©RSNA, 2018 10.1148/radiol.2018180226

Appendix E1: Search Strategy for PubMed

1. PubMed searched for "T1 mapping AND heart." (No date limits set, last searched March 5th, 2018)

2. Citations exported to a database.

3. PubMed searched for "Native T1 AND heart." (No date limits set, last searched March 5th, 2018)

4. Citations exported to previously generated database.

5. PubMed searched for "ECV AND heart." (No date limits set, last searched March 5th, 2018)

6. Citations exported to previously generated database.

7. Duplicates were identified using PMID and removed.

8. Titles were screened. If study was obviously not applicable to the meta-analysis and systematic review based on title alone the citation was removed.

9. Abstracts were thoroughly reviewed for inclusion. If study was deemed to not meet inclusion criteria by data provided in the abstract the citation was removed.

10. Full references were thoroughly reviewed for inclusion.

11. Reference lists of eligible articles were reviewed to identify any additional articles.

References of Articles Included in Meta-analysis and Systematic Review

Messroghli DR, Plein S, Higgins DM, et al. Human myocardium: single-breath-hold MR T1 mapping with high spatial resolution--reproducibility study. Radiology 2006;238(3):1004–1012.

Messroghli DR, Greiser A, Fröhlich M, Dietz R, Schulz-Menger J. Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging 2007;26(4):1081–1086.

Piechnik SK, Ferreira VM, Dall'Armellina E, et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 2010;12(1):69–79.

Nacif MS, Turkbey EB, Gai N, et al. Myocardial T1 mapping with MRI: comparison of look-locker and MOLLI sequences. J Magn Reson Imaging 2011;34(6):1367–1373 .

Lee JJ, Liu S, Nacif MS, et al. Myocardial T1 and extracellular volume fraction mapping at 3 tesla. J Cardiovasc Magn Reson 2011;13(1):75–84 .

Dass S, Suttie JJ, Piechnik SK, et al. Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging 2012;5(6):726–733.

Kawel N, Nacif M, Zavodni A, et al. T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3T for Gd-DTPA and Gd-BOPTA. J Cardiovasc Magn Reson 2012;14(1):26–34.

Fontana M, White SK, Banypersad SM, et al. Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. J Cardiovasc Magn Reson 2012;14(1):88–93.

Liu S, Han J, Nacif MS, et al. Diffuse myocardial fibrosis evaluation using cardiac magnetic resonance T1 mapping: sample size considerations for clinical trials. J Cardiovasc Magn Reson 2012;14(1):90–97.

Kellman P, Wilson JR, Xue H, et al. Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson 2012;14(1):64–71.

Ferreira VM, Piechnik SK, Dall'Armellina E, et al. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012;14(1):42–53.

Ugander M, Oki AJ, Hsu LY, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J 2012;33(10):1268–1278.

Karamitsos TD, Piechnik SK, Banypersad SM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013;6(4):488–497.

Liu CY, Liu YC, Wu C, et al. Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 2013;62(14):1280–1287.

Miller CA, Naish JH, Bishop P, et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging 2013;6(3):373–383.

Sado DM, White SK, Piechnik SK, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging 2013;6(3):392–398.

Rogers T, Dabir D, Mahmoud I, et al. Standardization of T1 measurements with MOLLI in differentiation between health and disease--the ConSept study. J Cardiovasc Magn Reson 2013;15(1):78–86.

von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA, et al. Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson 2013;15(1):53–63 .

Bull S, White SK, Piechnik SK, et al. Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart 2013;99(13):932–937.

Salerno M, Janardhanan R, Jiji RS, et al. Comparison of methods for determining the partition coefficient of gadolinium in the myocardium using T1 mapping. J Magn Reson Imaging 2013;38(1):217–224 .

Puntmann VO, D'Cruz D, Smith Z, et al. Native myocardial T1 mapping by cardiovascular magnetic resonance imaging in subclinical cardiomyopathy in patients with systemic lupus erythematosus. Circ Cardiovasc Imaging 2013;6(2):295–301.

Ferreira VM, Piechnik SK, Dall'Armellina E, et al. T(1) mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging 2013;6(10):1048–1058.

Piechnik SK, Ferreira VM, Lewandowski AJ, et al. Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson 2013;15(1):13–23.

Puntmann VO, Voigt T, Chen Z, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging 2013;6(4):475–484.

Fontana M, Banypersad SM, Treibel TA, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging 2014;7(2):157–165.

Reiter U, Reiter G, Dorr K, Greiser A, Maderthaner R, Fuchsjäger M. Normal diastolic and systolic myocardial T1 values at 1.5-T MR imaging: correlations and blood normalization. Radiology 2014;271(2):365–372.

Chin CW, Semple S, Malley T, et al. Optimization and comparison of myocardial T1 techniques at 3T in patients with aortic stenosis. Eur Heart J Cardiovasc Imaging 2014;15(5):556–565 .

Puntmann VO, Arroyo Ucar E, Hinojar Baydes R, et al. Aortic stiffness and interstitial myocardial fibrosis by native T1 are independently associated with left ventricular remodeling in patients with dilated cardiomyopathy. Hypertension 2014;64(4):762–768.

Thuny F, Lovric D, Schnell F, et al. Quantification of myocardial extracellular volume fraction with cardiac MR imaging for early detection of left ventricle involvement in systemic sclerosis. Radiology 2014;271(2):373–380.

Florian A, Ludwig A, Rösch S, Yildiz H, Sechtem U, Yilmaz A. Myocardial fibrosis imaging based on T1-mapping and extracellular volume fraction (ECV) measurement in muscular dystrophy patients: diagnostic value compared with conventional late gadolinium enhancement (LGE) imaging. Eur Heart J Cardiovasc Imaging 2014;15(9):1004–1012.

Brouwer WP, Baars EN, Germans T, et al. In-vivo T1 cardiovascular magnetic resonance study of diffuse myocardial fibrosis in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 2014;16(1):28–34.

Dabir D, Child N, Kalra A, et al. Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2014;16(1):69–80.

Ntusi NA, Piechnik SK, Francis JM, et al. Subclinical myocardial inflammation and diffuse fibrosis are common in systemic sclerosis--a clinical study using myocardial T1-mapping and extracellular volume quantification. J Cardiovasc Magn Reson 2014;16(1):21–32.

Ferreira VM, Piechnik SK, Dall'Armellina E, et al. Native T1-mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents. J Cardiovasc Magn Reson 2014;16(1):36–46.

Kawel-Boehm N, Dellas Buser T, Greiser A, Bieri O, Bremerich J, Santini F. In-vivo assessment of normal T1 values of the right-ventricular myocardium by cardiac MRI. Int J Cardiovasc Imaging 2014;30(2):323–328.

Radunski UK, Lund GK, Stehning C, et al. CMR in patients with severe myocarditis: diagnostic value of quantitative tissue markers including extracellular volume imaging. JACC Cardiovasc Imaging 2014;7(7):667–675.

Kvernby S, Warntjes MJ, Haraldsson H, Carlhäll CJ, Engvall J, Ebbers T. Simultaneous threedimensional myocardial T1 and T2 mapping in one breath hold with 3D-QALAS. J Cardiovasc Magn Reson 2014;16(1):102–115.

Luetkens JA, Doerner J, Thomas DK, et al. Acute myocarditis: multiparametric cardiac MR imaging. Radiology 2014;273(2):383–392 .

Mahmod M, Piechnik SK, Levelt E, et al. Adenosine stress native T1 mapping in severe aortic stenosis: evidence for a role of the intravascular compartment on myocardial T1 values. J Cardiovasc Magn Reson 2014;16(1):92–99.

Liu CY, Bluemke DA, Gerstenblith G, et al. Reference values of myocardial structure, function, and tissue composition by cardiac magnetic resonance in healthy African-Americans at 3T and their relations to serologic and cardiovascular risk factors. Am J Cardiol 2014;114(5):789–795.

Hinojar R, Foote L, Sangle S, et al. Native T1 and T2 mapping by CMR in lupus myocarditis: Disease recognition and response to treatment. Int J Cardiol 2016;222:717–726.

Lee SP, Lee W, Lee JM, et al. Assessment of diffuse myocardial fibrosis by using MR imaging in asymptomatic patients with aortic stenosis. Radiology 2015;274(2):359–369.

Hong YJ, Park CH, Kim YJ, et al. Extracellular volume fraction in dilated cardiomyopathy patients without obvious late gadolinium enhancement: comparison with healthy control subjects. Int J Cardiovasc Imaging 2015;31(S1,Suppl 1):115–122.

Fontana M, Banypersad SM, Treibel TA, et al. Differential myocyte responses in patients with cardiac transthyretin amyloidosis and light-chain amyloidosis: a cardiac MR imaging study. Radiology 2015;277(2):388–397.

Chen YY, Zhang WG, Yang S, et al. Extracellular volume fraction in coronary chronic total occlusion patients. Int J Cardiovasc Imaging 2015;31(6):1211–1221 .

Banypersad SM, Fontana M, Maestrini V, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J 2015;36(4):244–251 .

Ertel A, Pratt D, Kellman P, et al. Increased myocardial extracellular volume in active idiopathic systemic capillary leak syndrome. J Cardiovasc Magn Reson 2015;17(1):76–83 .

Kuruvilla S, Janardhanan R, Antkowiak P, et al. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone. JACC Cardiovasc Imaging 2015;8(2):172–180.

Małek LA, Werys K, Kłopotowski M, et al. Native T1-mapping for non-contrast assessment of myocardial fibrosis in patients with hypertrophic cardiomyopathy--comparison with late enhancement quantification. Magn Reson Imaging 2015;33(6):718–724.

aus dem Siepen F, Buss SJ, Messroghli D, et al. T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging 2015;16(2):210–216.

Edwards NC, Moody WE, Yuan M, et al. Diffuse interstitial fibrosis and myocardial dysfunction in early chronic kidney disease. Am J Cardiol 2015;115(9):1311–1317 .

McDiarmid AK, Broadbent DA, Higgins DM, et al. The effect of changes to MOLLI scheme on T1 mapping and extra cellular volume calculation in healthy volunteers with 3 tesla cardiovascular magnetic resonance imaging. Quant Imaging Med Surg 2015;5(4):503–510.

Mehta BB, Auger DA, Gonzalez JA, et al. Detection of elevated right ventricular extracellular volume in pulmonary hypertension using Accelerated and Navigator-Gated Look-Locker Imaging for Cardiac T1 Estimation (ANGIE) cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2015;17(1):110–120.

Zhang Y, Corona-Villalobos CP, Kiani AN, et al. Myocardial T2 mapping by cardiovascular magnetic resonance reveals subclinical myocardial inflammation in patients with systemic lupus erythematosus. Int J Cardiovasc Imaging 2015;31(2):389–397.

Alam MH, Auger D, Smith GC, et al. T1 at 1.5T and 3T compared with conventional T2* at 1.5T for cardiac siderosis. J Cardiovasc Magn Reson 2015;17(1):102–112.

Ntusi NAB, Piechnik SK, Francis JM, et al. Diffuse myocardial fibrosis and inflammation in rheumatoid arthritis: insights from CMR T1 mapping. JACC Cardiovasc Imaging 2015;8(5):526–536.

Singh A, Horsfield MA, Bekele S, Khan JN, Greiser A, McCann GP. Myocardial T1 and extracellular volume fraction measurement in asymptomatic patients with aortic stenosis: reproducibility and comparison with age-matched controls. Eur Heart J Cardiovasc Imaging 2015;16(7):763–770.

Treibel TA, Zemrak F, Sado DM, et al. Extracellular volume quantification in isolated hypertension - changes at the detectable limits? J Cardiovasc Magn Reson 2015;17(1):74–84.

Tessa C, Diciotti S, Landini N, et al. Myocardial T1 and T2 mapping in diastolic and systolic phase. Int J Cardiovasc Imaging 2015;31(5):1001–1010.

Luetkens JA, Homsi R, Dabir D, et al. Comprehensive cardiac magnetic resonance for short-term follow-up in acute myocarditis. J Am Heart Assoc 2016;5(7):e003603.

Mordi I, Carrick D, Bezerra H, Tzemos N. T1 and T2 mapping for early diagnosis of dilated non-ischaemic cardiomyopathy in middle-aged patients and differentiation from normal physiological adaptation. Eur Heart J Cardiovasc Imaging 2016;17(7):797–803 .

Levelt E, Mahmod M, Piechnik SK, et al. Relationship between left ventricular structural and metabolic remodeling in type 2 diabetes. Diabetes 2016;65(1):44–52.

Luetkens JA, Doerner J, Schwarze-Zander C, et al. Cardiac magnetic resonance reveals signs of subclinical myocardial inflammation in asymptomatic HIV-infected patients. Circ Cardiovasc Imaging 2016;9(3):e004091.

Mayr A, Kitterer D, Latus J, et al. Evaluation of myocardial involvement in patients with connective tissue disorders: a multi-parametric cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2016;18(1):67–79.

Luetkens JA, Homsi R, Sprinkart AM, et al. Incremental value of quantitative CMR including parametric mapping for the diagnosis of acute myocarditis. Eur Heart J Cardiovasc Imaging 2016;17(2):154–161 .

Liu A, Wijesurendra RS, Francis JM, et al. Adenosine stress and rest T1 mapping can differentiate between ischemic, infarcted, remote, and normal myocardium without the need for gadolinium contrast agents. JACC Cardiovasc Imaging 2016;9(1):27–36.

Ntusi N, O'Dwyer E, Dorrell L, et al. HIV-1-related cardiovascular disease is associated with chronic inflammation, frequent pericardial effusions, and probable myocardial edema. Circ Cardiovasc Imaging 2016;9(3):e004430.

Görmeli CA, Görmeli G, Yağmur J, et al. Assessment of myocardial changes in athletes with native T1 mapping and cardiac functional evaluation using 3 T MRI. Int J Cardiovasc Imaging 2016;32(6):975–981.

Goebel J, Seifert I, Nensa F, et al. Can Native T1 mapping differentiate between healthy and diffuse diseased myocardium in clinical routine cardiac MR imaging? PLoS One 2016;11(5):e0155591.

Gao X, Liu M, Qu A, et al. Native magnetic resonance T1-mapping identifies diffuse myocardial injury in hypothyroidism. PLoS One 2016;11(3):e0151266.

Ferreira VM, Marcelino M, Piechnik SK, et al. Pheochromocytoma is characterized by catecholamine-mediated myocarditis, focal and diffuse myocardial fibrosis, and myocardial dysfunction. J Am Coll Cardiol 2016;67(20):2364–2374.

Kato S, Foppa M, Roujol S, et al. Left ventricular native T1 time and the risk of atrial fibrillation recurrence after pulmonary vein isolation in patients with paroxysmal atrial fibrillation. Int J Cardiol 2016;203:848–854.

Rauhalammi SM, Mangion K, Barrientos PH, et al. Native myocardial longitudinal (T1) relaxation time: Regional, age, and sex associations in the healthy adult heart. J Magn Reson Imaging 2016;44(3):541–548.

McDiarmid AK, Swoboda PP, Erhayiem B, et al. Athletic cardiac adaptation in males is a consequence of elevated myocyte mass. Circ Cardiovasc Imaging 2016;9(4):e003579.

Teixeira T, Hafyane T, Stikov N, Akdeniz C, Greiser A, Friedrich MG. Comparison of different cardiovascular magnetic resonance sequences for native myocardial T1 mapping at 3T. J Cardiovasc Magn Reson 2016;18(1):65–76.

Chow K, Yang Y, Shaw P, Kramer CM, Salerno M. Robust free-breathing SASHA T1 mapping with high-contrast image registration. J Cardiovasc Magn Reson 2016;18(1):47–60.

Soslow JH, Damon SM, Crum K, et al. Increased myocardial native T1 and extracellular volume in patients with Duchenne muscular dystrophy. J Cardiovasc Magn Reson 2016;18(1):5–17.

Hanneman K, Nguyen ET, Thavendiranathan P, et al. Quantification of myocardial extracellular volume fraction with cardiac MR imaging in thalassemia major. Radiology 2016;279(3):720–730.

Rutherford E, Talle MA, Mangion K, et al. Defining myocardial tissue abnormalities in endstage renal failure with cardiac magnetic resonance imaging using native T1 mapping. Kidney Int 2016;90(4):845–852.

Chin CWL, Everett RJ, Kwiecinski J, et al. Myocardial fibrosis and cardiac decompensation in aortic stenosis. JACC Cardiovasc Imaging 2017;10(11):1320–1333.

Cameron D, Siddiqi N, Neil CJ, et al. T₁ mapping for assessment of myocardial injury and microvascular obstruction at one week post myocardial infarction. Eur J Radiol 2016;85(1):279–285 .

Schmacht L, Traber J, Grieben U, et al. Cardiac Involvement in Myotonic Dystrophy Type 2 Patients With Preserved Ejection Fraction: Detection by Cardiovascular Magnetic Resonance. Circ Cardiovasc Imaging 2016;9(7):e004615.

Zhao L, Li S, Ma X, et al. Systolic MOLLI T1 mapping with heart-rate-dependent pulse sequence sampling scheme is feasible in patients with atrial fibrillation. J Cardiovasc Magn Reson 2016;18(1):13–22.

Bulluck H, Rosmini S, Abdel-Gadir A, et al. Automated extracellular volume fraction mapping provides insights into the pathophysiology of left ventricular remodeling post-reperfused ST-elevation myocardial infarction. J Am Heart Assoc 2016;5(7):e003555.

Weingärtner S, Meßner NM, Budjan J, et al. Myocardial T₁-mapping at 3T using saturationrecovery: reference values, precision and comparison with MOLLI. J Cardiovasc Magn Reson 2016;18(1):84–93.

Wu LM, Chen BH, Yao QY, et al. Quantitative diffusion-weighted magnetic resonance imaging in the assessment of myocardial fibrosis in hypertrophic cardiomyopathy compared with T1 mapping. Int J Cardiovasc Imaging 2016;32(8):1289–1297.

van Ooij P, Allen BD, Contaldi C, et al. 4D flow MRI and T1 -Mapping: Assessment of altered cardiac hemodynamics and extracellular volume fraction in hypertrophic cardiomyopathy. J Magn Reson Imaging 2016;43(1):107–114.

Roller FC, Wiedenroth C, Breithecker A, et al. Native T1 mapping and extracellular volume fraction measurement for assessment of right ventricular insertion point and septal fibrosis in chronic thromboembolic pulmonary hypertension. Eur Radiol 2017;27(5):1980–1991.

Radunski UK, Lund GK, Säring D, et al. T1 and T2 mapping cardiovascular magnetic resonance imaging techniques reveal unapparent myocardial injury in patients with myocarditis. Clin Res Cardiol 2017;106(1):10–17.

Blaszczyk E, Töpper A, Schmacht L, et al. Influence of spatial resolution and contrast agent dosage on myocardial T1 relaxation times. MAGMA 2017;30(1):85–91.

Rodrigues JC, Amadu AM, Ghosh Dastidar A, et al. ECG strain pattern in hypertension is associated with myocardial cellular expansion and diffuse interstitial fibrosis: a multi-parametric cardiac magnetic resonance study. Eur Heart J Cardiovasc Imaging 2017;18(4):441–450.

Bohnen S, Radunski UK, Lund GK, et al. T1 mapping cardiovascular magnetic resonance imaging to detect myocarditis-Impact of slice orientation on the diagnostic performance. Eur J Radiol 2017;86:6–12.

Homsi R, Luetkens JA, Skowasch D, et al. Left ventricular myocardial fibrosis, atrophy, and impaired contractility in patients with pulmonary arterial hypertension and a preserved left ventricular function: a cardiac magnetic resonance study. J Thorac Imaging 2017;32(1):36–42.

Hamilton JI, Jiang Y, Chen Y, et al. MR fingerprinting for rapid quantification of myocardial T_1 , T_2 , and proton spin density. Magn Reson Med 2017;77(4):1446–1458 .

Kvernby S, Warntjes M, Engvall J, Carlhäll CJ, Ebbers T. Clinical feasibility of 3D-QALAS -Single breath-hold 3D myocardial T1- and T2-mapping. Magn Reson Imaging 2017;38:13–20.

Greulich S, Mayr A, Kitterer D, et al. Advanced myocardial tissue characterisation by a multicomponent CMR protocol in patients with rheumatoid arthritis. Eur Radiol 2017;27(11):4639– 4649.

Liu JM, Liu A, Leal J, et al. Measurement of myocardial native T1 in cardiovascular diseases and norm in 1291 subjects. J Cardiovasc Magn Reson 2017;19(1):74–83 .

Nordio G, Henningsson M, Chiribiri A, Villa ADM, Schneider T, Botnar RM. 3D myocardial T₁ mapping using saturation recovery. J Magn Reson Imaging 2017;46(1):218–227 .

Radunski UK, Fuger U, Bohnen S, et al. Asymptomatic cocaine abuse- myocardial tissue characterization using cardiac biomarkers and cardiovascular magnetic resonance imaging. Circ J 2017;81(5):701–708.

von Knobelsdorff-Brenkenhoff F, Schüler J, Dogangüzel S, et al. Detection and monitoring of acute myocarditis applying quantitative cardiovascular magnetic resonance. Circ Cardiovasc Imaging 2017;10(2):e005242.

Youn JC, Hong YJ, Lee HJ, et al. Contrast-enhanced T1 mapping-based extracellular volume fraction independently predicts clinical outcome in patients with non-ischemic dilated cardiomyopathy: a prospective cohort study. Eur Radiol 2017;27(9):3924–3933.

Chen YY, Yun H, Jin H, et al. Association of native T1 times with biventricular function and hemodynamics in precapillary pulmonary hypertension. Int J Cardiovasc Imaging 2017;33(8):1179–1189.

Bohnen S, Radunski UK, Lund GK, et al. Tissue characterization by T1 and T2 mapping cardiovascular magnetic resonance imaging to monitor myocardial inflammation in healing myocarditis. Eur Heart J Cardiovasc Imaging 2017;18(7):744–751.

Wu LM, Wu R, Ou YR, et al. Fibrosis quantification in hypertensive heart disease with LVH and Non-LVH: findings from T1 mapping and contrast-free cardiac diffusion-weighted imaging. Sci Rep 2017;7(1):559–567.

Homsi R, Kuetting D, Sprinkart A, et al. Interrelations of epicardial fat volume, left ventricular T1-relaxation times and myocardial strain in hypertensive patients: a cardiac magnetic resonance study. J Thorac Imaging 2017;32(3):169–175.

Wang S, Hu H, Lu M, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in hypertension and associated with left ventricular remodeling. Eur Radiol 2017;27(11):4620–4630.

Puntmann VO, Isted A, Hinojar R, Foote L, Carr-White G, Nagel E. T1 and T2 mapping in recognition of early cardiac involvement in systemic sarcoidosis. Radiology 2017;285(1):63–72.

Greulich S, Mayr A, Kitterer D, et al. T1 and T2 mapping for evaluation of myocardial involvement in patients with ANCA-associated vasculitides. J Cardiovasc Magn Reson 2017;19(1):6–17.

Luetkens JA, Schlesinger-Irsch U, Kuetting DL, et al. Feature-tracking myocardial strain analysis in acute myocarditis: diagnostic value and association with myocardial oedema. Eur Radiol 2017;27(11):4661–4671.

Costello BT, Springer F, Hare JL, et al. SASHA versus ShMOLLI: a comparison of T1 mapping methods in health and dilated cardiomyopathy at 3 T. Int J Cardiovasc Imaging 2017;33(10):1551–1560.

Schwarz K, Ahearn T, Srinivasan J, et al. Alterations in cardiac deformation, timing of contraction and relaxation, and early myocardial fibrosis accompany the apparent recovery of acute stress-induced (Takotsubo) cardiomyopathy: an end to the concept of transience. J Am Soc Echocardiogr 2017;30(8):745–755.

Al-Wakeel-Marquard N, Rastin S, Muench F, et al. Cardiac T1 mapping in congenital heart disease: bolus vs. infusion protocols for measurements of myocardial extracellular volume fraction. Int J Cardiovasc Imaging 2017;33(12):1961–1968.

Wu R, An DA, Hu J, et al. The apparent diffusion coefficient is strongly correlated with extracellular volume, a measure of myocardial fibrosis, and subclinical cardiomyopathy in patients with systemic lupus erythematosus. Acta Radiol 2018;59(3):287–295 https://doi.org/10.1177/0284185117717763.

Zhou H, Lin X, Fang L, et al. Prolonged QTc indicates the clinical severity and poor prognosis in patients with isolated left ventricular non-compaction. Int J Cardiovasc Imaging 2017;33(12):2013–2020.

Mordi IR, Singh S, Rudd A, et al. Comprehensive echocardiographic and cardiac magnetic resonance evaluation differentiates among heart failure with preserved ejection fraction patients, hypertensive patients, and healthy control subjects. JACC Cardiovasc Imaging 2018;11(4):577–585.

Hromádka M, Seidlerová J, Suchý D, et al. Myocardial fibrosis detected by magnetic resonance in systemic sclerosis patients - Relationship with biochemical and echocardiography parameters. Int J Cardiol 2017;249:448–453.

Storz C, Hetterich H, Lorbeer R, et al. Myocardial tissue characterization by contrast-enhanced cardiac magnetic resonance imaging in subjects with prediabetes, diabetes, and normal controls with preserved ejection fraction from the general population. Eur Heart J Cardiovasc Imaging 2018;19(6):701–708.

Levelt E, Piechnik SK, Liu A, et al. Adenosine stress CMR T1-mapping detects early microvascular dysfunction in patients with type 2 diabetes mellitus without obstructive coronary

artery disease. J Cardiovasc Magn Reson 2017;19(1):81–90 [Published correction appears in J Cardiovasc Magn Reson 2017;19(1):99.].

Tahir E, Starekova J, Muellerleile K, et al. Myocardial Fibrosis in Competitive Triathletes Detected by Contrast-Enhanced CMR Correlates With Exercise-Induced Hypertension and Competition History. JACC Cardiovasc Imaging 2018;11(9):1260–1270.

Treibel TA, Kozor R, Menacho K, et al. Left ventricular hypertrophy revisited: cell and matrix expansion have disease-specific relationships. Circulation 2017;136(25):2519–2521.

Heck SL, Gulati G, Hoffmann P, et al. Effect of candesartan and metoprolol on myocardial tissue composition during anthracycline treatment: the PRADA trial. Eur Heart J Cardiovasc Imaging 2018;19(5):544–552.

Lee H, Park JB, Yoon YE, et al. Noncontrast myocardial T1 mapping by cardiac magnetic resonance predicts outcome in patients with aortic stenosis. JACC Cardiovasc Imaging 2018;11(7):974–983.

Child N, Suna G, Dabir D, et al. Comparison of MOLLI, shMOLLLI, and SASHA in discrimination between health and disease and relationship with histologically derived collagen volume fraction. Eur Heart J Cardiovasc Imaging 2018;19(7):768–776.

Hanneman K, Crean AM, Wintersperger BJ, et al. The relationship between cardiovascular magnetic resonance imaging measurement of extracellular volume fraction and clinical outcomes in adults with repaired tetralogy of Fallot. Eur Heart J Cardiovasc Imaging 2018;19(7):777–784.

Lin L, Li X, Feng J, et al. The prognostic value of T1 mapping and late gadolinium enhancement cardiovascular magnetic resonance imaging in patients with light chain amyloidosis. J Cardiovasc Magn Reson 2018;20(1):2–12.

Scally C, Rudd A, Mezincescu A, et al. Persistent long-term structural, functional, and metabolic changes after stress-induced (Takotsubo) cardiomyopathy. Circulation 2018;137(10):1039–1048

Cao Y, Zeng W, Cui Y, et al. Increased myocardial extracellular volume assessed by cardiovascular magnetic resonance T1 mapping and its determinants in type 2 diabetes mellitus patients with normal myocardial systolic strain. Cardiovasc Diabetol 2018;17(1):7–18.

Huber AT, Bravetti M, Lamy J, et al. Non-invasive differentiation of idiopathic inflammatory myopathy with cardiac involvement from acute viral myocarditis using cardiovascular magnetic resonance imaging T1 and T2 mapping. J Cardiovasc Magn Reson 2018;20(1):11–21.

Zorach B, Shaw PW, Bourque J, et al. Quantitative cardiovascular magnetic resonance perfusion imaging identifies reduced flow reserve in microvascular coronary artery disease. J Cardiovasc Magn Reson 2018;20(1):14–21.

Table E1A: Native T1 Studies at 1.5 T

Author	Year	Method	Vendor	FS (T)	Technique	Sequence	FA (°)	N	% Male	Age (years)	Native T1 Mean (ms)	SD (ms)
Alam et al; subgroup 1	2015	Р	Siemens	1.5	MOLLI	5 (3)3	35	20	45%	34	1014	22
Al-Wakeel-Marquard et al	2017	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	35	17	53%	24	995	18
ausdemSiepen et al	2015	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	35	56	66%	52	1020	40
Banyspersad et al	2015	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)	35	54	46%	46	954	34
Bohnen et al	2017	Р	Philips	1.5	MOLLI	3 (3)5	35	13	85%	38	1039	16
Bohnen et al	2017	Р	Philips	1.5	MOLLI	3 (3)5	35	27	70%	40	1040	19
Bull et al	2013	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)1	35	33	64%	62	944	16
Bulluck et al	2016	Р	Siemens	1.5	MOLLI	5 (3)3 (3)3	35	20	90%	60	1000	25
Cao et al	2018	Р	Siemens	1.5	MOLLI	5 (3)3	35	20	53%	54	1012	26
Chen et al	2015	Р	Siemens	1.5	MOLLI	5 (3)3	35	15	73%	54	1000	46
Chen et al	2017	Р	Siemens	1.5	MOLLI	5 (3)3	35	10	40%	38	1004	27
Chow et at	2016	Р	Siemens	1.5	MOLLI	5 (4)3	35	10	60%	33	943	22
Dabir et al; subgroup 1	2014	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	50	58	51%	44	952	23
Dabir et al; subgroup 3	2014	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	50	34	52%	41	950	21
Edwards et al	2015	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5		43	56%	57	955	30
Ertel et al	2015	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	35	30	47%	52	971	41
Ferreira et al	2012	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)1	35	21	38%	55	944	17
Ferreira et al	2013	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)1	35	45	78%	42	941	18
Ferreira et al	2014	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)1	35	50	74%	41	946	23
Ferreira et al	2016	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)1	35	31	45%	50	954	16
Fontana et al	2014	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)1	35	52	33%	46	967	34
Fontana et al	2015	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)	35	47	45%	45	968	36
Goebel et al	2015	R	Siemens	1.5	MOLLI	5 (3)3	35	54	57%	48	955	34
Greulich et al	2017	Р	Siemens	1.5	MOLLI	3 (3)3	35	20			952	15
Greulich et al	2017	Р	Siemens	1.5	MOLLI	3 (3)3 (0)1	35	20			959	21
Hanneman et al	2016	Р	Siemens	1.5	MOLLI	5 (3)3	35	10	50%	32	1006	34
Hanneman et al	2017	Р	Siemens	1.5	MOLLI	5 (3)3	35	10	50%	32	980	51
Heck et al	2017	Р	Philips	1.5	MOLLI	3 (2)3 (2)5	35	69	0%	51	1005	32
Homsi et al	2017	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	50	20	50%	63	968	24
Homsi et al	2017	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	35	25	52%	60	967	17
Huber et al	2018	Р	Siemens	1.5	MOLLI	5 (3)3	35	20	45%	47	965	25
Karamitsos et al	2013	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)1	35	36	61%	59	958	20

Kato et al	2016	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	35	11	91%	57	1042	20
Kawel-Boehm et al	2014	Р	Siemens	1.5	MOLLI	5 (3)3	35	20	55%	33	956	25
Kellman et al	2012	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	50	62	48%	43	965	35
Knobelsdorff-Brenkenhoff et al	2017	Р	Siemens	1.5	MOLLI	5 (3)3	35	18	78%	37	975	17
Kuruvilla et al	2015	Р	Siemens	1.5	MOLLI	3 (3)5	35	22	32%	54	976	35
Liu et al	2013	R	Siemens	1.5	MOLLI	3 (3)3 (3)5	35	1231	49%	67	977	42
Liu et al	2017	R	Siemens	1.5	ShMOLLI	5 (1)1 (1)1	35	70	64%	48	938	21
Liu et al; subgroup 1	2016	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)1	35	10	70%	32	954	19
Luetkens et al	2016	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	50	50	60%	39	967	28
Luetkens et al	2016	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	50	45	62%	40	965	28
Luetkens et al	2017	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	50	35	66%	41	967	31
Malek et al	2015	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)1	35	20	60%	27	939	22
Mayr et al	2016	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5		20			962	15
Mehta et al	2015	Р	Siemens	1.5	MOLLI	5 (4)3	35	10	80%	24	971	14
Messroghli et al	2006	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	50	15	60%	33	977	63
Messroghli et al	2007	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	50	20	55%	24	939	24
Miller et al	2013	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	35	30	50%	45	1045	47
Mordi et al	2016	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	35	21	100%	48	952	31
Nacif et al	2011	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	35	14	57%	38	1034	56
Nordio et al	2017	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	35	10			881	32
Ntusi et al	2014	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)1	35	20	5%	56	958	20
Ntusi et al	2015	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)1	35	39	72%	49	961	18
Ntusi et al	2016	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)1	35	92	58%	44	956	24
Piechnik et al	2013	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)1	35	342	49%	38	962	25
Piechnik et al; subgroup 1	2010	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)1	35	10	70%	35	966	48
Piechnik et al; subgroup 2	2010	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	35	10	70%	35	976	46
Radunski et al	2014	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	35	21	81%	34	1051	22
Radunski et al	2017	Р	Philips	1.5	MOLLI	3 (3)5	35	20	80%	37	1051	16
Radunski et al	2017	Р	Philips	1.5	MOLLI	3 (3)5	35	20	90%	31	1055	24
Rauhalammi et al; subgroup 1	2016	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	50	84	49%	58	944	25
Reiter et al	2004	Р	Siemens	1.5	MOLLI	5 (4)2	35	40	50%	28	984	28
Rodrigues et al	2017	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	35	29	60%	46	1024	41
Rogers et al; subgroup 1	2013	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	50	38	65%	49	952	41
Roller et al	2017	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	35	24	50%	61	957	24
Sado et al	2015	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)1	35	67	45%	46	968	32

Salerno et al; subgroup 1	2012	Р	Siemens	1.5	MOLLI	3 (3)5	35	10		34	966	31
Salerno et al; subgroup 2	2012	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	35	10		34	974	22
Schmacht et al	2016	Р	Siemens	1.5	MOLLI	5 (3)3	50	17	29%	54	992	28
Soslow et al	2016	Р	Siemens	1.5	MOLLI	5 (3)3	35	11	100%	25	988	14
Tahir et al	2017	Р	Philips	1.5	MOLLI	5 (3)3		36	61%	42	1032	26
Tessa et al	2015	Р	Siemens	1.5	MOLLI	5 (3)3	35	22	86%	42	961	28
Treibel et al	2015	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)		50	52%	45	955	30
Zhang et al	2015	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5		12	50%	50	964	33
Zorach et al	2018	Р	Siemens	1.5	MOLLI	5 (4)3	35	20	26%	58	987	35

Note.—Table of all native T1 studies at 1.5T. Method = recruitment method, P = prospectively recruited, R = retrospectively recruited, FS = field strength, Technique = pulse sequence scheme, MOLLI = Modified Look-Locker Inversion Recovery, ShMOLLI = Shortened Modified Look-Locker Inversion Recovery, Sequence = number of phases (number of heartbeats), FA = flip angle, N = number of subjects in study, SD = standard deviation.

Author	Year	Method	Vendor	FS (T)	Technique	Sequence	FA (°)	N	% Male	Age (years)	Native T1 Mean (ms)	SD (ms)
Alam et al; subgroup 2	2015	Р	Siemens	3	MOLLI	3 (3)5	35	20	45%	34	1165	28
Blaszczyk et al	2017	Р	Siemens	3	MOLLI	3 (3)3 (3)5	35	29	45%	52	1133	29
Cameron et al	2016	Р	Philips	3	MOLLI	3 (3)3 (3)5	35	10	60%	59	1192	30
Child et al	2017	Р	Philips	3	MOLLI	3 (3)3 (2)5	50	26	42%	53	1055	20
Chin et al	2014	Р	Siemens	3	MOLLI	3 (3)3 (3)5	35	20	50%	55	1180	28
Chin et al	2017	Р	Siemens	3	MOLLI	3 (3)3 (3)5	50	37	65%	68	1166	27
Costello et al	2017	Р	Siemens	3	ShMOLLI	5 (1)1 (1)1	35	57	51%	48	1123	47
Dabir et al; subgroup 2	2014	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	55	51%	44	1053	24
Dabir et al; subgroup 4	2014	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	32	52%	41	1052	23
Dass et al	2012	Р	Siemens	3	ShMOLLI	5 (1)1 (1)1	35	12	58%	52	1178	13
Gao et al	2016	Р	Siemens	3	MOLLI	3 (3)3 (3)5	50	23	0%	35	1066	48
Gormeli et al	2016	Р	Siemens	3	MOLLI	3 (3)3 (3)5	35	41	63%	24	1174	36
Hamilton et al	2017	Р	Siemens	3	MOLLI	3 (3)3 (3)5		11			1247	65
Hinojar et al	2016	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	46	20%	42	1057	23
Hong et al	2015	Р	Siemens	3	MOLLI	3 (3)3 (3)5	35	10	70%	54	1205	37
Hromadka et al	2017	Р	Siemens	3	MOLLI	5 (3)3	35	20	50%	54	1192	33
Kawel et al	2012	Р	Siemens	3	MOLLI	3 (3)3 (3)5	35	24	33%	28	1273	39
Knobelsdorff-Brenkenhoff et al	2013	Р	Siemens	3	MOLLI	3 (3)5	35	60	50%	48	1159	46
Kvernby et al	2014	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	10	90%	34	1089	54
Kvernby et al	2017	Р	Philips	3	MOLLI	3 (3)3 (3)5	35	10	60%	38	1145	10

Table E1B: Native T1 Studies at 3.0 T

Lee et al	2015	Р	Siemens	3	MOLLI	3 (3)5		15	60%	33	1169	21
Lee et al	2017	Р	Siemens	3	MOLLI	3 (3)5		33	48%	69	1185	37
Lee et al; subgroup 1	2011	Р	Siemens	3	MOLLI	3 (3)5	35	11	45%	36	1314	39
Lee et al; subgroup 2	2011	Р	Siemens	3	MOLLI	3 (3)3 (3)5	35	11	45%	36	1324	48
Levelt et al	2016	Р	Siemens	3	MOLLI	3 (3)3 (3)5	35	20	45%	54	1184	28
Levelt et al	2017	Р	Siemens	3	ShMOLLI	5 (1)1 (1)1	35	16	53%	51	1194	26
Lin et al	2018	Р	Siemens	3	MOLLI	5 (3)3	20	20	50%	53	1283	46
Liu et al	2014	Р	Siemens	3	MOLLI	3 (3)3 (3)5	50	92	41%	37	1232	28
Liu et al; subgroup 2	2016	Р	Siemens	3	ShMOLLI	5 (1)1 (1)1	35	10	70%	36	1189	34
Luetkens et al	2014	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	42	64%	39	1089	45
Luetkens et al	2016	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	22	68%	45	1087	55
Mahmod et al	2014	Р	Siemens	3	ShMOLLI	5 (1)1 (1)1	35	16	53%	63	1168	27
McDiarmid et al	2016	Р	Philips	3	MOLLI	5 (3)3	35	15	100%	30	1202	33
McDiarmid et al; subgroup 1	2015	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	10	70%	27	1159	33
McDiarmid et al; subgroup 2	2015	Р	Philips	3	MOLLI	4 (3)3 (3)2	50	10	70%	27	1168	24
McDiarmid et al; subgroup 3	2015	Р	Philips	3	MOLLI	5 (3)3	50	10	70%	27	1171	26
McDiarmid et al; subgroup 4	2015	Р	Philips	3	MOLLI	4 (3)3 (3)2	35	10	70%	27	1182	23
McDiarmid et al; subgroup 5	2015	Р	Philips	3	MOLLI	3 (3)3 (3)5	35	10	70%	27	1185	23
McDiarmid et al; subgroup 6	2015	Р	Philips	3	MOLLI	5 (3)3	35	10	70%	27	1189	33
Mordi et al	2017	Р	Philips	3	MOLLI	3 (3)3 (3)5	35	28	50%	68	1194	29
Piechnik et al; subgroup 3	2010	Р	Siemens	3	ShMOLLI	5 (1)1 (1)1	35	10	70%	35	1166	62
Piechnik et al; subgroup 4	2010	Р	Siemens	3	MOLLI	3 (3)3 (3)5	35	10	70%	35	1169	45
Puntmann et al	2013	Р	Philips	3	MOLLI	3 (3)5	50	21	23%	38	1056	27
Puntmann et al	2013	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	30	63%	43	1070	55
Puntmann et al	2014	Р	Philips	3	MOLLI	3 (3)5	50	47	52%	51	1055	22
Puntmann et al	2017	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	36	39%	43	1052	25
Rauhalammi et al; subgroup 2	2016	Р	Siemens	3	MOLLI	3 (3)3 (3)5	50	84	49%	45	1154	26
Rogers et al; subgroup 2	2013	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	38	65%	49	1087	60
Rutherford et al	2016	Р	Siemens	3	MOLLI		35	28	57%	60	1154	32
Scally et al	2018	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	37	3%	64	1184	10
Schwarz et al	2017	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	44	10%	67	1189	16
Singh et al	2015	Р	Siemens	3	MOLLI	3 (3)3 (3)5	50	22	68%	68	1092	34
Storz et al	2017	Р	Siemens	3	MOLLI	5 (3)3	35	218	50%	54	1202	46
Teixeira et al; subgroup 1	2016	Р	Siemens	3	ShMOLLI	5 (1)1 (1)1	35	40	45%	59	1174	37
Teixeira et al; subgroup 2	2016	Р	Siemens	3	MOLLI	5 (3)3	35	40	45%	59	1199	28

Weingartner et al	2016	Р	Siemens	3	MOLLI	5 (3)3	35	20	50%	27	1183	36
Wu et al	2016	Р	Philips	3	MOLLI	3 (3)3 (3)5	35	14	57%	51	1115	37
Wu et al	2017	Р	Philips	3	MOLLI	5 (3)3	35	12	33%	56	1134	27
Wu et al	2018	Р	Philips	3	MOLLI		35	12	42%		1115	37
Youn et al	2017	Р	Siemens	3	MOLLI	3 (3)3 (3)5	35	19	65%	54	1214	37
Zhao et al	2016	Р	Siemens	3	MOLLI	5 (3)3	35	13	77%	53	1248	32
Zhou et al	2017	Р	Philips	3	MOLLI	5 (3)3	35	14	64%	45	1096	42

Note.—Table of all native T1 studies at 3.0 T. Method = recruitment method, P = prospectively recruited, R = retrospectively recruited, FS = field strength, Technique = pulse sequence scheme, MOLLI = Modified Look-Locker Inversion Recovery, ShMOLLI = Shortened Modified Look-Locker Inversion Recovery, Sequence = number of phases (number of heartbeats), FA = flip angle, N = number of subjects in study, SD = standard deviation.

Table E2: ECV Studies

A. ECV Studies at 1.5 T

Author	Year	Method	Vendor	FS (T)	Technique	Sequence	FA	PC Time	Contrast	Dose (mmol/kg)	Ν	% Mole	Age	ECV	SD
ALWakaal Marguard at al	2017	р	Dhiling	(1)	MOLLI	2 (2)2 (2)5	(°) 25	(mm)	Dotorom	(mmoi/kg)	17	1VIAIE	(years)	Mean (%)	(%)
Al-Wakeel-Marquard et al	2017	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	35	15	Dotarem	0.1	17	53%	24	20.0	2.0
aus dem Siepen et al	2015	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	35	10	Magnevist	0.2	56	66%	52	23.0	3.0
Banyspersad et al	2015	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)	35	15	Dotarem	0.1	54	46%	46	25.0	2.0
Bohnen et al	2017	Р	Philips	1.5	MOLLI	3 (3)5	35	15	Multihance	0.075	13	85%	38	25.0	1.0
Bohnen et al	2017	Р	Philips	1.5	MOLLI	3 (3)5	35	15	Multihance	0.08	27	70%	40	25.0	1.0
Brouwer et al	2014	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	50	14	Magnevist	0.2	14	57%	48	26.0	2.0
Bulluck et al	2016	Р	Siemens	1.5	MOLLI	5 (3)3 (3)3	35	15	Dotarem	0.1	20	90%	60	26.4	2.1
Cao et al	2018	Р	Siemens	1.5	MOLLI	5 (3)3	35	15	Magnevist	0.2	20	53%	54	24.6	2.2
Chen et al	2015	Р	Siemens	1.5	MOLLI	5 (3)3	35	15	Magnevist	0.2	15	73%	54	23.3	2.0
Dabir et al; subgroup 1	2014	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	50	18	Gadovist	0.15	58	51%	44	26.0	6.0
Dabir et al; subgroup 2	2014	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	50	18	Gadovist	0.15	34	52%	41	25.0	4.0
Edwards et al	2015	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5		17.5	Gadovist	0.15	43	56%	57	25.0	3.0
Ertel et al	2015	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	35	15	Magnevist	0.15	30	47%	52	26.0	2.4
Florian et al	2014	Р	Siemens	1.5	MOLLI	3 (3)5	35	17.5	Magnevist	0.15	17	100%	33	24.0	2.0
Fontana et al	2012	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)	35	62.5	Dotarem	0.1	50	53%	47	27.0	3.0
Fontana et al	2015	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)	35	62.5	Dotarem	0.1	47	45%	45	27.0	3.0
Greulich et al	2017	Р	Siemens	1.5	MOLLI	3 (3)3	35	20	Magnevist	0.15	20			24.5	1.0
Greulich et al	2017	Р	Siemens	1.5	MOLLI	3 (3)3 (0)1	35	20	Magnevist	0.15	20			25.0	1.1
Hanneman et al	2016	Р	Siemens	1.5	MOLLI	5 (3)3	35	10	Gadovist	0.2	10	50%	32	27.1	3.1
Hanneman et al	2017	Р	Siemens	1.5	MOLLI	5 (3)3	35	15	Gadovist	0.2	10	50%	32	24.9	4.0

Heck et al	2017	Р	Philips	1.5	MOLLI	3 (2)3 (2)5	35	15	Dotarem	0.2	69	0%	51	27.5	2.7
Homsi et al	2017	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	50	10	Gadovist	0.2	20	50%	63	28.0	3.8
Huber et al	2018	Р	Siemens	1.5	MOLLI	5 (3)3	35	15	Multihance	0.2	20	45%	47	22.0	3.0
Kellman et al	2012	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	50	17.5	Magnevist	0.15	62	48%	43	25.4	2.5
Knobelsdorff-Brenkenhoff et al	2017	Р	Siemens	1.5	MOLLI	5 (3)3	35	10	Gadovist	0.15	18	78%	37	27.1	6.0
Kuruvilla et al	2015	Р	Siemens	1.5	MOLLI	3 (3)5	35	15	Magnevist	0.15	22	32%	54	26.0	2.0
Liu et al	2013	R	Siemens	1.5	MOLLI	3 (3)3 (3)5	35	25	Magnevist	0.15	1231	49%	67	27.0	2.9
Luetkens et al	2016	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	50	11	Gadovist	0.2	50	60%	39	27.7	6.0
Luetkens et al	2016	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	50	10	Gadovist	0.2	45	62%	40	26.1	3.2
Luetkens et al	2017	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	50	10	Gadovist	0.2	35	66%	41	26.7	4.8
Mayr et al	2016	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5		20	Magnevist	0.15	20			25.0	1.1
Mehta et al	2015	Р	Siemens	1.5	MOLLI	5 (4)3	35	25	Magnevist	0.15	10	80%	24	27.1	1.4
Miller et al; subgroup 1	2013	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	35	15	Magnevist	0.2	10	50%	46	25.8	2.8
Miller et al; subgroup 2	2013	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	35	15	Magnevist	0.15	10	50%	45	25.8	3.4
Miller et al; subgroup 3	2013	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	35	15	Magnevist	0.1	10	50%	44	27.7	3.7
Mordi et al	2016	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	35	10	Gadovist	0.15	21	100%	48	26.2	2.9
Ntusi et al	2014	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)	35	20	Dotarem	0.15	20	5%	56	27.6	2.5
Ntusi et al	2015	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)	35	20	Dotarem	0.15	39	72%	49	27.9	2.0
Radunski et al	2014	Р	Philips	1.5	MOLLI	3 (3)3 (3)5	35	15	Multihance	0.075	21	81%	34	25.0	1.1
Radunski et al	2017	Р	Philips	1.5	MOLLI	3 (3)5	35	15	Multihance	0.075	20	80%	37	26.0	1.1
Radunski et al	2017	Р	Philips	1.5	MOLLI	3 (3)5	35	15	Multihance	0.08	20	90%	31	25.0	1.0
Rauhalammi et al	2016	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	50	12.5	Magnevist	0.15	37	49%	58	25.0	2.3
Roller et al	2017	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	35	15	Multihance	0.15	24	50%	61	23.0	2.0
Salerno et al; subgroup 1	2012	Р	Siemens	1.5	MOLLI	3 (3)5	35	30	Magnevist	0.1	10		34	28.5	1.7
Salerno et al; subgroup 2	2012	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	35	30	Magnevist	0.1	10		34	28.5	1.8
Schmacht et al	2016	Р	Siemens	1.5	MOLLI	5 (3)3	50	15	ProHance	0.2	17	29%	54	26.8	3.0
Soslow et al	2016	Р	Siemens	1.5	MOLLI	5 (3)3	35	15	Magnevist	0.2	11	100%	25	24.0	1.0
Tahir et al	2017	Р	Philips	1.5	MOLLI	5 (3)3		15	Dotarem	0.2	36	61%	42	26.0	3.0
Thuny et al	2014	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	50	10	Dotarem	0.2	16	50%	50	26.8	1.4
Treibel et al	2015	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)		30	Dotarem	0.1	50	52%	45	26.1	2.4
Treibel et al	2017	Р	Siemens	1.5	ShMOLLI	5 (1)1 (1)1	35		Dotarem	0.1	30	44%	41	28.0	2.9
Ugander et al	2012	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	35	17.5	Magnevist	0.15	60	52%	49	26.0	3.0
VanOoji et al	2016	Р	Siemens	1.5	MOLLI	3 (3)3 (3)5	35	17.5	Magnevist	0.1	10	60%	45	28.0	4.0
Wang et al	2017	Р	Siemens	1.5	MOLLI	5 (3)3		20	Magnevist	0.2	97	71%	50	26.9	2.7
Zorach et al	2018	Р	Siemens	1.5	MOLLI	5 (4)3	35	15	Magnevist	0.15	20	26%	58	27.1	2.2

Note.—Table of all extracellular volume (ECV) studies at 1.5 T. Method = recruitment method, P = prospectively recruited, R = retrospectively recruited, FS = field strength, Technique = pulse sequence scheme, MOLLI = Modified Look-Locker Inversion Recovery, ShMOLLI = Shortened Modified Look-Locker Inversion Recovery, Sequence = number of phases (number of heartbeats), FA = flip angle, PC time = time of measurement postcontrast injection, N = number of subjects in study, SD = standard deviation.

Author	Year	Method	Vendor	FS (T)	Technique	Sequence	FA (°)	PC Time (min)	Contrast	Dose (mmol/kg)	Ν	% Male	Age (years)	ECV Mean (%)	SD (%)
Child et al	2017	Р	Philips	3	MOLLI	3 (3)3 (2)5	50	25	Gadovist	0.1	26	42%	53	26.0	4.0
Chin et al	2014	Р	Siemens	3	MOLLI	3 (3)3 (3)5	35	20	Gadovist	0.1	20	50%	55	26.0	1.6
Chin et al	2017	Р	Siemens	3	MOLLI	3 (3)3 (3)5	50	20	Gadovist	0.1	37	65%	68	26.5	1.3
Costello et al	2017	Р	Siemens	3	ShMOLLI	5 (1)1 (1)1	35	15	Magnevist	0.2	57	51%	48	24.6	2.4
Dabir et al; subgroup 3	2014	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	18	Gadovist	0.15	55	51%	44	26.0	6.0
Dabir et al; subgroup 4	2014	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	18	Gadovist	0.15	32	52%	41	26.0	4.0
Hong et al	2015	Р	Siemens	3	MOLLI	3 (3)3 (3)5	35	15	Gadovist	0.2	10	70%	54	25.7	2.4
Hromadka et al	2017	Р	Siemens	3	MOLLI	5 (3)3	35	15	Gadovist	0.05	20	50%	54	22.8	1.9
Kawel et al; subgroup 1	2012	Р	Siemens	3	MOLLI	3 (3)3 (3)5	35	30	Magnevist	0.15	24	33%	28	29.0	3.0
Kawel et al; subgroup 2	2012	Р	Siemens	3	MOLLI	3 (3)3 (3)5	35	30	Multihance	0.1	24	33%	28	29.0	3.0
Lee et al; subgroup 1	2011	Р	Siemens	3	MOLLI	3 (3)5	35	23.5	Magnevist	0.15	11	45%	36	25.8	4.1
Lee et al; subgroup 2	2011	Р	Siemens	3	MOLLI	3 (3)3 (3)5	35	23.5	Magnevist	0.15	11	45%	36	26.3	3.8
Levelt et al	2016	Р	Siemens	3	MOLLI	3 (3)3 (3)5	35	15			20	45%	54	29.0	3.0
Levelt et al	2017	Р	Siemens	3	ShMOLLI	5 (1)1 (1)1	35	15	Dotarem	0.03	16	53%	51	30.0	2.0
Lin et al	2018	Р	Siemens	3	MOLLI	5 (3)3	20	20			20	50%	53	27.0	1.7
Liu et al; subgroup 1	2012	Р	Siemens	3	MOLLI	3 (3)5	35	25	Multihance	0.1	24	33%	29	26.4	2.9
Liu et al; subgroup 2	2012	Р	Siemens	3	MOLLI	3 (3)5	35	25	Magnevist	0.15	24	33%	29	27.1	2.7
Luetkens et al	2014	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	10	Gadovist	0.2	42	64%	39	23.6	4.1
Luetkens et al	2016	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	20	Gadovist	0.2	22	68%	45	26.1	2.8
McDiarmid et al	2016	Р	Philips	3	MOLLI	5 (3)3	35	10	Gadovist	0.15	15	100%	30	24.5	2.2
McDiarmid et al; subgroup 1	2015	Р	Philips	3	MOLLI	3 (3)3 (3)5	35	15	Gadovist	0.15	10	70%	27	24.5	3.2
McDiarmid et al; subgroup 2	2015	Р	Philips	3	MOLLI	4 (3)3 (3)2	35	15	Gadovist	0.15	10	70%	27	24.7	3.2
McDiarmid et al; subgroup 3	2015	Р	Philips	3	MOLLI	5 (3)3	35	15	Gadovist	0.15	10	70%	27	24.8	3.9
McDiarmid et al; subgroup 4	2015	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	15	Gadovist	0.15	10	70%	27	25.0	3.3
McDiarmid et al; subgroup 5	2015	Р	Philips	3	MOLLI	4 (3)3 (3)2	50	15	Gadovist	0.15	10	70%	27	25.3	4.0
McDiarmid et al; subgroup 6	2015	Р	Philips	3	MOLLI	5 (3)3	50	15	Gadovist	0.15	10	70%	27	25.9	3.9
Mordi et al	2017	Р	Philips	3	MOLLI	3 (3)3 (3)5	35	15	Gadovist	0.15	28	50%	68	27.0	4.3
Puntmann et al	2013	Р	Philips	3	MOLLI	3 (3)5	50	17.5	Gadovist	0.2	21	23%	38	26.0	5.0
Puntmann et al	2013	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	20	Gadovist	0.2	30	63%	43	26.0	7.0
Puntmann et al	2017	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	15	Gadovist	0.1	36	39%	43	25.0	6.0

B. ECV Studies at 3.0 T

Scally et al	2018	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	10	Magnevist	0.15	37	3%	64	27.0	1.0
Schwarz et al	2017	Р	Philips	3	MOLLI	3 (3)3 (3)5	50	15	Gadovist	0.1	44	10%	67	27.3	5.0
Singh et al	2015	Р	Siemens	3	MOLLI	3 (3)3 (3)5	50	20	Gadovist	0.15	22	68%	68	25.1	2.6
Storz et al	2017	Р	Siemens	3	MOLLI	5 (3)3	35	10	Gadovist	0.2	218	50%	54	24.6	2.8
Weingartner et al	2016	Р	Siemens	3	MOLLI	5 (3)3	35	25	Dotarem	0.2	20	50%	27	27.5	3.1
Wu et al	2016	Р	Philips	3	MOLLI	3 (3)3 (3)5	35	15	Magnevist	0.15	14	57%	51	24.0	3.0
Wu et al	2017	Р	Philips	3	MOLLI	5 (3)3	35	15	Magnevist	0.15	12	33%	56	24.0	3.0
Wu et al	2018	Р	Philips	3	MOLLI		35	15	Magnevist	0.15	12	42%		24.0	3.0
Youn et al	2017	Р	Siemens	3	MOLLI	3 (3)3 (3)5	35	15	Gadovist	0.2	19	65%	54	25.8	2.2
Zhao et al	2016	Р	Siemens	3	MOLLI	5 (3)3	35	15	Magnevist	0.1	13	77%	53	25.1	1.6

Note.—Table of all extracellular volume (ECV) studies at 3.0 T. Method = recruitment method, P = prospectively recruited, R = retrospectively recruited, FS = field strength, Technique = pulse sequence scheme, MOLLI = Modified Look-Locker Inversion Recovery, ShMOLLI = Shortened Modified Look-Locker Inversion Recovery, Sequence = number of phases (number of heartbeats), FA = flip angle, PC time = time of measurement postcontrast injection, N = number of subjects in study, SD = standard deviation.

Table E3: Pooled Covariance

A. Pooled Covariance of Native T1 Subgroups

			Pooleo	d Covariance of	Native T1 Sub	groups		
Field Strength	1.5T	3.0T	1.5T	1.5T	1.5T	3.0T	3.0T	3.0T
Vendor	All	All	Siemens	Siemens	Philips	Siemens	Siemens	Philips
Pulse Sequence	All	All	MOLLI	ShMOLLI	MOLLI	MOLLI	ShMOLLI	MOLLI
Pooled COV	0.04	0.03	0.04	0.03	0.03	0.03	0.02	0.03

B. Pooled Covariance of ECV Subgroups

			Poo	led Covariance	of ECV Subgro	oups		
Field Strength	All	1.5T	3.0T	1.5T	1.5T	1.5T	3.0T	3.0T
Vendor	All	All	All	Siemens	Siemens	Philips	Siemens	Philips
Pulse Sequence	All	All	All	MOLLI	ShMOLLI	MOLLI	MOLLI	MOLLI
Pooled COV	0.12	0.12	0.16	0.12	0.10	0.15	0.10	0.18

COV = Covariance.

Author	Year	Vendor	FS (T)	Technique	Number of Subjects	% Males	Age (years)	Contrast	Contrast Dose (mmol/kg)	PC Time (min)	Mean Native T1 (ms)	SD Native T1 (ms)	Mean ECV (%)	SD ECV (%)
lles et al	2008	GE	1.5	prototype sequence	20	50	38	Magnevist	0.20	15	975	62		
Gai et al	2011	Siemens	1.5	Look-Locker	13	54	38	Magnevist	0.15	25	986	168	26.0	6.0
Nacif et al	2011	Siemens	1.5	Look-Locker	14	57	38				998	196		
Sado et al	2012	Siemens	1.5	FLASH IR	81	52	43	Dotarem	0.10				25.3	3.5
Song et al	2012	GE	1.5	MLLSR	41	78	48	ProHance	0.20	10	910	93		
Ho et al	2013	Siemens	3.0	Look-Locker	11	36	27	Magnevist	0.15	30			27.0	1.0
Neilan et al	2013	Siemens	3.0	Look-Locker	15	47	56	Magnevist	0.15	30			28.0	2.0
Neilan et al	2013	Siemens	3.0	Look-Locker	32	56	49	Magnevist	0.15	30			28.0	3.0
Chow et al	2014	Siemens	1.5	SASHA	10	60	54	Gadovist	0.15	24	1170	9		
Neilan et al	2014	Siemens	3.0	Look-Locker	20	65	57	Magnevist	0.15	30			28.0	3.0
Barison et al	2015	GE	1.5	MCine-IR	15	73	52	Dotarem	0.20	20			25.0	4.0
Barison et al	2015	GE	1.5	MCine-IR	10	0	48	Omniscan	0.20	15	811	89	28.0	4.0
Kato et al	2016	Philips	1.5	STONE	15	60	46				1065	35	1	
Shah et al	2016	Philips	1.5	STONE	27	50	27				1069	29		
Teixeira et al	2016	Siemens	3.0	SASHA	40	45	59				1487	36		
Ngu et al	2016	GE	1.5	VAST	21	52	36	Magnevist	0.20	20	1075	243		
Shah et al	2016	Philips	1.5	STONE	20	67	47	Multihance	0.10				25.0	2.0
Weingartner et al	2016	Siemens	3.0	SAPPHIRE	20	50	27	Dotarem	0.20	25	1578	36	21.0	2.8
Weingartner et al	2016	Siemens	3.0	SASHA	20	50	27	Dotarem	0.20	25	1523	41	21.9	3.0
Luetkens et al	2016	Philips	1.5	ShMOLLI	50	60	39	Gadovist	0.20	12	831	27	25.3	4.0
Roux et al	2017	GE	1.5	MOLLI	10	30	35	Dotarem	0.20	10	929	80		
Costello et al	2017	Siemens	3.0	SASHA	57	51	48	Magnevist	0.20	15	1498	44	19.8	1.9
Vansanji et al	2017	Siemens	1.5	SASHA	14	57	51	Magnevist	0.15	20	1172	43	20.1	2.0
Child et al	2017	Philips	3.0	SASHA	26	42	53	Gadovist	0.10	25	1171	42	26.0	8.0
Child et al	2017	Philips	3.0	ShMOLLI	26	42	53	Gadovist	0.10	25	1080	32	26.0	6.0

Table E4: T1 and ECV Data from All Sequences and Vendors

Note.—Table of studies excluded for vendor or pulse sequence scheme, due to inadequate study group numbers for inclusion. ECV = extracellular volume, Native T1 = native t1 time, FS = field strength, Technique = pulse sequence scheme, FLASH IR = Fast Low Angle SHot inversion recovery, MLLSR = Modified Look-Locker acquisition with Saturation Recovery, SASHA = Saturation recovery single-shot acquisition, MCine-IR = Modified Cine Inversion Recovery, STONE = Slice interleaved T1 mapping, VAST = inversion recovery gradient echo sequence with variable sampling of the k-space time, SAPPHIRE = Saturation Pulse Prepared Heart Rate independent Inversion-REcovery, ShMOLLI = Shortened Modified Look-Locker Inversion Recovery, MOLLI = Modified Look-Locker Inversion Recovery, PC time = time of measurement postcontrast injection, N = number of subjects in study, SD = standard deviation.