## Supplementary Figures

## Short-Term Pulmonary Toxicity Assessment of Pre- and Post-Incinerated Organomodified Nanoclay in Mice

Todd A. Stueckle<sup>1</sup>\*, Donna C. Davidson<sup>1</sup>, Ray Derk<sup>1</sup>, Tiffany G. Kornberg<sup>1,2</sup>, Lori Battelli<sup>1</sup>, Sherri Friend<sup>1</sup>, Marlene Orandle<sup>1</sup>, Alixandra Wagner<sup>3</sup>, Cerasela Zoica Dinu<sup>3</sup>, Konstantinos A. Sierros<sup>4</sup>, Sushant Agarwal<sup>3</sup>, Rakesh K. Gupta<sup>3</sup>, Yon Rojanasakul<sup>2</sup>, Dale W. Porter<sup>1</sup>, Liying Rojansakul<sup>1</sup>

<sup>1</sup> Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown WV, 26505

<sup>2</sup> Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506

<sup>3</sup> Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506

<sup>4</sup> Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506



**Supplemental Figure 1.** EDX analysis of dispersed pre- and post-incinerated organomodified nanoclays. A) CloisNa, b) Clois30B, c) I-CloisNa, and d) I-Clois30B.



**Supplemental Figure 2**. Modeled estimates of nanoclay platelet aerodynamic diameter for a) CloisNa and b) Clois30B based on platelet thickness and particle density. Based on [44]. Dispersed particulate in vehicle showed bimodal size fraction for each particle. DLS measurements provided data for projected particle diameter and percent fraction (in parentheses).



**Supplemental Figure 3**. Enhanced darkfield microscopy of deposited pre- and post-incinerated nanoclay particles at Day 1 post-exposure in mouse lung following oropharyngeal aspiration. Both CloisNa and Clois30B showed weak scattered light ability. Inset depicts nano-sized Clois30B particle (white arrow) next to an alveolar macrophage (AM). TB and AD indicate terminal bronchiole and alveolar duct, respectively. White arrows indicate areas of particle deposition. 200x magnification.



**Supplemental Figure 4**. Additional BALF characterization following oropharyngeal aspiration of preand post-incinerated organomodified nanoclay. a) Enhanced darkfield imaging of particle-laden macrophages and neutrophils for CloisNa- (left panel) and Clois30B-exposed (right panel) in BALF at Day 7 post-exposure. Dose-, particle-, and time-dependent b) lymphocyte infiltrate and c) bi-nucleated macrophage response following aspiration exposure. Different letters indicate those treatments significantly different from each other (p<0.05, n=8).



**Supplemental Figure 5**. Percent weight change following single oropharyngeal aspiration of pre- and post-incinerated organomodified nanoclay. \* indicate a significant decrease in body weight from vehicle control. Letters indicate significant differences between vehicle control and other treatments at Day 28 post-exposure (p<0.05, n=12).



**Supplemental Figure 6**. Time course comparison of lung histopathology response following aspiration exposure to incinerated pristine (I-CloisNa) or incinerated organomodified nanoclay (I-Clois30B) vs. crystalline silica. I-CloisNa exposure resulted in a robust, transient inflammatory response while I-Clois30B exposure exhibited a minimal, but persistent inflammation with slow clearing particulate surrounded by alveolar macrophages, which compared to crystalline silica-exposed lung. 400X magnification. Yellow and green arrows indicate either free or macrophage engulfed particles, respectively.



**Supplemental Figure 7**. Differential blood clotting times following aspiration exposure to pre- and post-incinerated organomodified nanoclays. Decreased time to clot indicates platelet activation. \* indicate a significant decrease compared to vehicle control (p<0.05, n=12).



**Supplemental Figure 8**. Systemic white blood cell differentials following aspiration exposure to preand post-incinerated organomodified nanoclays. a) Total white blood cell counts were different on Day 7 and 28 compared to Day 1 for vehicle and both CloisNa doses, while b) neutrophil counts showed a trend for dose-, time- and particle-dependent effects (p = 0.056). Letters indicate a significant increase compared to Day 1 animals. Both c) lymphocyte and d) eosinophil systemic counts exhibited significant decreases at Day 28 post-exposure across most treatments. \* and † indicate a significant increase or decrease compared to vehicle control, respectively (p<0.05, n=12).