WEB MATERIAL

Analyzing Vaccine Trials in Epidemics With Mild and Asymptomatic Infection

Rebecca Kahn*, Matt Hitchings, Rui Wang, Steven Bellan, and Marc Lipsitch

*Correspondence to Rebecca Kahn, Harvard T.H. Chan School of Public Health, Department of Epidemiology, 677 Huntington Avenue, Suite 506, Boston, MA 02115 (e-mail: rek160@mail.harvard.edu).

Table of Contents

- Web Table 1. Model parameters
- Web Table 2. Median number of events
- Web Table 3. Median variance
- Web Table 4. Median VE_P estimate in full trial and sample from approach 7 when VE_P \neq 0
- Web Table 5. VE_S estimates (empirical coverage probabilities)
- Web Figure 1. VE_S estimates (200-day trial)
- Web Figure 2. VE_S estimates (Ebola-like parameters and higher R_0)
- Web Figure 3. VE_S estimates (varying baseline parameters)

References

Web Table 1. Model parameters

Parameter	Meaning	Value/range
R ₀	Average number of secondary infections generated by an infected individual within the communities; function of force of infection (β), infectious period, and network structure (7, 8)	Baseline: 1.0, 1.25, 1.5 Supplement: 2.5, 5.0
Latent period	Latent period length (days)	Baseline: 6.0 (1) Supplement (Ebola-like): 9.7 (2, 3)
Infectious period	Mean infectious period length (days); gamma- distributed with rate = 1.13 and shape = 0.188	Baseline: 6.0 (4) Supplement (Ebola-like): 5 (2, 3)
VE	Individual vaccine efficacy	Baseline: 0.6 Supplement: 0.4, 0.8
N_i	Size of community <i>i</i>	20,000, 4,000, 3,500
Number of communities	Number of communities in the network	1, 5
Symptomatic (vaccinated)	The proportion of infected individuals in the vaccinated group who become symptomatic	Baseline: 0.2 Supplement: 0.1, 0.3 Supplement (Ebola-like): 0.9
Symptomatic (control)	The proportion of infected individuals in the control group who become symptomatic	Baseline: 0.2 Supplement (Ebola-like): 0.9
а	Constant in calculation of importation rate into communities from main population • $M_i = a \times \sqrt{N_i}$, where M_i is importation rate and N_i is the size of community <i>I</i> (5, 8)	40
Within degree	Average within-community degree (i.e. the average number of contacts each person has within their own community)	30–52

Between degree	Average between-community degree (i.e., the average number of contacts each person has outside of their own community)	0–5
Trial size	Average number of individuals enrolled	1,500
Trial start day	First day of enrollment, vaccination and start of follow-up, relative to the first day of the epidemic in the main population	100
Trial length	Length of follow-up after trial start (days)	Baseline: 150 Supplement: 200
% enrolled	% of each community enrolled into the trial	7.5%, 3%

	$R_0 = 1.00$		$R_0 =$	= 1.25	$R_0 = 1.50$	
Group	1	5	1	5	1	5
	Community	Communities	Community	Communities	Community	Communities
Vaccinated	34	33	173	171	309	306
Control	82	81	361	353	543	544

Web Table 2. Median number of events

		$R_0 = 1.00$		$R_0 = 1.25$		$R_0 = 1.50$	
Approach		1 Community	5 Communities*	1 Community	5 Communities*	1 Community	5 Communities*
1	Cox "perfect knowledge"	0.042	0.043, 0.040	0.009	0.009, 0.009	0.005	0.005, 0.005
2	Cox— symptomatic only	0.217	0.228, 0.210	0.044	0.044, 0.044	0.026	0.026, 0.026
3	Relative risk estimate	0.039	0.040, 0.039	0.006	0.006, 0.006	0.002	0.002, 0.002
4	Corrected relative risk estimate (6)	0.007	0.007, 0.006	0.001	0.001, 0.001	0.001	0.001, 0.001
5	Interval-censored Cox model (3 intervals)	0.042	0.044, 0.044	0.009	0.009, 0.009	0.005	0.005, 0.005
6	Interval-censored Cox model (1 interval)	0.043	0.278, 0.044	0.009	0.046, 0.009	0.005	0.028, 0.005
7	Imputation	0.059	0.046, 0.21	0.01	0.009, 0.01	0.006	0.006, 0.007

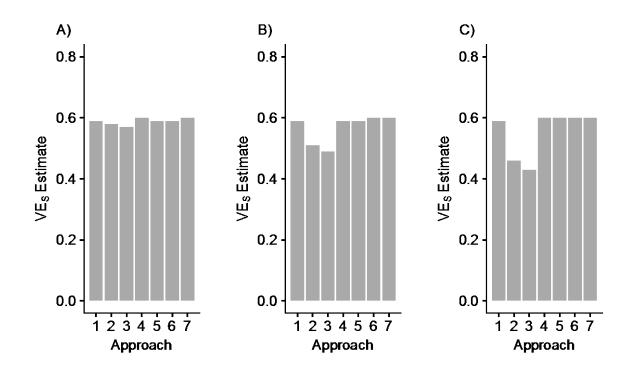
Web Table 3. Median variance

* First number is from the analysis of the five communities as one large community and the

second is from the stratified and meta-analyzed analyses.

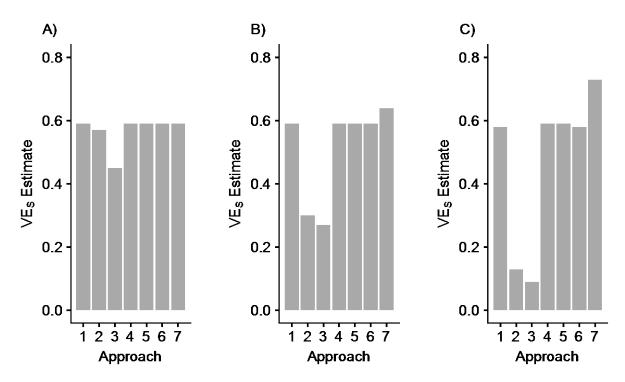
True	True $R_0 = 1.00$		$R_0 =$	= 1.25	$R_0 = 1.50$	
VE _P	Full Trial	Sample	Full Trial	Sample	Full Trial	Sample
0.50	0.49	1	0.51	0.56	0.50	0.49
-0.50	-0.49	-0.17	-0.51	-0.53	-0.59	-0.49

Web Table 4. Median VE_P estimate in full trial and sample from approach 7 when $VE_P \neq 0$

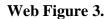

Approach	$R_0 = 1.00$		$R_0 = 1.25$		$R_0 = 1.50$		
Approach	200-Day Trial		200-Day Trial		200-Day Trial		
1	0.59 (0.97)		0.59	0.59 (0.93)		0.59 (0.95)	
2	0.58 ((0.95)	0.51	0.51 (0.76)		0.46 (0.53)	
3	0.57 ((0.96)	0.49	(0.13)	0.43	3 (0)	
4	0.6 (0.96)	0.59	(0.95)	0.6 (0.95)		
5	0.59 ((0.96)	0.59	(0.92)	0.6 (0.95)		
6	0.59 ((0.96)	0.60	(0.93)	0.6 (0.95)	
7	0.60 ((0.90)	0.60	(0.92)	0.60	(0.92)	
	$VE_{P} = 0.50$	$VE_{P} = -0.50$	$VE_{P} = 0.50$	$VE_{P} = -0.50$	$VE_{P} = 0.50$	$VE_{P} = -0.50$	
1	0.59 (0.94)	0.59 (0.93)	0.59 (0.96)	0.59 (0.94)	0.59 (0.93)	0.59 (0.94)	
2	0.79 (0.87)	0.37 (0.79)	0.77 (0.46)	0.27 (0.11)	0.73 (0.49)	0.17 (0)	
3	0.58 (0.95)	0.58 (0.95)	0.51 (0.48)	0.51 (0.43)	0.43 (0)	0.43 (0)	
4	0.59 (0.96)	0.59 (0.96)	0.59 (0.97)	0.59 (0.94)	0.59 (0.93)	0.59 (0.95)	
5	0.59 (0.94)	0.59 (0.94)	0.59 (0.95)	0.59 (0.93)	0.59 (0.92)	0.59 (0.94)	
6	0.59 (0.94)	0.59 (0.92)	0.59 (0.94)	0.59 (0.93)	0.59 (0.93)	0.59 (0.94)	
7	0.58 (0.88)	0.57 (0.90)	0.60 (0.90)	0.60 (0.92)	0.61 (0.92)	0.59 (0.92)	
	$VE_{S} = 0.40$	$VE_{S} = 0.80$	$VE_{S} = 0.80$	$VE_{s} = 0.80$	$VE_{S} = 0.80$	$VE_{S} = 0.80$	
1	0.4 (0.95)	0.8 (0.94)	0.39 (0.95)	0.8 (0.94)	0.39 (0.94)	0.79 (0.92)	
2	0.42 (0.95)	0.78 (0.9)	0.33 (0.91)	0.75 (0.84)	0.26 (0.71)	0.7 (0.46)	
3	0.38 (0.77)	0.79(1)	0.32 (0.24)	0.74 (0.99)	0.24 (0)	0.68 (0.25)	
4	0.4 (0.94)	0.8 (0.95)	0.4 (0.93)	0.8 (0.95)	0.39 (0.95)	0.79 (0.93)	
5	0.4 (0.94)	0.8 (0.95)	0.4 (0.95)	0.8 (0.94)	0.39 (0.93)	0.79 (0.91)	
6	0.4 (0.95)	0.8 (0.95)	0.4 (0.94)	0.8 (0.94)	0.39 (0.93)	0.79 (0.92)	
7	0.37 (0.82)	0.77 (0.96)	0.40 (0.81)	0.8 (0.98)	0.40 (0.80)	0.8 (1)	
	Ebola-Like Parameters		$R_0 = 2.50$		$R_0 = 5.00$		
1	0.59 (0.94)		0.59 (0.92)		0.58 (0.88)		
2	0.57 (0.85)		0.3 (0.02)		0.13 (0.04)		
3	0.45 (0)		0.27 (0)		0.09 (0.01)		
4	0.59 (0.96)		0.59 (0.94)		0.59 (0.97)		
5	0.59 (0.94)		0.59 (0.91)		0.59 (0.91)		
6	0.59 (0.94)		0.59 (0.92)		0.58 (0.92)		
7	0.59 (0.98)		0.64 (0.92)		0.73 (0.98)		

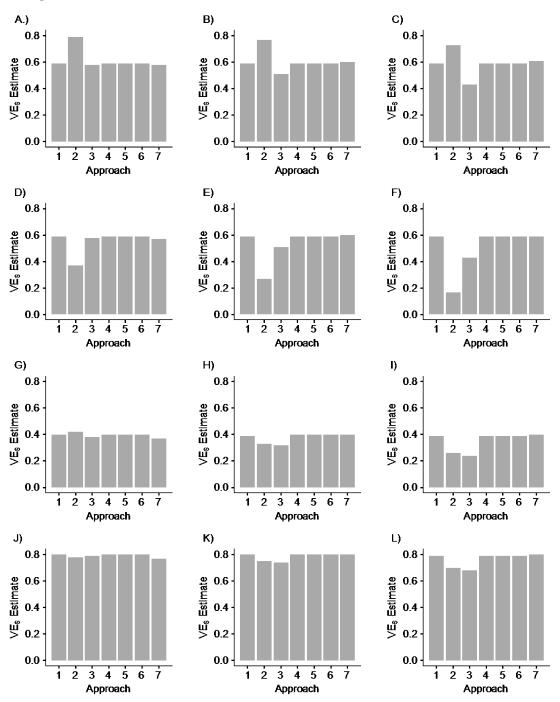
Web Table 5. VE_S estimates (empirical coverage probabilities)^a

^a Empirical coverage probabilities are calculated by the proportion of simulations with 95%


confidence intervals that cover the true VE_S parameter of the model.

Web Figure 1.




VE_{*S*} estimates (200-day trial). The estimates for vaccine efficacy against susceptibility to infection (VE_{*S*}) using seven different approaches for A) $R_0 = 1$, B) $R_0 = 1.25$, and C) $R_0 = 1.5$ for a 200-day long trial. The seven approaches are: Cox "perfect knowledge" (1), Cox—symptomatic only (2), relative risk estimate (3), corrected relative risk estimate (4), interval-censored Cox model (3 intervals) (5), interval-censored Cox model (1 interval) (6), and imputation (7).

Web Figure 2.

VE_{*S*} estimates (Ebola-like parameters and higher R_0). The estimates for vaccine efficacy against susceptibility to infection (VE_{*S*}) using seven different approaches, from simulations with A) Ebola-like parameters, B) the baseline parameters with $R_0 = 2.5$, and C) the baseline parameters with $R_0 = 5$. The seven approaches are: Cox "perfect knowledge" (1), Cox symptomatic only (2), relative risk estimate (3), corrected relative risk estimate (4), intervalcensored Cox model (3 intervals) (5), interval-censored Cox model (1 interval) (6), and imputation (7).

Varying baseline parameters. The estimates for vaccine efficacy against susceptibility to infection (VE_{*S*}) using seven different methods when A) $R_0 = 1$, B) $R_0 = 1.25$, and C) $R_0 = 1.5$ and VE_{*P*} = 0.50, when D) $R_0 = 1$, E) $R_0 = 1.25$, and F) $R_0 = 1$ and VE_{*P*} = -0.50, when G) $R_0 = 1$, H) $R_0 = 1.25$, and I) $R_0 = 1.5$ and input VE_{*S*} = 0.40, and when J) $R_0 = 1$, K) $R_0 = 1.25$, and L) $R_0 = 1.5$ and input VE_{*S*} = 0.80.

References

- 1. Krow-Lucal ER, Biggerstaff BJ, Staples JE. Estimated incubation period for zika virus disease. *Emerg. Infect. Dis.* 2017;23(5):841–844.
- WHO Ebola Response Team. West African Ebola Epidemic after One Year Slowing but Not Yet under Control. *N. Engl. J. Med.* 2014;372(6):584–587. (http://dx.doi.org/10.1056/NEJMc1414992)
- 3. Hitchings MDT, Lipsitch M, Wang R, et al. Competing Effects Of Indirect Protection And Clustering On The Power Of Cluster-Randomized Controlled Vaccine Trials. *Am. J. Epidemiol.* 2018;
- 4. Centers for Disease Control and Prevention. *Zika Virus*. 2017. https://www.cdc.gov/zika/prevention/transmission-methods.html. Accessed October 9, 2018.
- 5. Keeling MJ, Rohani P. Modeling Infectious Diseases in Humans and Animals. 2008 864-865 p.(http://cid.oxfordjournals.org/lookup/doi/10.1086/591197)
- 6. Haber M, Longini IM, Halloran ME. Estimation of vaccine efficacy in outbreaks of acute infectious diseases. *Stat. Med.* 1991;10(10):1573–1584.
- 7. Meyers LA, Pourbohloul B, Newman MEJ, et al. Network theory and SARS: Predicting outbreak diversity. *J. Theor. Biol.* 2005;232(1):71–81.
- Kahn R, Hitchings M, Bellan S, et al. Impact of stochastically generated heterogeneity in hazard rates on individually randomized vaccine efficacy trials. *Clin. Trials*. 2018;15(2):207–211.