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Supplementary Material

S1 Supplementary data

S1.1 Inter-individual contact data

Data on age-specific contact rates were available from a study of self-reported contacts in France [1], compa-

rable to the POLYMOD study in other European countries [2]. The corresponding contact matrix, denoted

by c = (cij), is plotted in Fig. S1 and was used in all model simulations. In a sensitivity analysis, we also

tested the POLYMOD contact matrix from Great Britain (see Fig. S7).
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Figure S1: Matrix of age-specific contact rates in France. Data are from Ref. [1].

S1.2 Demographic data

The annual number of births and the annual age-specific estimates of population sizes were available from

the French National Institute of Statistics and Economic Studies1. These data were interpolated using cubic

smoothing splines (with 10 degrees of freedom) to calculate the weekly birth rate, B(t), and the population

size in every age group i, Ni(t). These smoothed quantities were then used to estimate age-specific migration

rates µi(t), according to the equations:
1https://www.insee.fr/fr/statistiques, downloaded on 23 December 2016.
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dN1
dt

= B(t) ≠ [”1 + µ1(t)]Ni(t)

dNiØ2
dt

= ”i≠1Ni≠1(t) ≠ [”i + µi(t)]Ni(t)

where ”i is the aging rate (per wk) in age group i. The migrations rates were incorporated as covariates into

all the models, so that the simulated population sizes approximately matched the observed population sizes.

S2 Supplementary methods

S2.1 Principal component analysis of meteorological data

Daily meteorological records from nine weather stations in France were provided by Météo-France, the

French national meteorological service. The weather stations were located near the most populated cities

across France: Paris (Ile-de-France region), Rennes and Nantes (Northwest region), Lille and Strasbourg

(Northeast region), Lyon and Marseille (Southeast region), and Toulouse and Bordeaux (Southwest region).

As explained in the main text, four meteorological variables were considered and country-level weekly time

series were constructed by averaging each variable temporally and spatially. The resulting time series are

displayed in the top four panels of Fig. S3.

Because these variables were markedly correlated, we performed a principal component analysis (PCA)

to summarize them [3]. As shown in Fig. S2, the first two components, denoted by M1(t) and M2(t), captured

about 76% and 21% of the variation in the meteorological data. Inspecting the individual time points’ scores

(Fig. S3), we found that the first component captured the major seasonal variations of climate, with scores

highest during summer and lowest during winter. By contrast, the second component captured more minor

seasonal variations of climate, with scores highest at the beginning of autumn and lowest at the beginning

of spring. In all the analyses, we worked with these two summary components instead of the individual

meteorological variables.
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Figure S2: Variables factor map of the PCA on meteorological data. The meteorological vari-
ables were the temperature (TEMP), the vapor pressure (a measure of absolute humidity, HUM_ABS),
the duration of insolation (SUN), and the relative humidity (HUM_REL). The loading vectors were
(0.54, 0.47, 0.51, ≠0.47)T for the first principal component and (0.35, 0.62, ≠0.42, 0.57)T for the second prin-
cipal component.
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Principal component 1 Principal component 2

Duration of insolation (daily hours) Relative humidity (%)

Temperature (°C) Absolute humidity (hPa)
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Figure S3: Time series of the meteorological variables and the first two principal components. In
every panel, the light grey lines represent distinct years and the dark grey line the average seasonal pattern
(obtained using local quadratic regression).

S2.2 Model formulation

Deterministic process model

We formulated an age-structured dynamic model of pneumococcal carriage transmission and disease. The

model is an extension of the Susceptible–Carrier–Infected model and builds on models described previously [4,

5]. Although immunity to carriage was not explicitly modeled, we incorporated it indirectly by fixing age-

specific durations of carriage and age-specific susceptibilities to carriage acquisition, as explained below. In

every age group i = 1, . . . , I, the population was divided into those individuals not carrying pneumococcus

(Si), those carrying pneumococcus, and those infected with an IPD (Ii). Because some evidence indicates

that the risk of disease is higher early after carriage acquisition [6, 7], we further divided the population of

carriers into those with early carriage, C
(1)
i

, and late carriage, C
(2)
i

. The overall duration of carriage therefore

comprised a fraction of time, denoted by f
(1), of early carriage and a fraction 1 ≠ f

(1) of late carriage. The

risk of disease was scaled by ◊
(1)

f(1) during early carriage and by 1≠◊
(1)

1≠f(1) during late carriage, where ◊
(1) is the

S-4



fraction of disease that occurs during early carriage. With this parametrization, the risk of disease is higher

during early carriage than during late carriage if ◊
(1)

f(1) >
1≠◊

(1)

1≠f(1) , or equivalently if ◊
(1)

> f
(1). Hence, to test

the hypothesis that the disease risk is not uniform during carriage, only one parameter of the pair (f (1)
, ◊

(1))

needs to be estimated. We chose to fix f
(1) = 1

3 , and we estimated ◊
(1) from the data.

To model the potential interactions between pneumococcus and ILIs, we explicitly modeled individuals

infected with ILIs. We assumed that such infections occurred independently of pneumococcal carriage status,

at a rate Fi(t)
fl

(F )
i

in age group i. Here Fi(t) is the observed weekly ILI incidence and fl
(F )
i

the probability that

a symptomatic ILI case consults a physician, assumed age-specific and fixed according to previous studies

of healthcare seeking behaviors in France (Table S1 and Refs. [8, 9]). Hence, the four compartments S, C
(1),

C
(2), and I were duplicated to represent the status of individuals vis-à-vis ILI infection: ILI-uninfected

(superscript (U)) or ILI-infected (superscript (F )). According to previous evidence [10, 11, 12, 4, 13, 14], we

hypothesized 3 potential mechanisms of interaction between ILIs and pneumococcus:

1. Acquisition impact: a non-carrier infected with an ILI was assumed to have a higher risk of carriage

acquisition than an a non-carrier uninfected with ILI. The relative risk of acquisition is denoted by ◊⁄.

2. Transmission impact: a carrier infected with an ILI was assumed to transmit at a higher rate than

a carrier uninfected with an ILI. The relative risk of transmission is denoted by ◊— .

3. Invasion impact: a carrier infected with an ILI was assumed to have a higher risk of developing

an invasive pneumococcal disease than a carrier uninfected with an ILI. The relative disease risk is

denoted by ◊–.

Overall, the model consisted of 8 compartments in every age group i: S
(U)
i

, C
(U,1)
i

, C
(U,2)
i

, I
(U)
i

, S
(F )
i

, C
(F,1)
i

, C
(F,2)
i

,

and I
(F )
i

. For simplicity, and because IPDs were rare during the study period, we did not explicitly model

the outcome of infected individuals; rather, the infected state variables I
(U)
i

and I
(F )
i

were modeled as accu-

mulator variables and reset to 0 at the beginning of every new week. A simplified model schematic is shown

in Fig. S4.
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Figure S4: Model schematic. For simplicity, age is omitted.

The equations in the first age group (age [0,5) yr, i = 1) are given by:
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The equations in the other age groups (i = 2, . . . , I) are:
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Here ”i is the aging rate in age group i, “
(P )
i

the decolonization rate, –i(t) the time-varying invasion rate (i.e.,

the rate at which carriers develop pneumococcal disease), and 1
“(F ) the average duration of the interaction

between ILIs and pneumococcus. The decolonization rates were fixed so that the average duration of carriage

was 6 wk in [0,5) yr and 3 wk in older individuals [15, 16]. In keeping with previous experimental [10] and

epidemiological evidence [13], we assumed a short average duration of ILI–pneumococcus interaction, fixed

to 1
“(F ) = 2

3 wk.

The carriage acquisition rate was given by

⁄i(t) = qie
⁄

(trend)
i ◊t

ÿ

j

cij

C
(U,1)
j

+ C
(U,2)
j

+ ◊—(C(F,1)
j

+ C
(F,2)
j

)
Nj

Seasij(t)Christmasij(t)

where qi is the age-specific susceptibility to carriage acquisition, Seasij(t) a seasonal, age-specific forcing

function, and ⁄
(trend)
i

a trend in the acquisition rate. The latter term was used to account for strain

replacement after the introduction of PCV7 and the national campaign to reduce antibiotic use in France [5].

Because the trends in IPDs di�ered between children aged [0,5) yr (the population targeted by PCV7) and

other age groups (see also Ref. [17]), we estimated separate trend parameters in [0,5) yr and Ø 5 yr. The

term
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Christmasij(t) =

Y
______]

______[

Ÿ1(1 + AChristmas) , {(i = 1, . . . , 4, j = I), (i = I, j = 1, . . . , 4)}, t œ TChristmas

Ÿ1(1 ≠ AChristmas) , {(i = 1, . . . , 4, j = I), (i = I, j = 1, . . . , 4)}, t /œ TChristmas

1 , otherwise

represents a potential increase in contact rates between children aged [0,20) yr and the elderly during

Christmas holidays, an hypothesis previously put forth to explain the early-winter peaks of IPDs [18]. The

correction term Ÿ1 = [1≠AChristmas(1≠2pChristmas)]≠1 (pChristmas = 2
52 , fraction of the year during Christmas

holidays) is used to maintain a seasonal mean of 1. The set of time points associated with Christmas holidays,

TChristmas, was fixed according to the historical archives of school holidays in France2. This Christmas-related

e�ect was incorporated into all the models, irrespective of the other hypotheses about the seasonality of

carriage acquisition.

The age-specific susceptibility parameters qi were calibrated to reach the following targets of carriage

prevalence: 50% in young children [0,5) yr, 20% in children [5,20) yr, and 10% in adults and the elderly.

These prevalences are broadly consistent with those observed via culture of nasopharyngeal swabs in a

number of carriage studies in high-income countries [19, 20, 21, 22, 23, 24]. To perform the calibration, we

considered a seasonally-unforced version of the model, simulated until endemic equilibrium. We defined a

deviance function that measured the distance between the age-specific targets and the simulated prevalences

of carriage. This deviance was then minimized to find the susceptibility values that best matched the target

prevalences. The calibrated values are shown in Table S1 and were fixed in all subsequent model simulations.

Stochastic observation model

To complete the model specification, we modeled the observation process, which relates the model outputs to

the observed data and allows to correct for under-reporting. Let Hi,t =
´

t

t≠�t
[I(U)

i
(t) + I

(F )
i

(t)]dt represent

the total simulated case count of IPDs in age group i during the time period ]t ≠ �t, t], where �t is the

reporting period (1 wk). The corresponding weekly case report, Di,t, was modeled as a Negative Binomial

distribution:

Di,t ≥ NB(fl(P )
Hi,t,

1
·

)

2http://www.education.gouv.fr/cid197/page.html
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where fl
(P ) is the average probability an IPD is reported to the surveillance system, and · the reporting

overdispersion, which adds variability to that probability. Hence, E(Di,t|Hi,t, fl
(P )

, ·) = fl
(P )

Hi,t = µ and

V(Di,t|Hi,t, fl
(P )

, ·) = µ + ·µ
2. The average reporting probability was fixed to fl

(P ) = 0.65, based on the

results of a capture-recapture study in France [25]. This figure corresponds to an estimated coverage by the

participating laboratories of 74 % of all admissions for bacterial invasive diseases in France and a near 90 %

exhaustiveness of reporting of the participating laboratories.

S2.3 Tested hypotheses on seasonality

We sought to test a number of hypotheses about how seasonal variations of contacts rates, climate, and ILIs

contributed to pneumococcal seasonality. Because pneumococcal disease results from carriage acquisition

and subsequent invasion, we also aimed to test whether both the acquisition rate and the invasion rate varied

seasonally. To do that, we first modeled a background seasonal function with annual periodicity:

log s(t) = m1M1(t ≠ l) + m2M2(t ≠ l)¸ ˚˙ ˝
climate-associated seasonality

+
Hÿ

h=1
(ah cos Êht + bhsinÊht)

¸ ˚˙ ˝
unexplained seasonality

Here the left-hand side of the equation represents the seasonality associated with climate, with l the time lag

(in wk) and m1 and m2 the meteorological coe�cients. The right-hand side of the equation represents an

unexplained seasonality, with Ê = 2fi

365/7 per wk the annual angular frequency, H the number of harmonics,

and ah and bh the seasonal coe�cients. This term serves as a null hypothesis, if no association with climate

actually exists. We arbitrarily fixed H = 2 in all model simulations, but we verified that higher values did

not appreciably modify our results.

We then applied the background seasonal function to di�erent rates to test several hypotheses about the

source of pneumococcal seasonality. Specifically, we tested five di�erent models that represented di�erent

assumptions on the seasonalities of the carriage acquisition and the invasion rates:

1. Background seasonality in carriage acquisition, no seasonality in invasion: here we assumed

no seasonality in the invasion rate and background seasonality in the carriage acquisition rate:

Y
__]

__[

’(i, j, t), Seasij(t) = s(t)

’(i, t), –i(t) = –̄i

2. No seasonality in carriage acquisition, background seasonality in invasion: here we assumed

no seasonality in the carriage acquisition rate (except for the potential increase of contacts during
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Christmas) and background seasonality in the invasion rate. Hence, we wrote:

Y
__]

__[

’(i, j, t), Seasij(t) = 1

’(i, t), –i(t) = –̄is(t)

3. Background seasonality in acquisition, background seasonality in invasion: here we assumed

the same seasonal shape in the carriage acquisition rate and the invasion rate, but we allowed the

oscillations of the acquisition rate to be damped. We hypothesized that such damped oscillations

could be the result of population bottlenecks during transmission [26], if the seasonality of carriage

acquisition is driven by seasonal variations in carriage density [27]. We wrote:

Y
__]

__[

’(i, j, t), log Seasij(t) = Á log s(t)

’(i, t), –i(t) = –̄is(t)

where the damping parameter Á œ [0, 1] (estimated from the data) was applied on the log-scale to

preserve an annual geometric mean of 1.

4. Term-time seasonality in acquisition, background seasonality in invasion: here we assumed

that the acquisition rate varied seasonally as a result of variations of contacts between school terms

and school holidays in schoolchildren aged [0,20) yr. For simplicity, we further assumed that term-time

forcing was assortative and applied only within the same age group. Hence, we wrote:

Seasij(t) =

Y
______]

______[

Ÿ2(1 + Aschool) , i = j, i = 1, . . . , 4, t œ Tschool

Ÿ2(1 ≠ Aschool) , i = j, i = 1, . . . , 4, t /œ Tschool

1 , otherwise

where the correction term Ÿ2 = [1 ≠ Aschool(1 ≠ 2pschool)] (pschool = 41
52 , fraction of the year during

school terms) was used to maintain a seasonal mean of 1. The set of times associated with school

terms, Tschool, was fixed according to historical archives of school holidays in France. The amplitude

of seasonal forcing was fixed assuming that schoolchildren make 40% fewer contacts during holidays

than during school terms [28], such that: 1≠Aschool
1+Aschool

= 0.6 ∆ Aschool = 0.25. The age-specific invasion

rate was given by ’(i, t), –i(t) = –̄is(t).

5. Background and term-time seasonalities in acquisition, background seasonality in inva-
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sion: this model combined the hypotheses of models 3 and 4. The age-specific forcing function was

therefore given by:

Seasij(t) =

Y
______]

______[

s(t)Á ◊ Ÿ2(1 + Aschool) , i = j, i = 1, . . . , 4, t œ Tschool

s(t)Á ◊ Ÿ2(1 ≠ Aschool) , i = j, i = 1, . . . , 4, t /œ Tschool

s(t)Á
, otherwise

and the age-specific invasion rate by: ’(i, t), –i(t) = –̄is(t).

The list of fixed model parameters is presented in Table S1.

Parameter Meaning Value Source
qi Susceptibility to

carriage acquisition
q1 = 0.015,

q2,3,4 = 0.004,
q5,6,7,8 = 0.003,

q9 = 0.005

Calibrated to reach a
target carriage

prevalence in each
age group

1/“
(P )
i

Carriage durations 6 wk in [0, 5) yr, 3
wk in Ø 5 yr

[16, 15]

”i Aging rates ”i=1,...,4 = 1
5 yr≠1,

”i=5,...,8 = 1
10 yr≠1,

”9 = 1
20 yr≠1

—

C
ú
i

Target prevalences 0.5 in [0,5) yr, 0.2 in
[5,20) yr, 0.1 in

Ø 20 yr

[29, 30]

cij Age-specific contact
rates

Fig. S1 [1]

1/“
(F ) Duration of

interaction
2
3 wk Assume short-lived

interaction [10, 13]
fl

(F )
i

Fraction of ILI cases
that consult a

physician

1 in [0,5) yr, 0.45 in
[15,30) yr, 0.6 in
other age groups

[9, 8]

fl
(P ) Probability that an

IPD case is reported
0.65 [25]

f
(1) Fraction of carriage

duration in high-risk
groups

1/3 Can be fixed to an
arbitrary value, as

long as ◊
(1) is

estimated
Aschool Amplitude of

term-time forcing
0.25 [28]

H No of harmonics to
model the function

representing
unknown seasonality

2 Assumption

Table S1: Fixed model parameters.
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S2.4 Estimation procedure

For every hypothesis regarding the seasonality of carriage acquisition, we conducted maximum likelihood

estimation using trajectory matching [31]. This was done in 4 steps:

1. We first estimated the model without association with climate and ILIs. We ran 2,500 replicates

estimations, initiated from 2,500 starting parameter sets generated using Latin hypercube sampling

over a broad range of parameters.

2. We tested the models without ILIs, but with climate incorporated at a given time lag, l = 0, . . . , 3

wk. For each time lag, we ran 2,500 replicate estimations from 2,500 starting parameter sets. These

starting parameters sets were generated using Latin hypercube sampling over the multivariate 95%

confidence interval of the parameters estimated at the previous step.

3. We identified the best model from step 2 and included ILIs, with all the interaction parameters (i.e.,

◊–, ◊— , and ◊⁄) estimated simultaneously. We ran 2,500 replicate estimations from 2,500 starting

parameter sets, whose ranges were narrowed using the parameters estimated at the previous step.

4. If one or more mechanisms of interaction were identified in the previous step, the corresponding inter-

action parameters were made age-specific. In that case, for each interaction mechanism identified we

estimated three interaction parameters in individuals aged [0,5), [5,60), and 60+ yr, denoted by ◊.,1,

◊.,{2,...,8}, and ◊.,9.

For every model, the estimations were repeated from the best 10% parameter sets to pinpoint the maximum

likelihood estimate. The final convergence was assessed by inspecting the sliced log-likelihood around every

estimated parameter. Finally, we used a parametric bootstrap to assess parametric uncertainty and to

calculate approximate 95% confidence intervals around the maximum likelihood estimates [32].

S2.5 Simulation protocol and implementation details

All model simulations were started in 1985, assuming that the system was at equilibrium before the first data

point (wk 27 or year 2000). The set of di�erential equations was integrated numerically; the log-likelihood

was maximized using the “Subplex” algorithm, implemented in the R nloptr package [33]. All the analyses

were performed using the pomp package (version 1.12) [31], which operates in the R environment [34]. The R

checkpoint package [35] was used to freeze the packages’ version and to ensure reproducibility of the results.
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S3 Supplementary results

S3.1 Models comparison and best model’s parameter estimates

The AIC, log-likelihood, and R
2 of all the models tested are presented in Table S2. The parameter estimates

of the best model (i.e., with lowest AIC) are shown in Table S3.

Hypothesis about source of 
seasonality Seasonal covariates included 

Acquisition rate Invasion rate 

Climate Ø Lag 0 Lag –1 Lag –2 Lag –3 Lag –1 Lag –1 Lag –1 

ILIs Ø Ø Ø Ø Ø Lag –1 Lag 0 Lag 0 
ILI 

Interaction 
parameters 

Ø Ø Ø Ø Ø All All 
All, age-
specific 
θα 

Background 
seasonality Ø 

AIC 15252.1 
–7612.1 

14 
0.72 

15078.1 
–7523.1 

16 
0.76 

15112.7 
–7540.4 

16 
0.75 

15175.5 
–7571.8 

16 
0.74 

15207.5 
–7592.7 

16 
0.73 

— — — log L 
nθ 
R2 

Ø Background 
seasonality 

AIC 15211.2 
–7591.6 

14 
0.72 

15162.1 
–7565.1 

16 
0.74 

15079.9 
–7524.0 

16 
0.76 

15097.3 
–7532.7 

16 
0.75 

15172.9 
–7570.5 

16 
0.73 

14965.9 
–7463.9 

19 
0.76 

14917.5 
–7439.7 

19 
0.77 

14890.2 
–7424.1 

21 
0.78 

log L 
nθ 
R2 

Background 
seasonality 

Background 
seasonality 

AIC 15180.4 
–7575.2 

15 
0.73 

15079.4 
–7522.7 

17 
0.75 

15011.8 
–7488.9 

17 
0.77 

15049.9 
–7508.0 

17 
0.75 

15133.4 
–7549.7 

17 
0.74 

14900.2 
–7430.1 

20 
0.78 

14854.6 
–7407.3 

20 
0.78 

14837.2 
–7396.6 

22 
0.78 

log L 
nθ 
R2 

Term-time 
seasonality 

Background 
seasonality 

AIC 15145.5 
–7558.7 

14 
0.73 

15096.3 
–7532.1 

16 
0.74 

15010.0 
–7489.0 

16 
0.76 

15027.7 
–7497.8 

16 
0.75 

15105.5 
–7536.7 

16 
0.74 

14906.3 
–7434.1 

19 
0.77 

14858.6 
–7410.3 

19 
0.78 

14826.6 
–7392.3 

21 
0.78 

log L 
nθ 
R2 

Background and 
term-time 

seasonalities 

Background 
seasonality 

AIC 15115.8 
–7542.9 

15 
0.73 

14996.8 
–7481.4 

17 
0.76 

14935.8 
–7450.9 

17 
0.77 

14981.1 
–7473.6 

17 
0.76 

15066.1 
–7516.1 

17 
0.74 

14835.3 
–7397.7 

20 
0.78 

14790.9 
–7375.4 

20 
0.79 

14773.6 
–7364.8 

22 
0.79 

log L 
nθ 
R2 

!

Table S2: Models comparison. The table shows the AIC, log-likelihood, number of estimated parameters
n◊, and R

2 of models representing di�erent assumptions on the mechanisms underlying IPD seasonality
(i.e., seasonality in the invasion rate or in both the invasion rate and the carriage acquisition rate) and the
association with climate and ILIs, incorporated as covariates in the corresponding models. The background
seasonality refers to a time-varying function with annual periodicity, which was modeled as a Fourier function
with annual and semi-annual harmonics and which additionally incorporated the climate variables shown in
Fig. 1C, depending on the model tested. The models with lowest AIC are indicated in boldface, for every
line and every column of the table.
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Parameter Meaning Estimate (95% CI)
–̄1 Average invasion rate in [0,5) yr 6.8 (6.3, 7.3)◊10≠6 wk≠1

–̄2,3,4 Average invasion rate in [5,20) yr 1.9 (1.8, 2.0)◊10≠6 wk≠1

–̄5,6 Average invasion rate in [20,40) yr 5.9 (5.7, 6.2)◊10≠6 wk≠1

–̄7,8 Average invasion rate in [40,60) yr 1.8 (1.7, 1.8)◊10≠5 wk≠1

–̄9 Average invasion rate in 60+ yr 4.8 (4.6, 4.9)◊10≠5 wk≠1

⁄
(trend)
1 Trend in acquisition rate in [0,5) yr (e�ect of PCV7) –3.6 (–6.2, –2.1)◊10≠4 wk≠1

⁄
(trend)
2,...,9 Trend in acquisition rate in 5+ yr (e�ect of PCV7) 1.1 (0.8, 1.4)◊10≠4 wk≠1

m1 Meteorological coe�cients –0.05 (–0.08, –0.03)
m2 –0.12 (–0.15, –0.10)
a1 Coe�cients of first harmonic –0.15 (–0.212, –0.10)
b1 0.06 (0.00, 0.09)
a2 Coe�cients of second harmonic –0.06 (–0.08, 0.04)
b2 –0.09 (–0.12, –0.06)
Á Damping coe�cient of carriage acquisition rate 0.30 (0.13, 0.43)

AChristmas Amplitude of contact rates increase during Christmas 0.74 (0.69, 0.79)
◊

(1) Fraction of disease during early carriage 1.00 (0.72, 1.00)
· Reporting overdispersion 0.029 (0.024, 0.032)

◊–,1 Relative invasion risk in ILI-infected aged [0,5) 49 (30, 68)
◊–,{2,...,8} Relative invasion risk in ILI-infected aged [5,60) 59 (40, 72)

◊–,9 Relative invasion risk in ILI-infected aged 60+ 146 (89, 188)
◊— Relative transmission risk in ILI-infected of any age 1.0 (1.0, 3.3)
◊⁄ Relative acquisition risk in ILI-infected of any age 1.0 (1.0, 2.1)

Table S3: Best model parameter estimates. The confidence intervals are based on 144 bootstrap
replicates.

S3.2 Model assessment

Model predictions in France

To assess the best model fit, we first compared model simulations with the observed data. As shown

in Fig. S5A, this comparison indicated excellent model-data agreement. Inspecting the model prediction

residuals (Fig. S5B), we note, however, that the best model still tended to under-estimate IPD peaks around

week no 40 in young children. To further quantify model-data agreement, we calculated a generalized R
2 [36],

defined as:

R
2 = 1 ≠

q
i,t

(Di,t ≠ fl
(P )

Hi,t)2
q

i,t
(Di,t ≠ D̄i)2

where Di,t is the observed number of IPDs in age group i during wk t and D̄i = 1
T

q
t
Di,t the time-averaged

observed number of IPDs in age group i. The R
2 of the best model equalled 0.79; the R

2 of all the other

models are also presented in Table S2.
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Figure S5: Best model fit to data. (A) For every age group, the average deterministic skeleton (black
line, corrected for under-reporting) and the prediction envelope (grey ribbon, based on the 2.5% and 97.5
quantiles of the negative-binomial observation model) are displayed. The red lines show the observed data.
For visual clarity, the y-axis values di�er between panels. (B) Scaled residuals in every age group, according
to week no. The red dots indicate data points that were outside of the prediction envelope.

Model predictions in French regions

We examined the model fit on region-level IPD incidence data in France. To do this, we constructed tables

of covariates (i.e., birth rate, ILIs, and climate) in five geographical regions spanning mainland France, as

defined previously [37]: Ile-de-France (including Paris), Northwest, Northeast, Southeast, and Southwest. We

then simulated all the models (without re-estimating the parameters) and calculated the log-likelihood and

the R
2 as before. Encouragingly, we found our results to be robust in every region, with highest log-likelihood

for the model that incorporated ILIs and climate (Table S4). Although no parameters were estimated, the

model’s predictive power remained acceptable, with R
2 ranging from 0.39 in the Ile-de-France region to 0.56

in the Northwest region.
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Region Model tested 
 Climate Ø Lag 0 Lag –1 Lag –2 Lag –3 Lag –1 Lag –1 Lag –1 

ILIs Ø Ø Ø Ø Ø Lag –1 Lag 0 Lag 0 
Interaction 
parameters 

Ø Ø Ø Ø Ø All All All, age-specific θα 

Ile-de-France D 9878.0 9890.7 9875.5 9883.0 9889.9 9840.5 9828.6 9823.3 
R2 0.36 0.36 0.37 0.36 0.36 0.38 0.39 0.39 

Northwest D 9598.8 9543.8 9518.6 9528.0 9563.1 9477.0 9468.4 9473.9 
R2 0.51 0.54 0.55 0.54 0.52 0.56 0.56 0.56 

Northeast D 10215.8 10164.4 10168.2 10186.2 10213.8 10149.5 10138.8 10118.9 
R2 0.51 0.54 0.53 0.52 0.51 0.54 0.54 0.55 

Southeast D 10231.4 10205.1 10196.7 10205.4 10220.4 10165.3 10134.3 10121.9 
R2 0.49 0.52 0.52 0.51 0.50 0.52 0.54 0.54 

Southwest D 8210.2 8216.6 8198.0 8208.3 8218.3 8180.3 8165.5 8161.9 
R2 0.48 0.48 0.49 0.48 0.48 0.50 0.50 0.50 

!

Table S4: Model fit on region-level IPD incidence data. For every region, the table shows the values
of the R

2 and of the deviance, defined as D = ≠2 log L. The model with lowest deviance is indicated
in boldface for every region. These fits are for the models with background and term-time seasonalities in
carriage acquisition; the association with climate and ILIs was also robust for the other hypotheses regarding
the seasonality of acquisition.

Model predictions in tropical climates

We sought to (qualitatively) compare our model predictions with data from two recent studies that examined

the seasonality of pneumococcal carriage in young children, in Mae Sot, Thailand [38] and in Sibanor, the

Gambia [39]. Both locations have a tropical climate (Köppen–Geiger group Aw), characterized by a hot dry

season and a rainy season (from May to October in Mae Sot, and from June to October in Sibanor, cf.

Fig. S6). In both studies, the prevalence of pneumococcal carriage was found to be higher during the dry

season than during the rainy season. To determine if our model was able to reproduce these variations, we

proceeded in several steps. First, we collected weekly records of the average temperature and the average

relative humidity from weather stations near each location (Tambacounda airport, 136 km east of Sibanor;

and Chiang Mai International Airport, 232 km north of Mae Sot) during 2014–20173. Because the other

climatic variables used in our analysis (vapor pressure and duration of sunshine) were unavailable, we re-fitted

the models in France to get parameter estimates for the best model, based on a PCA with temperature and

relative humidity only. (We note, however, that the principal components derived from that PCA were almost

identical [correlation coe�cients exceeding 95%] to those from the original PCA.) For these estimations, we

also re-calibrated the susceptibility parameters so that the average prevalences of carriages were 65% in [0,5),

45% in [5,20), and 30% in Ø 20 yr, based on estimates in low-income countries [40, 41].

We then ran model simulations during 2014–2017 using the PCA-transformed climatic data in Mae Sot or

Sibanor and the climatic parameters re-estimated in France. In the absence of further data, we deactivated all

the other seasonal factors (that is, ILIs, seasonal variations of contact rates, and the unexplained seasonality)
3The data were downloaded from WolframAlpha (https://www.wolframalpha.com/) using the queries ’temperature Sibanor’

and ’temperature Mae Sot’.
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and we used the French contact matrix. These caveats in mind, the resulting model predictions of carriage

prevalence in children aged [0,5) yr are shown in Fig. S6. In qualitatively good agreement with the data in

both locations [39, 38], the model predicted smooth variations of carriage prevalence over the year, with a

peak in January-February during the dry season and a trough in June–July during the rainy season. Although

a more quantitative comparison is made di�cult by the lack of data about the other seasonal factors, we

note that the seasonal amplitude predicted by our model (10–15% di�erence of prevalence between the dry

and the rainy seasons) is roughly consistent with that estimated in Refs. [39, 38] (e.g., seasonal amplitude of

¥17% for carriage of any serotype in children 2–4 yr, Fig. 2 in Ref. [39]).
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Figure S6: Model out-of-fit predictions in Mae Sot, Thailand [38] and Sibanor, The Gambia [39]. Top row:
Standardized values of average temperature and average relative humidity. Bottom: simulated carriage
prevalence in children <5 yr. In each panel, the line (envelope) represents the median (range) values during
2014–2017.

S3.3 Sensitivity analyses

Di�erent contact matrix

To assess the robustness of our results, we re-estimated all the models with a contact matrix derived from

the POLYMOD study in Great Britain, displayed in Fig. S7. The calibrated susceptibilities to carriage

acquisition with this contact matrix were 0.014 in [0,5) yr, 0.004 in [5,20) yr, 0.003 in [20,60) yr, and 0.006

in 60+ yr. As shown in Table S5, the results based on this contact matrix were almost similar to those of

the base analysis.

S-17



0−5

5−10

10−15

15−20

20−30

30−40

40−50

50−60

60+

0−5 5−10 10−15 15−20 20−30 30−40 40−50 50−60 60+
Contact age (yr)

R
ep

or
te

r a
ge

 (y
r)

2

4

6

Contact rate
(per day)

Figure S7: Matrix of age-specific contact rates in Great Britain. Data are from Ref. [2].

Hypothesis about source of 
seasonality Seasonal covariates included 

Acquisition rate Invasion rate 

Climate Ø Lag 0 Lag –1 Lag –2 Lag –3 Lag –1 Lag –1 
ILIs Ø Ø Ø Ø Ø Lag 0 Lag 0 
ILI 

Interaction 
parameters 

Ø Ø Ø Ø Ø All All, age-
specific θα 

Ø Background 
seasonality 

AIC 15211.4 15162.7 15080.3 15096.4 15173.2 14920.3 14892.3 
–7425.2 

21 
log L –7591.7 

14 
–7565.3 

16 
–7524.1 

16 
–7532.2 

16 
–7570.6 

16 
–7441.1 

19 nθ 

Background 
seasonality 

Background 
seasonality 

AIC 15180.7 15078.7 15010.7 15051.5 15133.9 14858.3 14839.6 
–7397.8 

22 
log L –7575.4 

15 
–7522.4 

17 
–7488.4 

17 
–7508.8 

17 
–7549.9 

17 
–7409.1 

20 nθ 

Term-time 
seasonality 

Background 
seasonality 

AIC 15136.7 15088.0 15001.7 15017.4 15096.5 14854.1 14821.3 
–7389.6 

21 
log L –7554.4 

14 
–7528.0 

16 
–7484.9 

16 
–7492.7 

16 
–7532.3 

16 
–7408.1 

19 nθ 
Background and 

term-time 
seasonalities 

Background 
seasonality 

AIC 15113.2 15004.5 14937.9 14978.7 15064.9 14793.5 14774.5 
–7365.3 

22 
log L –7541.6 

15 
–7485.3 

17 
–7451.9 

17 
–7472.3 

17 
–7515.5 

17 
–7376.8 

20 nθ 
 

Table S5: Models comparison (contact matrix from Great Britain). The models with lowest AIC
are indicated in boldface, for every line and every column of the table.

Di�erent reporting probability in the elderly

To verify the robustness of our results regarding the age-specific interaction of ILIs with pneumococcus (in

particular in the elderly), we re-fitted the best model assuming a reporting probability of 50% or 80% in the

elderly and of 65% in the other age groups. As shown in Table S6, the variations in reporting probability were

compensated by a change in the average invasion rate in the elderly (parameter –̄9), but the age-specific

interaction parameters changed little, if at all. Hence, our main results were robust to these alternative
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assumptions.

Model tested log L ◊— ◊⁄ ◊–,1 ◊–,{2,...,8} ◊–,9 –̄9 (◊10≠5 wk≠1)
Reporting probability of 65% in

the elderly (base model) –7364.8 1 1 49 59 146 4.8

Reporting probability of 50% in
the elderly (base model) –7364.8 1 1 50 58 144 6.0

Reporting probability of 80% in
the elderly (base model) –7364.9 1 1 50 58 143 3.7

Table S6: Point parameter estimates for alternative assumptions regarding the reporting prob-
ability in the elderly.

Interaction estimated with bronchiolitis data in children <5 yr

In addition to influenza, other respiratory viruses—such as the respiratory syncytial virus (RSV)—may

interact with pneumococcus [42]. To examine this, we gathered incidence data on bronchiolitis (ICD-10 code

J21, here considered as a proxy for RSV infection) in children <5 yr. These data were available from the

Oscour network, a surveillance network set up after the 2003 heat wave in France and based on admissions

to hospital emergency departments [43]. The number of hospital emergency departments participating in the

network increased gradually over time, with an exhaustiveness estimated at 14% in 2007, 18% in 2008, 25% in

2009, and 45% in 2010 (unpublished estimates). We here considered the data during years 2007/08–2009/10,

corrected for under-reporting using those estimates of exhaustiveness (Fig. S8).

We then fitted the interaction model as before. Because of the limited amount of data, however, we

tested each interaction mechanism separately. The results, presented in Table , suggested the existence of

an interaction qualitatively and quantitatively comparable to that with ILIs (interaction parameter point

estimate of 78 for the invasion impact hypothesis; of 1 for the other hypotheses). Nevertheless, the di�erence

with the no-interaction model (log L = ≠7450.9, cf. Table S2) was not statistically significant (log L =

≠7450.6, � log L = 0.3, likelihood ratio test P = 0.44), presumably as a result of lack of statistical power.
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Figure S8: Weekly incidence of hospital emergency department visits for bronchiolitis (ICD-10
code J21) in children <5 yr. The data were corrected for under-reporting, as explained above.

Model log L Interaction parameter point estimate
No-interaction –7450.9 —

Invasion impact –7450.6 78
Acquisition impact –7450.9 1

Transmission impact –7450.9 1

Table S7: Interaction parameter point estimates with bronchiolitis data in children <5 yr.

S3.4 Simulation protocol of the seasonally-timed intervention

We simulated a seasonally-timed intervention by reducing the contact rates involving a target age group

([0,5), [5,20), [20,40), [40,60), or 60+ yr) during a target week no (between 1 and 52) throughout the study

period. Specifically, we assumed a control e�ort that consisted of reducing the total number of daily contacts

by 1% during every day of the target week. Let E represent the total number of daily contacts prevented

by that control e�ort and Ei the total number of daily contacts involving the age group i targeted by the

intervention. Because Ei varied with age, we maintained a constant control e�ort by reducing the contact

rates of the target age group with all the age groups by a factor E

Ei
. Therefore, the contact rates of the

target age group were modified such that: ’j, cij Ω (1 ≠ E

Ei
)cij . The symmetrical contact rates cji were

similarly decreased to ensure the reciprocity of contacts. The model was then simulated throughout the

study period. The resulting age-specific numbers of IPDs were calculated and compared to those of the

base scenario, without the seasonally-timed intervention. The results of these experiments are presented in
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Fig. S9; the main text Fig. 3C is a subset of this figure, focused on the young children and the elderly. The

results based on the best model’s estimates with the POLYMOD contact matrix in Great Britain (Fig. S7

and Table S5) are shown in Fig. S10.
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Figure S9: Predicted impact of a seasonally-timed intervention (contact matrix from France).
The figure shows the predicted relative reduction in IPDs caused by a seasonally-timed intervention during a
given week no (x-axis) in a given target age group (y-axis). The di�erent panels show the predicted impact
of the intervention in di�erent age groups. For visual clarity, the color scale is square-root transformed.
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Figure S10: Predicted impact of a seasonally-timed intervention (contact matrix from Great
Britain). The figure shows the predicted relative reduction in IPDs caused by a seasonally-timed interven-
tion during a given week no (x-axis) in a given target age group (y-axis). The di�erent panels show the
predicted impact of the intervention in di�erent age groups. For visual clarity, the color scale if square-root
transformed.
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