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Supporting Information Text11

Adaptive locally-linear segmentation algorithm12

We first define a set of candidate windows in which to examine whether there are dynamical breaks. This is done iteratively:13

we set a minimum window size wmin and then increment by ∼ 10% which ensures that larger windows contain a proportionally14

larger number of observations. The candidate windows range between wmin and some wmax which corresponds to the value15

at which the step size is larger or equal to wmin. The specific value of wmin depends on the dataset and the dimensionality16

d and we chose wmin to be the smallest interval in which the data can be reliably fit. However, simply setting wmin = d17

does not incorporate the possibility of multicollinearity, when two or more components are not linearly independent, which18

produces an ill-conditioned linear regression. This linear dependence results in a moment matrix X>X that is not full rank or19

nearly singular, and therefore small perturbations result in large fluctuations in the estimated linear parameters. In addition,20

computing the log-likelihood function Eq. (4) requires inverting the covariance matrix of the error Σ. Thus, we require a21

minimum window size for which both X>X and Σ are well-conditioned. We compute the condition number of these matrices22

as a function of window size and choose wmin as the smallest window for which the condition numbers are reasonably small.23

The results for each analyzed dataset are shown in Fig. (S8).24

Algorithm 1 Iterative construction of window sizes
w = wmin

s = 0
while s < wmin do
save w
s = int(w/10)
if s < wmin then
w = w + s

else
break

end if
end while

Given a set of candidate windows we iterate over pairs of consecutive windows of size wk and wk+1, estimate the respective25

model parameters θk and θk+1, and locate a dynamical break if θk+1 performs significantly better than θk in fitting the data26

from the window of size wk+1. We assess significance through a likelihood ratio test and obtain Λk,k+1 from Eq. (3). We note27

that our models are non-nested for which the likelihood ratio would be asymptotically χ2 distributed. Instead, we take θk as a28

null model for the observations in the window of size wk+1 and use a Monte Carlo approach to generate N = 5000 surrogate29

trials of size wk+1 from θk in order to compute Pnull(Λ), the distribution of the log-likelihood ratio under the null hypothesis of30

having no model change. We identify a dynamical break if Λk,k+1 > Λthresh where Λthresh is defined by the larger solution31

of Pnull(Λthresh) = 0.05. A graphical representation of the technique is shown in Fig. (1) and the algorithm is detailed below.32

Finally, if the algorithm iterates to the maximum window size wmax we automatically assign a break which we then asses33

through the following procedure: we start with wk = wmin and compare the models found in the intervals [wmax − wk, wmax]34

and [wmax −wk, wmax + (wk+1 −wk)] as we increase k until we span the entire set of candidate windows. If none of these tests35

suggest a break then we simply remove it.36

We choose the significance threshold empirically and this choice reflects a tension between model complexity and accuracy;37

varying Pnull(Λthresh) principally changes the number of breaks. While we have found Pnull(Λthresh) = 0.05 to be reasonable38

across multiple datasets we provide additional intuition through a toy segmentation problem illustrated in Fig. (S9). We39

simulate N = 100 two-dimensional systems ~xs for which we change the model parameters twice: first we apply a small change40

to the coupling between x1 and x2, A12 → A12 + 0.03, while in the next change we symmetrize the couplings between x141

and x2 thus reverting the direction of the oscillation, Fig. (S9-top). Both change points are accurately determined even for a42

significance level of 1%, Fig. (S9-middle); the dynamical changes are found ∼ 96% of the time, even though the change between43

the first two models is quantitatively small. In Fig. (S9-bottom) we show the number of true positives (breaks found by the44

algorithm that are true dynamical changes) and false positives (breaks found by the algorithm that are not true dynamical45

changes) as a function of the significance level. The fraction of true positives is essentially preserved (even if we stretch to a46

1% significance level), indicating that missing true dynamical changes is rare. The results reported in this manuscript do not47

depend sensitively on the significance threshold.48

49
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Algorithm 2 Description of the adaptive locally-linear segmentation of a d-dimensional time series ~x, of length T given a set
of Nw candidate windows.
t = 0
while t < T do
k = 0
while k < Nw do
Xk = ~xt, t ∈ [t, t+ wk]
Xk+1 = ~xt, t ∈ [t, t+ wk+1]
Fit θk and θk+1 to Xk and Xk+1, respectively
Compute Λk,k+1 over Xk+1, from θk and θk+1
Generate Ns time series Xs

k+1 of size wk+1, using θk

Compute Λs
k,k+1 with the newly obtained θs

k and θs
k+1, for each Ns time series, obtaining a distribution Pnull(Λ)

Estimate Λthresh as the largest solution of Pnull(Λthresh) = 0.05
if Λk,k+1 ≤ Λtresh then
There is no dynamical change
k = k + 1

else
save the window [t, t+ wk]
break

end if
end while
t = t+ wk

end while
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Fig. S1. Unstable linear models in the chaotic regime of the Lorenz system lie along the unstable manifold of the origin. We plot the
xy projection of the Lorenz system in the chaotic regime, color coded by the magnitude of the maximum real eigenvalue λr of the linear model found in each window resulting
from the adaptive segmentation. Most unstable models are found close to the origin, along its 1d unstable manifold (gray line).

4 of 14 Antonio C. Costa, Tosif Ahamed and Greg J. Stephens



a3 local extrema

a3

fw
d

Ω-
tu

rn

δ-
tu

rn

re
v

s1 s2 s3 s4

s8 s9

-20 -10 0 10 20 30

P
D

F
 ×

 1
0-2

12

4

0

8

1.00.50.0
overlap fraction

0.5

0.0

ov
er

la
p
 f
ra

ct
io

n

Ω-turn

δ-turn

A B C

Ω-turn δ-turn

Fig. S2. Overlap between the clusters found in C. elegans postural dynamics and behavioral motifs defined phenomenologically. (A)
We identified Ω and δ turns using similar criteria as (1). First, we found local extrema using scipy.signal.find_peaks package (2) in Python (3), with a prominence of 0.5. Only
peaks without local extrema in a 3 s window around are taken into account. For each of the windows identified with our locally-linear segmentation, we first check whether there
is a well defined turn, according to the previous criteria. Then, if the amplitude of the peak is between 12 and 20, we classify it as an Ω-turn; if it is larger than 20, we classify it
as a δ-turn. Windows for which there is no well defined turn and the maximum turning amplitude is below 12 are classified as either forward or reversal based on the sign of the
phase velocity ω. All remaining windows receive no label. (B) Fraction of windows classified phenomenologically that fall into each of our clusters at a 4-branch level. The
sparsity of the overlap matrix indicates that our clusters agree with classical definitions of coarse-grained behaviors. (C) At a 12-branch level, cluster s8 exhibits more δ that Ω
turns, while s9 exhibits more Ω turns. Nonetheless, there is still some confusion between δ and Ω turns. Our local linear models span time scales that are shorter than a typical
turn, thus subdividing it. Therefore it is not surprising that there is some confusion between δ and Ω turns at this level of clustering: the only distinction between these is the
height of the a3 peak, which will correspond to only a small fraction of linear models. In addition, our clustering takes into account the entire dynamical pattern and therefore the
value of the peak alone plays a minor role in differentiating between clusters.
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Fig. S3. Distinct behavioral classes in the dendrogram interpreted through model parameters. The mean ~µ and linear couplings φ displayed
as a matrix (~µ, φ)> (left) and the respective dynamical eigenvalues (right) are shown for a set of example models. From the first to the second forward state, the imaginary
eigenvalues shrink, corresponding to a reduction of the oscillation frequencies. The turn state exhibits a higher value of the mean of a3 and, in this example at the beginning of
a turn, we find an unstable oscillation. Finally, in the reversal state, the sign of the coupling between the first two modes is reversed and this signals a change in the sign of the
phase velocity.
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Fig. S4. At a 12-branch level of the dendrogram the reversal branch exhibits a reversal-turn behavioral motif. (A-left) Distribution of the
turning amplitudes a3. The first reversal (Reversal 1 - green) is actually a reversed turn, as noted by the high value of a3. The other two reversals generally have smaller
turning amplitudes. (A-right) Distribution of body wave phase velocities ω. The second reversal branch (Reversal 2 - red) corresponds to faster reversal bouts, while the
third reversal (Reversal 3 - blue) includes movements at the start of a reversal when ω is small. (B-left) Example trajectory of a reversal-turn. A negative phase velocity ω is
accompanied by a peak in a3 for which the body is bent as in an Ω-turn. (B-right) Worm images from the example trajectory sampled each 0.25 s. The head and tail are
identified with a green and red dot, respectively.
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Fig. S5. Model clusters exhibit approximate correspondence with labeled brain states. (A) Model clustering dendrogram obtained by segmenting
the neural activity of the example worm shown in Fig. (5A). (B) Number of clusters as a function of dissimilarity. The first major splits occur at the two branch and three
branch level. (C) Overlap between model clusters and labeled brain states (4). At the two branch level, we find that most of the frames in branch S1 were labeled as “active”,
while frames in branch S2 were labeled as “quiescent”. At the three branch level we find a high degree overlap between S1 and “reversal”, S2A and “forward”, and S2B and
“quiescent”. (D) Model clustering dendrogram obtained by segmenting the neural dynamics of an exemplar worm from previous global brain imaging experiments (5). (E)
Overlap between model clusters and labeled brain states from previous experiments (5). The sparseness in the matrix indicates a broad match between the states, specially for
the forward and reverse states. (DT - Dorsal Turns, VT - Ventral Turns, Rev-Sus - Sustained Reversal)
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Fig. S6. Locally-linear analysis in the higher-dimensional context of electrocorticography recordings from non-human primates. (A)
Example traces from an experiment in which the injection of propofol (dashed line) induces anesthesia in the monkey subject. There are two trials which occurred with the
same subject but on different days. We project the time series into a 40-dimensional space through principal component analysis, capturing ∼ 99% of the variance. (B)
Eigenvalue spectrum of the collection of linear models found through adaptive segmentation. The distribution of eigenvalues spans a wide range of frequencies and peaks near
the instability boundary. (C) Dendrogram of the likelihood clustering of the space of models. (D) Propofol injection (dashed line) induces profound changes in brain dynamics.
(top) The injection first results in dynamics that are increasingly unstable, then more deeply stable followed by a slow relaxation towards the instability boundary. (middle) These
effects are also present in the window sizes, which increase after the injection of the anesthetic drug, reflecting a period in which the dynamics is less nonlinear. (bottom)
Anesthesia also results in an abrupt change in the average state occupancy. The two different sessions differ in their average anesthetized state: while in session 1 the
dynamics sits more in s1, in session 2 we find a higher occupancy of s2. The curves were smoothed using a 1 s running average. (E) Difference between the eigenvalue
distributions of different clusters. In general, the clusters exhibit frequency dependent changes in stability. In s1, higher frequency states are more damped, while frequencies in
the δ band are long-lived. In contrast, s2 exhibits less damped frequencies (specially in the θ and α bands). Compared to any other cluster however, both s1 and s2 have their
high frequency dynamics significantly more damped. This loss of power in the β band has been associated with loss of consciousness (6, 7) and is naturally captured by our
technique.
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Fig. S7. Locally-linear analysis with regularization applied to recordings of Mus musculus visual cortex at single-cell resolution. (A)
Time series of 240 neurons from mouse visual cortex under a natural movie stimulus. (B) The neural population does not appear low dimensional: the spectrum of eigenvalues
of the covariance matrix indicates that in order to capture most of the variance we would need almost as many principal components as the original number of cells. (C)
Extending the original locally-linear analysis to include a regularization step, the inferred window sizes exhibit a wide distribution with heavy tails extending from 0.3 s to longer
than 1 s. Without regularization, the minimum window size is∼ 500 frames (∼ 16.5 s) in order to ensure a well-conditioned model fit. Here, we have used a condition number
threshold of κthresh = 105. Further details are given in Methods. (D) The neural dynamics exhibits a wide range of frequencies and dynamics that sit near the instability
boundary.
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Fig. S9. Accuracy of the adaptive segmentation technique on a 3-state toy example. (top) We generate a set of 100 toy time series, for which there
are three dynamical regimes, {θ1, θ2, θ3}. We plot a sample time series (dashed line) as well as the mean of the simulations made from the models and windows found using
the adaptive segmentation technique (blue and green lines represent x1 and x2, respectively; shade represents bootstrapped 95% confidence intervals). (middle) We plot the
distribution of dynamical breaks, across simulations, for the smallest significance level Pnull(Λthresh) = 0.01, for which both breaks are found with high accuracy. (bottom)
Fraction of true positives (breaks found by the algorithm that correspond to dynamical changes) and fraction of false positives (breaks that the algorithm found that do not
correspond to dynamical changes) as a function of the significance level: {60%, 40%, 20%, 10%, 5%, 2.5%, 1%} (dark red to light red represents decreasing significance
levels). At high significance levels, the segmentation algorithm is very sensitive and thus the null hypothesis is rejected easily resulting in a large amount of false positives. As
we decrease the significance level, we start rejecting the null hypothesis less, while still capturing the true dynamical changes. For significance levels below 5%, the fraction of
false positives drops below 50% while the fraction of true positives remains close to 100%. Indeed, the area under the curve (AUC) is nearly 1 and this is indicative of the
quality of the segmentation.
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Fig. S10. Confusion matrices for all the worms not shown in Fig. (S5). (A) - Induced quiescence experiments (4). As with the worm in Fig. (S5), we had
to remove an outlier in worm 4. (rev - reversal, fwd - forward, qsc - quiescent) (B) - No stimulus experiments (5). The sparsity of the confusion matrices indicates a large degree
of overlap. (fwd - forward, slow - slow forward, DT - dorsal turn, VT - ventral turn, Rev-1 - reversal 1, Rev-2 - reversal 2, Res-sus - sustained reversal)

Antonio C. Costa, Tosif Ahamed and Greg J. Stephens 13 of 14



References50

1. Broekmans OD, Rodgers JB, Ryu WS, Stephens GJ (2016) Resolving coiled shapes reveals new reorientation behaviors in51

C. elegans. eLife 5(e17227).52

2. Jones E, Oliphant T, Peterson P, et al. (2001–) SciPy: Open source scientific tools for Python.53

3. Rossum G (1995) Python reference manual, (Amsterdam, The Netherlands, The Netherlands), Technical report.54

4. Nichols ALA, Eichler T, Latham R, Zimmer M (2017) A global brain state underlies c. elegans sleep behavior. Science55

356(6344).56

5. Kato S, et al. (2015) Global brain dynamics embed the motor command sequence of Caenorhabditis elegans. Cell 163:1–14.57

6. Ishizawa Y, et al. (2016) Dynamics of Propofol-Induced Loss of Consciousness Across Primate Neocortex. Journal of58

Neuroscience 36(29):7718–7726.59

7. Chauvette S, Crochet S, Volgushev M, Timofeev I (2011) Properties of slow oscillation during slow-wave sleep and anesthesia60

in cats. Journal of Neuroscience 31(42):14998–15008.61

14 of 14 Antonio C. Costa, Tosif Ahamed and Greg J. Stephens


