anode as a function of the plasma current in the plasma electrolytic system. #### Equation for faradaic efficiency calculation for NH₃ from NH₃ measurements Faradaic efficiency (%) = $$\frac{\text{Experimentally measured } NH_3 \text{ concentration}}{\text{Faradaic } NH_3 \text{ concentration}} x \text{ 100}$$ #### Equation for instantaneous faradaic efficiency calculation for NH₃ from H₂ measurements Instantaneous faradaic efficiency (%) = $$\left(1 - \frac{\dot{V}C_{H2}Fz}{(1000000 - C_{H2})I}\right)x 100$$ where \dot{V} is the nitrogen flow rate through the cell, C_{H2} is the ppm hydrogen measured, F is Faraday's constant, z is the number of electrons and equal to 2 for hydrogen, and I is the plasma current in mA. #### Equation for faradaic NH₃ concentration Faradaic $$NH_3$$ concentration = $\frac{Q}{FzV}$ where Q is the total charge, F is Faraday's constant, z is the number of electrons and equal to 3 for the NH₃ reaction, and V is the volume of the solution and equal to 20 ml. #### **Equation for energy consumption** Energy consumption = $$\frac{\text{VI}}{\dot{m}_{NH_3}}$$ where V and I are the plasma voltage and current in the electrolytic system, respectively, and I is calculated from the total charge divided by the time, Q/t, and \dot{m}_{NH_3} is the NH₃ production rate. Using units of kV for V, A for I, and kg/h for \dot{m}_{NH_3} gives the energy consumption in kWh/kg. Fig. S1. Representative current waveforms measured in the plasma electrolytic system during NH₃ synthesis. The current was integrated over the process time to obtain the total charge, $Q = \int I(t)dt$. For the four examples shown, the total charges were (a) 5448, (b) 10858, (c) 16717, and (d) 21647 mAs, respectively. Fig. S2. RGA measurements of mass/charge ratio (m/z) = 2 and 17, corresponding to H₂ and NH₃ partial pressure, at 2 mA in a plasma electrolytic reactor by analyzing exhaust gas from cell as a function of time. The background signal was obtained for 240 s before turning on the plasma. Fig. S3. H_2 production in the plasma electrolytic system. (a) Gas chromatography (GC) calibration of H_2 retention peak area and H_2 concentration. (b) Instantaneous faradaic efficiency from GC measurements of H_2 as a function of time, assuming the rest of the current goes towards NH_3 production. Two step functions are shown for estimating the cumulative faradaic efficiency which represent the lower and upper bound. Fig. S4. Schematic of the hybrid plasma electrolytic system in a split H-cell geometry. Fig. S5. Comparison of NO_x produced with that predicted from O_2 gas evolution in plasma electrolytic system. **Fig S6. Heating of solution in the plasma electrolytic system.** (a) Temperature measurements of solution surface as a function of position and time at 6 mA. (b) A color-coded illustration of the radially symmetric positions shown in (a) at which the temperature was measured with respect to the position of the plasma cathode and Pt anode. Fig. S7. Representative fluorescence assay calibration used to determine NH₃ produced. The empty black square data points correspond to control solutions and filled blue triangle data points correspond to solutions synthesized in the plasma electrolytic system. Fig. S8. Representative fluorescence assay calibration used to determine NO_x produced. The empty black square data points correspond to control solutions and the filled blue triangle data points correspond to solutions synthesized in the plasma electrolytic system. Table S1A. Summary of NH₃ produced by plasma electrolytic synthesis for the following configurations: N_2 both flowing through the cathode tube where the plasma is normally generated and bubbled through the solution to purge, but no electrical power applied, Ar as both the supply gas in the plasma and purge gas, Ar as the supply gas in the plasma and N_2 as the purge gas, and N_2 as both the supply gas in the plasma and purge gas. The faradaic efficiencies are calculated when the NH₃ produced was non-zero. The current was 6 mA, the processing time was 45 min, and the reaction volume was 20 ml in all cases. No plasma + N₂ purge | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | |---------|-------------------------------------|-------------------------------------| | Trial 1 | 0.000 | 0.000 | | Trial 2 | 0.000 | 0.000 | | Trial 3 | 0.000 | 0.000 | | Average | | 0.000 ± 0.000 | Ar plasma + Ar purge | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | |---------|-------------------------------------|-------------------------------------| | Trial 1 | -0.002 | 0.000 | | Trial 2 | 0.001 | 0.000 | | Trial 3 | 0.000 | 0.000 | | Average | | 0.000 ± 0.000 | $Ar plasma + N_2 purge$ | | NH_3 | NH_3 | Total | Faradaic | Faradaic | |---------|--------------------------|-------------------|--------|--------------------------|------------| | | produced | produced | charge | NH ₃ conc. | efficiency | | | $(\mathbf{m}\mathbf{M})$ | (mg) | (mAs) | $(\mathbf{m}\mathbf{M})$ | (%) | | Trial 1 | 0.022 | 0.007 | 16254 | 2.81 | 0.8 | | Trial 2 | 0.172 | 0.059 | 16227 | 2.80 | 6.1 | | Trial 3 | 0.067 | 0.023 | 16198 | 2.80 | 2.4 | | Trial 4 | 0.003 | 0.001 | 16394 | 2.83 | 0.1 | | Trial 5 | 0.144 | 0.049 | 16252 | 2.81 | 5.1 | | Trial 6 | 0.029 | 0.010 | 16228 | 2.80 | 1.0 | | Average | | 0.025 ± 0.018 | | | 2.58±1.85 | N_2 plasma + N_2 purge | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total charge (mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic
efficiency
(%) | |----------|-------------------------------------|-------------------------------------|--------------------|---|-------------------------------| | Trial 1 | 0.919 | 0.313 | 16240 | 2.86 | 32.1 | | Trial 2 | 0.889 | 0.303 | 16314 | 2.87 | 30.9 | | Trial 3 | 0.902 | 0.307 | 16387 | 2.89 | 31.2 | | Trial 4 | 0.929 | 0.317 | 16288 | 2.87 | 32.4 | | Trial 5 | 0.919 | 0.313 | 16322 | 2.88 | 31.9 | | Trial 6 | 0.926 | 0.315 | 16263 | 2.87 | 32.3 | | Trial 7 | 0.896 | 0.305 | 16253 | 2.81 | 31.9 | | Trial 8 | 0.902 | 0.307 | 16227 | 2.80 | 32.2 | | Trial 9 | 0.908 | 0.309 | 16199 | 2.80 | 32.5 | | Trial 10 | 0.990 | 0.337 | 16394 | 2.83 | 35.0 | | Average | | 0.313±0.006 | | | 32.2±0.6 | Table S1B. Summary of one-sample and two-sample t tests carried out on datasets in table S1A. One-Sample t Test of $\mu = 0.00 \text{ vs } \mu \neq 0.00$ | | Algebraic | St. Deviation | 95% Lower | Probability | |---------------------------|-----------|---------------|-----------|-------------| | | Mean | | Bound | | | N ₂ plasma | 0.313 | 0.010 | 0.306 | 0.000 | | Ar plasma+ N ₂ | 0.025 | 0.024 | 0.000 | 0.050 | # Two-Sample t Test of μ_1 - $\mu_2 = 0$ | | Difference | 95% Lower
Bound | 95% Upper
Bound | Probability | |--|------------|--------------------|--------------------|-------------| | N ₂ plasma vs. Ar plasma+N ₂ | 0.288 | 0.263 | 0.313 | 0.000 | Table S2A. Summary of NH₃ produced and faradaic efficiencies by plasma electrolytic synthesis after different processing times. The current was 6 mA and the reaction volume was 20 ml in all cases. | | t=5 min | | | | | | |---------|--------------------------|-----------------------------|-----------------|-----------------------------------|---------------------|--| | | NH ₃ produced | NH ₃
produced | Total
charge | Faradaic
NH ₃ conc. | Faradaic efficiency | | | | (mM) | (mg) | (mAs) | (mM) | (%) | | | Trial 1 | 0.206 | 0.070 | 1838 | 0.317 | 64.9 | | | Trial 2 | 0.073 | 0.025 | 1862 | 0.322 | 22.8 | | | Trial 3 | 0.339 | 0.116 | 1832 | 0.317 | 107.1 | | | Trial 4 | 0.150 | 0.051 | 1866 | 0.322 | 46.5 | | | Average | | 0.065 ± 0.033 | | | 60.3 ± 30.9 | | | | t=15 min | | | | | | | |---------|-------------------------------------|-------------------------------------|--------------------------|---|-------------------------------|--|--| | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total
charge
(mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic
efficiency
(%) | | | | Trial 1 | 0.335 | 0.114 | 5508 | 0.951 | 35.2 | | | | Trial 2 | 0.285 | 0.097 | 5532 | 0.956 | 29.8 | | | | Trial 3 | 0.324 | 0.110 | 5493 | 0.949 | 34.2 | | | | Trial 4 | 0.346 | 0.118 | 5519 | 0.935 | 37.1 | | | | Trial 5 | 0.461 | 0.157 | 5511 | 0.933 | 49.4 | | | | Trial 6 | 0.359 | 0.122 | 5541 | 0.938 | 38.2 | | | | Average | | 0.120±0.015 | | | 37.3±4.9 | | | | t=30 min | | | | | | | |----------|--------------------------|--------------------------|----------------|-----------------------------------|---------------------|--| | | NH ₃ produced | NH ₃ produced | Total charge | Faradaic
NH ₃ conc. | Faradaic efficiency | | | Trial 1 | (mM)
0.574 | (mg)
0.196 | (mAs)
11026 | (mM)
1.905 | (%)
30.2 | | | Trial 2 | 0.602 | 0.205 | 11020 | 1.907 | 31.6 | | | Trial 3 | 0.529 | 0.180 | 11014 | 1.902 | 27.8 | | | Trial 4 | 0.572 | 0.195 | 11030 | 1.905 | 30.0 | | | Average | | 0.194 ± 0.009 | | | 29.9±1.3 | | | | t=45 min | | | | | | | |---------|-------------------------------------|-------------------------------------|--------------------------|---|-------------------------|--|--| | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total
charge
(mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic efficiency (%) | | | | Trial 1 | 0.919 | 0.313 | 16567 | 2.86 | 32.1 | | | | Trial 2 | 0.889 | 0.303 | 16643 | 2.87 | 30.9 | | | | Trial 3 | 0.902 | 0.307 | 16717 | 2.89 | 31.2 | | | | Trial 4 | 0.929 | 0.317 | 16615 | 2.87 | 32.4 | | | | Trial 5 | 0.919 | 0.313 | 16651 | 2.88 | 31.9 | | | | Trial 6 | 0.926 | 0.315 | 16590 | 2.87 | 32.3 | | | | Trial 7 | 0.896 | 0.305 | 16253 | 2.81 | 31.9 | | | | Trial 8 | 0.902 | 0.307 | 16227 | 2.80 | 32.2 | |----------|-------|-------------------|-------|------|----------------| | Trial 9 | 0.908 | 0.309 | 16199 | 2.80 | 32.5 | | Trial 10 | 0.990 | 0.337 | 16394 | 2.83 | 35.0 | | Average | | 0.313 ± 0.006 | | | 32.2 ± 0.6 | | t=300 min | | | | | | | |-----------|-------------------------------------|-------------------------------------|--------------------------|---|-------------------------------|--| | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total
charge
(mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic
efficiency
(%) | | | Trial 1 | 4.68 | 1.594 | 108648 | 18.77 | 24.9 | | Table S2B. Summary of one-sample and two-sample t tests carried out on datasets in table S2A. ### One-Sample t on NH₃ production Test of $\mu = 0.00 \text{ vs } \bar{\mu} \neq 0.00$ | | Algebraic Mean | St. Deviation | 95% Lower | Probability | |--------|----------------|---------------|-----------|-------------| | | | | Bound | | | 5 min | 0.065 | 0.038 | 0.005 | 0.021 | | 15 min | 0.120 | 0.020 | 0.099 | 0.000 | | 30 min | 0.194 | 0.010 | 0.178 | 0.000 | | 45 min | 0.312 | 0.016 | 0.305 | 0.000 | ### Two-Sample t on NH₃ production Test of μ_1 - $\mu_2 = 0$ | | Difference | 95% Lower | 95% Upper | Probability | |---------------|------------|-----------------|-------------|-------------| | 5 vs. 15 min | 0.054 | Bound
-0.003 | Bound 0.112 | 0.059 | | 15 vs. 30 min | 0.074 | 0.051 | 0.097 | 0.000 | | 30 vs. 45 min | 0.118 | 0.102 | 0.133 | 0.000 | ### **One-Sample t on FE** Test of $\mu = 0.00 \text{ vs } \mu > 0.00$ | | Algebraic Mean | St. Deviation | 95% Lower | Probability | |--------|----------------|---------------|-----------|-------------| | | | | Bound | | | 5 min | 60.3 | 35.6 | 18.4 | 0.021 | | 15 min | 37.3 | 6.59 | 31.9 | 0.000 | | 30 min | 29.9 | 1.56 | 28.1 | 0.000 | | 45 min | 32.1 | 1.70 | 31.5 | 0.000 | Two-Sample t on FE Test of μ_1 - $\mu_2 = 0$ | | Difference | 95% Lower | 95% Upper | Probability | |---------------|------------|-----------|-----------|-------------| | | | Bound | Bound | | | 5 vs. 15 min | 23.0 | -80.4 | 34.3 | 0.291 | | 15 vs. 30 min | 7.42 | 0.23 | 14.6 | 0.045 | | 30 vs. 45 min | 2.24 | -0.175 | 4.66 | 0.062 | Table S3A. Summary of NH₃ produced and faradaic efficiencies by plasma electrolytic synthesis at different currents. The processing time was 45 min and the reaction volume was 20 ml in all cases. | | I=1 mA | | | | | | |---------|-----------------------------|-----------------------------|-----------------|--------------------------------|---------------------|--| | | NH ₃
produced | NH ₃
produced | Total
charge | Faradaic NH ₃ conc. | Faradaic efficiency | | | | $(\mathbf{m}\mathbf{M})$ | (mg) | (mAs) | $(\mathbf{m}\mathbf{M})$ | (%) | | | Trial 1 | 0.456 | 0.155 | 2709 | 0.468 | 97.4 | | | Trial 2 | 0.470 | 0.160 | 2705 | 0.467 | 100.7 | | | Trial 3 | 0.465 | 0.158 | 2700 | 0.466 | 99.8 | | | Trial 4 | 0.463 | 0.158 | 2732 | 0.472 | 98.1 | | | Average | | 0.158 ± 0.002 | | | 99.0±1.3 | | | | I=2 mA | | | | | | | |---------|-------------------------------------|-------------------------------------|--------------------|---|-------------------------------|--|--| | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total charge (mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic
efficiency
(%) | | | | Trial 1 | 0.849 | 0.289 | 5438 | 0.939 | 90.4 | | | | Trial 2 | 0.939 | 0.320 | 5483 | 0.947 | 99.1 | | | | Trial 3 | 0.944 | 0.322 | 5448 | 0.941 | 100.3 | | | | Trial 4 | 1.017 | 0.346 | 5798 | 1.002 | 101.5 | | | | Trial 5 | 1.050 | 0.358 | 5690 | 0.983 | 106.8 | | | | Trial 6 | 1.043 | 0.355 | 5643 | 0.975 | 107.0 | | | | Average | | 0.332 ± 0.020 | | | 100.9±4.6 | | | | I=3 mA | | | | | | | |---------|-------------------------------------|-------------------------------------|--------------------|---|-------------------------------|--| | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total charge (mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic
efficiency
(%) | | | Trial 1 | 0.586 | 0.199 | 8132 | 1.405 | 41.7 | | | Trial 2 | 0.514 | 0.175 | 8189 | 1.415 | 36.3 | | | Trial 3 | 0.431 | 0.147 | 8072 | 1.394 | 30.9 | | | Average | | 0.174±0.025 | | | 36.3 ± 5.1 | | | | I=4 mA | | | | | | | |---------|-------------------------------------|-------------------------------------|--------------------------|---|-------------------------------|--|--| | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total
charge
(mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic
efficiency
(%) | | | | Trial 1 | 0.674 | 0.230 | 11121 | 1.921 | 35.1 | | | | Trial 2 | 0.714 | 0.243 | 11156 | 1.927 | 37.1 | | | | Trial 3 | 0.664 | 0.226 | 11015 | 1.903 | 34.9 | | | | Trial 4 | 0.724 | 0.247 | 11049 | 1.909 | 37.9 | | | | Trial 5 | 0.664 | 0.226 | 11076 | 1.913 | 34.7 | | | | Trial 6 | 0.719 | 0.245 | 11076 | 1.902 | 37.8 | | | | Average | | 0.236±0.007 | | | 36.3±1.1 | | | | _ | _ | _ | | | |---|---|---|---|--------------| | | | ~ | | | | | | n | m | \mathbf{A} | | | NH ₃ produced | NH ₃ produced | Total
charge | Faradaic NH ₃ conc. | Faradaic efficiency | |----------|--------------------------|--------------------------|-----------------|--------------------------------|---------------------| | | (mM) | (mg) | (mAs) | (mM) | (%) | | Trial 1 | 0.919 | 0.313 | 16567 | 2.86 | 32.1 | | Trial 2 | 0.889 | 0.303 | 16642 | 2.87 | 30.9 | | Trial 3 | 0.902 | 0.307 | 16717 | 2.89 | 31.2 | | Trial 4 | 0.929 | 0.317 | 16615 | 2.87 | 32.4 | | Trial 5 | 0.919 | 0.313 | 16650 | 2.88 | 31.9 | | Trial 6 | 0.926 | 0.315 | 16591 | 2.87 | 32.3 | | Trial 7 | 0.896 | 0.305 | 16253 | 2.81 | 31.9 | | Trial 8 | 0.902 | 0.307 | 16227 | 2.80 | 32.2 | | Trial 9 | 0.908 | 0.309 | 16199 | 2.80 | 32.5 | | Trial 10 | 0.990 | 0.337 | 16394 | 2.83 | 35.0 | | Average | | 0.313±0.006 | | | 32.2±0.6 | | I=8 | mA | |-----|----| | | | | | | 1-01 | TARE A | | | |---------|-------------------------------------|-------------------------------------|--------------------|---|-------------------------------| | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total charge (mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic
efficiency
(%) | | | ` , | | ` ′ | | ` ' | | Trial 1 | 0.962 | 0.328 | 22063 | 3.81 | 25.2 | | Trial 2 | 0.900 | 0.307 | 22152 | 3.83 | 23.5 | | Trial 3 | 0.953 | 0.325 | 22111 | 3.82 | 25.0 | | Trial 4 | 0.877 | 0.299 | 22028 | 3.81 | 23.0 | | Trial 5 | 0.961 | 0.327 | 22037 | 3.81 | 25.2 | | Trial 6 | 0.882 | 0.300 | 22047 | 3.81 | 23.2 | | Average | | 0.314 ± 0.010 | | | 24.2 ± 0.8 | Table S3B. Summary of one-sample and two-sample t tests carried out on datasets in table S3A. ## One-Sample t on NH₃ production Test of $\mu = 0.00 \text{ vs } \mu > 0.00$ | | Algebraic Mean | St. Deviation | 95% Lower | Probability | |------|----------------|---------------|-----------|-------------| | | | | Bound | | | 1 mA | 0.158 | 0.002 | 0.155 | 0.000 | | 2 mA | 0.332 | 0.027 | 0.310 | 0.000 | | 3 mA | 0.174 | 0.026 | 0.130 | 0.004 | | 4 mA | 0.236 | 0.010 | 0.228 | 0.000 | | 6 mA | 0.313 | 0.010 | 0.307 | 0.000 | | 8 mA | 0.314 | 0.014 | 0.303 | 0.000 | # Two-Sample t on NH₃ production Test of μ_1 - $\mu_2 = 0$ | | Difference | 95% Lower | 95% Upper | Probability | |------------|------------|-----------|-----------|-------------| | | | Bound | Bound | | | 1 vs. 2 mA | 0.174 | 0.146 | 0.202 | 0.000 | | 2 vs. 3 mA | 0.158 | 0.106 | 0.210 | 0.001 | | 3 vs. 4 mA | 0.062 | -0.005 | 0.130 | 0.058 | | 4 vs. 6 mA | 0.077 | 0.065 | 0.088 | 0.000 | | 6 vs. 8 mA | 0.002 | -0.013 | 0.016 | 0.819 | ### **One-Sample t on FE** Test of $\mu = 100 \text{ vs } \mu < 100$ | | Algebraic Mean | St. Deviation | 95% Upper | Probability | |------|----------------|---------------|-----------|-------------| | | | | Bound | | | 1 mA | 99.0 | 1.51 | 100.7 | 0.000 | | 2 mA | 1.01 | 6.12 | 105.9 | 0.000 | | 3 mA | 36.3 | 5.39 | 45.4 | 0.000 | | 4 mA | 36.2 | 1.52 | 37.5 | 0.000 | | 6 mA | 32.2 | 1.08 | 32.9 | 0.000 | | 8 mA | 24.2 | 1.06 | 25.1 | 0.000 | ### **One-Sample t on FE** Test of $\mu = 0$ vs $\mu > 0.00$ | | Algebraic Mean | St. Deviation | 95% Lower | Probability | |------|----------------|---------------|-----------|-------------| | | _ | | Bound | - | | 1 mA | 99.0 | 1.51 | 97.2 | 0.000 | | 2 mA | 1.01 | 6.12 | 95.8 | 0.000 | | 3 mA | 36.3 | 5.39 | 27.2 | 0.004 | | 4 mA | 36.2 | 1.52 | 35.0 | 0.000 | | 6 mA | 32.2 | 1.08 | 31.6 | 0.000 | | 8 mA | 24.2 | 1.06 | 23.3 | 0.000 | ### **Two-Sample t on FE** Test of μ_1 - $\mu_2 = 0$ | | Difference | 95% Lower | 95% Upper | Probability | |------------|------------|-----------|-----------|-------------| | | | Bound | Bound | • | | 1 vs. 2 mA | 1.88 | -8.59 | 4.84 | 0.505 | | 2 vs. 3 mA | 64.6 | 53.5 | 75.6 | 0.000 | | 3 vs. 4 mA | 0.00 | -13.6 | 13.7 | 0.986 | | 4 vs. 6 mA | 4.00 | 2.38 | 5.63 | 0.000 | | 6 vs. 8 mA | 8.05 | 6.82 | 9.28 | 0.000 | Table S3C. Summary of H_2 produced in plasma electrolytic reactor by analyzing exhaust gas using GC. **I=1** mA | Time (min) | Peak area | H ₂ concentration (ppm) | Instantaneous
faradaic
efficiency (%) | Cumulative
faradaic
efficiency (%) | |------------|-----------|------------------------------------|---|--| | 15 | 0 | 0 | 100 | 100 | | 30 | 0 | 0 | 100 | 100 | | 45 | 6 | 6 | 90.2 | 95.1-100 | I=2 mA | | | 1—2 111/1 | | | |------------|-----------|------------------------------------|---|--| | Time (min) | Peak area | H ₂ concentration (ppm) | Instantaneous
faradaic
efficiency (%) | Cumulative
faradaic
efficiency (%) | | 15 | 0 | 0 | 100 | 100 | | 30 | 34 | 33 | 73.0 | 86.5-100 | | 45 | 31 | 30 | 75.4 | 77.9-95.9 | Table S4A. Summary of NH₃ produced and faradaic efficiencies by plasma electrolytic synthesis in a split cell. The reaction volume was 20 ml in all cases. | | 6 mA, 5 min | | | | | | | |---------|-------------------------------------|-------------------------------------|--------------------------|---|-------------------------------|--|--| | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total
charge
(mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic
efficiency
(%) | | | | Trial 1 | 0.042 | 0.014 | 1803 | 0.312 | 13.5 | | | | Trial 2 | 0.216 | 0.074 | 1804 | 0.312 | 69.3 | | | | Trial 3 | 0.114 | 0.039 | 1789 | 0.309 | 36.8 | | | | Average | | 0.042 ± 0.028 | | | 39.9±26.4 | | | | | 6 mA, 15 min | | | | | | | |---------|-------------------------------------|-------------------------------------|--------------------------|---|-------------------------------|--|--| | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total
charge
(mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic
efficiency
(%) | | | | Trial 1 | 0.391 | 0.133 | 5417 | 0.936 | 41.8 | | | | Trial 2 | 0.287 | 0.098 | 5402 | 0.933 | 30.8 | | | | Trial 3 | 0.447 | 0.152 | 5489 | 0.948 | 47.2 | | | | Trial 4 | 0.382 | 0.130 | 5391 | 0.931 | 41.0 | | | | Trial 5 | 0.322 | 0.110 | 5393 | 0.932 | 34.5 | | | | Trial 6 | 0.362 | 0.123 | 5402 | 0.933 | 38.8 | | | | Average | | 0.124±0.014 | | | 39.0±4.3 | | | | 6 mA, 30 min | | | | | | | |--------------|-------------------------------------|-------------------------------------|--------------------------|---|-------------------------|--| | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total
charge
(mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic efficiency (%) | | | Trial 1 | 0.617 | 0.210 | 10811 | 1.868 | 33.0 | | | Trial 2 | 0.592 | 0.202 | 10842 | 1.873 | 31.6 | | | Trial 3 | 0.533 | 0.182 | 10781 | 1.862 | 28.6 | | | Average | | 0.198±0.014 | | | 31.1±2.1 | | | | 6 mA, 45 min | | | | | | | |---------|-------------------------------------|-------------------------------------|--------------------|---|-------------------------|--|--| | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total charge (mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic efficiency (%) | | | | Trial 1 | 0.874 | 0.298 | 16265 | 2.81 | 31.1 | | | | Trial 2 | 0.935 | 0.318 | 16171 | 2.79 | 33.5 | | | | Trial 3 | 0.930 | 0.317 | 16180 | 2.79 | 33.3 | | | | Average | | 0.311±0.011 | | | 32.6±1.2 | | | 4 mA, 45 min | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total
charge
(mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic
efficiency
(%) | |---------|-------------------------------------|-------------------------------------|--------------------------|---|-------------------------------| | Trial 1 | 0.691 | 0.235 | 10791 | 1.86 | 37.1 | | Trial 2 | 0.651 | 0.222 | 10834 | 1.87 | 34.8 | | Trial 3 | 0.686 | 0.234 | 10885 | 1.88 | 36.5 | | Average | | 0.230 ± 0.007 | | | 36.1±1.1 | ## Table S4B. Summary of two-sample t tests carried out on datasets in table S4A (and tables S2A and S3A). # Two-Sample t on NH₃ production Test of μ_1 - $\mu_2 = 0$ | | Difference | 95% Lower | 95% Upper | Probability | |-----------------------|------------|-----------|-----------|-------------| | | | Bound | Bound | | | 6-5 single vs. split | 0.028 | -0.072 | 0.128 | 0.437 | | 6-15 single vs. split | 0.005 | -0.021 | 0.030 | 0.692 | | 6-30 single vs. split | 0.004 | -0.035 | 0.028 | 0.726 | | 6-45 single vs. split | 0.002 | -0.030 | 0.033 | 0.837 | | 4-45 single vs. | 0.004 | -0.012 | 0.020 | 0.535 | Table S5A. Summary of NH₃ produced and faradaic efficiencies by plasma electrolytic synthesis at different pH values. The pH was controlled by the concentration of sulfuric acid. "MC" refers to the main reaction cell and "Trap" refers to a second trapping vessel where the gas exhaust from the main reaction cell was bubbled through a solution of sulfuric acid at pH=2. The reaction volume was 20 ml in all cases. | | pH=2 | | | | | | | | |---------|-------------------------------------|-------------------------------------|--------------------------|---|-------------------------|--|--|--| | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total
charge
(mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic efficiency (%) | | | | | Trial 1 | 1.116 | 0.380 | 16252 | 2.81 | 39.8 | | | | | Trial 2 | 1.146 | 0.390 | 16227 | 2.80 | 40.9 | | | | | Trial 3 | 1.104 | 0.376 | 16199 | 2.78 | 39.5 | | | | | Trial 4 | 1.154 | 0.393 | 16395 | 2.83 | 40.8 | | | | | Average | | 0.385±0.007 | | | 40.2±0.6 | | | | | pH=5.5 | | | | | | | | |---------|-------------------------------------|-------------------------------------|--------------------------|---|-------------------------|--|--| | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total
charge
(mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic efficiency (%) | | | | Trial 1 | 0.884 | 0.301 | 16252 | 2.81 | 31.5 | | | | Trial 2 | 0.821 | 0.280 | 16227 | 2.80 | 29.3 | | | | Trial 3 | 0.834 | 0.284 | 16198 | 2.80 | 29.8 | | | | Trial 4 | 0.796 | 0.271 | 16395 | 2.83 | 28.1 | | | | Average | | 0.284±0.011 | | | 29.7±1.2 | | | | pH=7 | | | | | | | | |----------------|-------------------------------------|-------------------------------------|--------------------|---|-------------------------|--|--| | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total charge (mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic efficiency (%) | | | | Trial 1 (MC) | 0.134 | 0.045 | 16290 | 2.81 | 4.7 | | | | Trial 1 (Trap) | 0.041 | 0.014 | 16290 | 2.81 | 1.5 | | | | Trial 2 (MC) | 0.066 | 0.022 | 16231 | 2.80 | 2.3 | | | | Trial 2 (Trap) | 0.105 | 0.036 | 16231 | 2.80 | 3.7 | | | #### Table S5B. Summary of one-sample and two-sample t tests carried out on datasets in table S5A. "MC" refers to the main reaction cell and "Trap" refers to a second trapping vessel where the gas exhaust from the main reaction cell was bubbled through a solution of sulfuric acid at pH=2. ## One-Sample t on NH₃ production Test of $\mu = 0$ vs $\mu > 0.00$ | | Algebraic Mean | St. Deviation | 95% Lower | Probability | |-------------|----------------|---------------|-----------|-------------| | | | | Bound | | | pH 2.0 (MC) | 0.385 | 0.008 | 0.375 | 0.000 | | pH 3.5 (MC) | 0.313 | 0.010 | 0.307 | 0.000 | | pH 5.5 (MC) | 0.284 | 0.013 | 0.269 | 0.000 | | pH 7 (MC) | 0.034 | 0.016 | -0.039 | 0.104 | | pH 7 (Trap) | 0.025 | 0.015 | -0.043 | 0.131 | #### Two-Sample t on NH₃ production Test of μ_1 - $\mu_2 = 0$ | | Difference | 95% Lower | 95% Upper | Probability | |-----------------|------------|-----------|-----------|-------------| | | | Bound | Bound | | | 2.0 (MC) vs. | 0.072 | 0.060 | 0.085 | 0.000 | | 3.5 (MC) | | | | | | 3.5 (MC) vs 5.5 | 0.029 | 0.048 | 0.009 | 0.015 | | (MC) | | | | | | 5.5 (MC) vs 7.0 | 0.250 | 0.083 | 0.417 | 0.033 | | (MC) | | | | | | 7.0 (MC) vs 7.0 | 0.009 | -0.210 | 0.192 | 0.668 | | (Trap) | | | | | #### **One-Sample t on FE** Test of $\mu = 0$ vs $\mu > 0.00$ | - | Algebraic Mean | St. Deviation | 95% Lower | Probability | |-------------|----------------|---------------|-----------|-------------| | | C | | Bound | • | | pH 2.0 (MC) | 40.22 | 0.708 | 39.39 | 0.000 | | pH 3.5 (MC) | 32.24 | 1.080 | 31.62 | 0.000 | | pH 5.5 (MC) | 29.67 | 1.404 | 28.02 | 0.000 | | pH 7 (MC) | 3.55 | 1.700 | -4.030 | 0.104 | | pH 7 (Trap) | 2.60 | 1.610 | -4.560 | 0.131 | # Two-Sample t on FE Test of μ_1 - $\mu_2 = 0$ | | Difference | 95% Lower | 95% Upper | Probability | |-----------------|------------|-----------|-----------|-------------| | | | Bound | Bound | | | 2.0 (MC) vs 3.5 | 7.978 | 6.844 | 9.113 | 0.000 | | (MC) | | | | | | 3.5 (MC) vs 5.5 | 2.569 | 0.402 | 4.736 | 0.030 | | (MC) | | | | | | 5.5 (MC) vs 7.0 | 26.13 | 8.470 | 43.79 | 0.034 | | (MC) | | | | | | 7.0 (MC) vs 7.0 | 0.950 | -20.04 | 21.93 | 0.669 | | (Trap) | | | | | Table S6A. Summary of NH₃ produced and faradaic efficiencies by plasma electrolytic synthesis in the presence of NO₃ and NO₂ scavengers. The concentration of NO₃ and NO₂ was controlled by NaNO₃ and NaNO₂. The reaction volume was 20 ml in all cases. | | 10 mM NO_3 | | | | | | | | |---------|-------------------------------------|-------------------------------------|--------------------------|---|-------------------------------|--|--|--| | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total
charge
(mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic
efficiency
(%) | | | | | Trial 1 | 0.779 | 0.265 | 5409 | 0.934 | 83.3 | | | | | Trial 2 | 0.797 | 0.272 | 5437 | 0.939 | 84.9 | | | | | Trial 3 | 0.727 | 0.248 | 5402 | 0.933 | 77.9 | | | | | Average | | 0.261±0.011 | | | 82.0 ± 3.5 | | | | | | $100 \mathrm{\ mM\ NO_3}$ | | | | | | | | |---------|-------------------------------------|-------------------------------------|--------------------------|---|-------------------------|--|--|--| | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total
charge
(mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic efficiency (%) | | | | | Trial 1 | 0.553 | 0.188 | 5379 | 0.929 | 59.5 | | | | | Trial 2 | 0.568 | 0.194 | 5409 | 0.934 | 60.8 | | | | | Trial 3 | 0.584 | 0.199 | 5402 | 0.933 | 62.6 | | | | | Average | | 0.194±0.005 | | | 61.0±1.5 | | | | | | $1\mathrm{MNO_3}$ | | | | | | | | |---------|-------------------------------------|-------------------------------------|--------------------|---|-------------------------|--|--|--| | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total charge (mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic efficiency (%) | | | | | Trial 1 | 0.330 | 0.112 | 5419 | 0.936 | 35.3 | | | | | Trial 2 | 0.314 | 0.107 | 5428 | 0.938 | 33.4 | | | | | Trial 3 | 0.322 | 0.110 | 5411 | 0.935 | 34.5 | | | | | Average | | 0.110±0.003 | | | 34.4±0.8 | | | | | | 2 M NO_3 | | | | | | | |---------|-------------------------------------|-------------------------------------|--------------------------|---|-------------------------|--|--| | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total
charge
(mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic efficiency (%) | | | | Trial 1 | 0.211 | 0.072 | 5390 | 0.931 | 22.6 | | | | Trial 2 | 0.188 | 0.064 | 5392 | 0.932 | 20.1 | | | | Trial 3 | 0.136 | 0.046 | 5421 | 0.936 | 14.5 | | | | Average | | 0.061±0.012 | | | 19.1±3.9 | | | 10 mM NO₂ | | NH ₃
produced
(mM) | NH ₃
produced
(mg) | Total
charge
(mAs) | Faradaic
NH ₃ conc.
(mM) | Faradaic efficiency (%) | |---------|-------------------------------------|-------------------------------------|--------------------------|---|-------------------------| | Trial 1 | 0.376 | 0.133 | 5303 | 0.916 | 41.0 | | Trial 2 | 0.406 | 0.138 | 5338 | 0.922 | 44.1 | | Trial 3 | 0.389 | 0.133 | 5216 | 0.901 | 43.2 | | Average | | 0.133±0.005 | | | 42.7±1.5 | 1 M NO₂ | | | 1 141 1 | 102 | | | |---------|--------------------------|----------|--------|--------------------------|---------------| | | NH_3 | NH_3 | Total | Faradaic | Faradaic | | | produced | produced | charge | NH ₃ conc. | efficiency | | | $(\mathbf{m}\mathbf{M})$ | (mg) | (mAs) | $(\mathbf{m}\mathbf{M})$ | (%) | | Trial 1 | 0.026 | 0.009 | 5314 | 0.918 | 2.9 | | Trial 2 | 0.037 | 0.013 | 5319 | 0.918 | 4.1 | | Trial 3 | 0.032 | 0.011 | 5030 | 0.869 | 3.7 | | Average | 0.032 | 0.011 | | | 3.6 ± 5.7 | Table S6B. Summary of one-sample and two-sample t tests carried out on datasets in table S6A. #### One-Sample t on NH₃ production Test of $\mu = 0$ vs $\mu > 0.00$ | | | 1050 01 10 0 10 10 10 10 10 10 10 10 10 10 | | | | | | |----------------------|----------------|--|-----------|-------------|--|--|--| | | Algebraic Mean | St. Deviation | 95% Lower | Probability | | | | | | | | Bound | | | | | | No | 0.313 | 0.010 | 0.307 | 0.000 | | | | | Scavenger | | | | | | | | | 10 mM NO_3 | 0.261 | 0.012 | 0.240 | 0.000 | | | | | 10 mM NO_2 | 0.133 | 0.005 | 0.124 | 0.000 | | | | | 1 M NO_3 | 0.110 | 0.003 | 0.105 | 0.000 | | | | | 1 M NO_2 | 0.011 | 0.002 | 0.008 | 0.005 | | | | ### Two-Sample t on NH₃ production Test of μ_1 - $\mu_2 = 0$ | | Difference | 95% Lower
Bound | 95% Upper
Bound | Probability | |---|------------|--------------------|--------------------|-------------| | None vs. 10 mM
NO ₃ | 0.051 | 0.018 | 0.085 | 0.023 | | $10 \text{ mM NO}_3 \text{ vs.}$ 10 mM NO_2 | 0.128 | 0.095 | 0.162 | 0.004 | | None vs. 1 M
NO ₃ | 0.203 | 0.195 | 0.211 | 0.000 | | 10 mM NO ₃ vs. 1
M NO ₃ | 0.152 | 0.120 | 0.184 | 0.002 | | 1 M NO ₃ vs. 1 M
NO ₂ | 0.099 | 0.093 | 0.105 | 0.000 | Table S7A. Summary of NO_x produced by plasma electrolytic synthesis after different processing times and at different currents. The current was 6 mA in the time trials, the processing time was 45 min in the current trials, and the reaction volume was 20 ml in all cases. | | | NO _x produced (mM) | | | |---------|-----------|-------------------------------|---------------|---------------| | | t = 5 min | $t = 15 \min$ | $t = 30 \min$ | $t = 45 \min$ | | Trial 1 | 0.412 | 0.654 | 0.951 | 1.18 | | Trial 2 | 0.438 | 0.659 | 0.929 | 1.09 | | Trial 3 | 0.468 | 0.629 | 0.971 | 1.06 | | Average | 0.439 | 0.647 | 0.951 | 1.11 | | | | NO _x produced (mM) | | | |---------|-----------|-------------------------------|-----------|----------| | | I = 2 mA | I = 4 mA | I = 6 mA | I = 8 mA | | Trial 1 | 0.653 | 1.04 | 1.18 | 1.13 | | Trial 2 | 0.671 | 0.990 | 1.09 | 1.03 | | Trial 3 | 0.658 | 1.03 | 1.06 | 1.16 | | Average | 0.661 | 1.02 | 1.11 | 1.11 | Table S7B. Summary of one-sample and two-sample t tests carried out on datasets in table S7A. ### One-Sample t on NOx production Test of $\mu = 0$ vs $\mu > 0.00$ | | Algebraic Mean | St. Deviation | 95% Lower | Probability | |--------|----------------|---------------|-----------|-------------| | | _ | | Bound | - | | 5 min | 0.439 | 0.028 | 0.392 | 0.001 | | 15 min | 0.647 | 0.016 | 0.620 | 0.000 | | 30 min | 0.950 | 0.021 | 0.915 | 0.000 | | 45 min | 1.11 | 0.062 | 1.005 | 0.001 | #### **One-Sample t on NOx production** Test of $\mu = 0$ vs $\mu > 0.00$ | | Algebraic Mean | St. Deviation | 95% Lower | Probability | |------|----------------|---------------|-----------|-------------| | | | | Bound | | | 2 mA | 0.661 | 0.009 | 0.645 | 0.000 | | 4 mA | 1.02 | 0.028 | 0.974 | 0.000 | | 6 mA | 1.11 | 0.062 | 1.00 | 0.001 | | 8 mA | 1.11 | 0.068 | 0.992 | 0.001 | # Two-Sample t on NOx production Test of μ_1 - $\mu_2=0$ | | Difference | 95% Lower
Bound | 95% Upper
Bound | Probability | |---------------|------------|--------------------|--------------------|-------------| | 5 vs. 15 min | 0.208 | 0.149 | 0.267 | 0.002 | | 15 vs. 30 min | 0.303 | 0.255 | 0.352 | 0.000 | | 30 vs. 45 min | 0.159 | -0.004 | 0.323 | 0.052 | # Two-Sample t on NO_x production Test of μ_1 - $\mu_2=0$ | | Difference | 95% Lower | 95% Upper | Probability | |------------|------------|-----------|-----------|-------------| | | | Bound | Bound | | | 2 vs. 4 mA | 0.360 | 0.287 | 0.433 | 0.002 | | 4 vs. 6 mA | 0.089 | -0.081 | 0.259 | 0.153 | | 6 vs. 8 mA | 0.003 | -0.166 | 0.173 | 0.954 | Table S8. Summary of voltages measured between the plasma cathode and the Pt anode as a function of the plasma current in the plasma electrolytic system. The plasma was formed in a flow of N_2 gas. | Voltage
(V) | | | | | | | |----------------|------|------|------|------|------|------| | | 1 mA | 2 mA | 3 mA | 4 mA | 6 mA | 8 mA | | Trial 1 | 508 | 510 | 503 | 498 | 510 | 505 | | Trial 2 | 509 | 514 | 506 | 509 | 502 | 514 | | Trial 3 | 503 | 504 | 511 | 506 | 499 | 501 | | Trial 4 | 511 | 501 | 508 | 508 | 507 | 497 | | Trial 5 | 506 | 503 | 512 | 503 | 501 | 501 | | Trial 6 | 513 | 507 | 501 | 508 | 503 | 499 | | Average | 508 | 507 | 507 | 505 | 504 | 503 |